中国农业科学 ›› 2020, Vol. 53 ›› Issue (16): 3280-3293.doi: 10.3864/j.issn.0578-1752.2020.16.007
收稿日期:
2020-02-17
接受日期:
2020-03-04
出版日期:
2020-08-16
发布日期:
2020-08-27
通讯作者:
张宝俊
作者简介:
常国蓉,E-mail:基金资助:
CHANG GuoRong(),LI RenJian,ZHANG Qi,ZHANG YuMing,HAN YuanHuai,ZHANG BaoJun(
)
Received:
2020-02-17
Accepted:
2020-03-04
Online:
2020-08-16
Published:
2020-08-27
Contact:
BaoJun ZHANG
摘要:
【目的】脱落酸(ABA)作为一类逆境激素,在植物生长发育、生物胁迫和非生物胁迫中发挥着重要作用。脱落酸受体蛋白PYR/PYL/PCAR及SNF1相关的蛋白激酶(SnRK2)是介导脱落酸信号转导的重要调控因子。本研究通过预测脱落酸及其信号转导途径中关键基因在谷子白发病致病菌禾生指梗霉(Sclerospora graminicola)中的调控作用,为谷子内源脱落酸响应禾生指梗霉侵染的互作研究提供参考。【方法】通过对禾生指梗霉侵染的晋谷21号谷子进行转录组测序和脱落酸含量测定,基于谷子全基因组对脱落酸信号转导通路上的PYL和SnRK2家族基因进行鉴定、分析,利用测定的转录组构建加权基因共表达网络(WGCNA),并与禾生指梗霉侵染引起的寄主内源脱落酸含量进行关联,预测脱落酸及其下游信号转导基因PYL和SnRK2在谷子与禾生指梗霉互作调控中的关键核心基因;利用qRT-PCR技术对候选基因进行验证。【结果】谷子中存在禾本科中较为保守的PYL和SnRK2家族基因各11个,且在PYL和SnRK2家族基因的启动子上均预测到脱落酸响应元件。在禾生指梗霉侵染后,寄主内源脱落酸在第一、第二时期大量积累,含量显著高于对照组,分别为22.50和18.08 ng·mL-1,而在第三、第四和第五时期脱落酸含量下降,低于对照组。在基因共表达网络分析中,利用18 535个基因共构建了34个基因共表达模块。通过对脱落酸含量和PYL、SnRK2家族基因的关联分析,预测到MEpaleturquoise和MEbrown模块为核心候选模块。利用GO功能富集和模块关键基因的挖掘共预测到1个PYL家族基因Seita.1G030500和2个SnRK2家族基因Seita.2G394500、Seita.3G03200,以及3个核心基因Seita.4G105600、Seita.6G218100和Seita.9G138400,共6个基因可能在脱落酸及其信号转导调控过程中参与谷子与禾生指梗霉的互作。对预测到的3个核心基因在水稻和拟南芥数据中进行比对,鉴定到Seita.4G105600为转导蛋白/WD40重复超家族蛋白、Seita.6G218100为WRKY57转录因子、Seita.9G138400为TIFY转录因子。qRT-PCR分析表明Seita.2G394500、Seita.4G105600和Seita.6G218100基因在谷子白发病早期表达均上调。【结论】谷子在受到禾生指梗霉侵染后脱落酸会在体内大量积累,预测到1个PYL家族基因、2个SnRK2家族基因、2个转录因子基因和1个WD40家族蛋白基因参与谷子内源脱落酸响应禾生指梗霉侵染过程。qRT-PCR结果表明1个SnRK2家族基因、1个WD40家族蛋白基因和1个WRKY57转录因子基因共3个基因可能在谷子脱落酸响应禾生指梗霉侵染过程中发挥重要作用。
常国蓉,李任建,张琦,张育铭,韩渊怀,张宝俊. 利用WGCNA鉴定谷子内源脱落酸响应禾生指梗霉胁迫的共表达基因[J]. 中国农业科学, 2020, 53(16): 3280-3293.
CHANG GuoRong,LI RenJian,ZHANG Qi,ZHANG YuMing,HAN YuanHuai,ZHANG BaoJun. Identification of Co-Expression Genes Related to Endogenous Abscisic Acid in Response to the Stress of Sclerospora graminicola by WGCNA in Foxtail Millet[J]. Scientia Agricultura Sinica, 2020, 53(16): 3280-3293.
表1
谷子PYL和SnRK2基因家族成员基本信息"
类型 Type | 基因编号 Gene ID | 染色体 Chromosome | 基因组位置 Genomic location | 氨基酸长度 Amino acid (aa) | 等电点 pI | 分子量 Molecular weight (kD) | 总平均疏水指数 Average of hydropathicity |
---|---|---|---|---|---|---|---|
PYL | Seita.1G013900 | 1 | 1185261-1188981 | 211 | 5.92 | 23.67 | -0.393 |
Seita.1G030500 | 1 | 2860241-2862675 | 201 | 5.97 | 21.72 | -0.338 | |
Seita.3G072600 | 3 | 4600680-4602575 | 193 | 4.39 | 20.38 | -0.011 | |
Seita.3G076200 | 3 | 4851939-4854302 | 205 | 5.91 | 22.16 | -0.233 | |
Seita.3G207900 | 3 | 16201030-16202684 | 204 | 8.88 | 21.58 | -0.132 | |
Seita.4G239500 | 4 | 36338582-36339202 | 206 | 6.71 | 22.14 | -0.220 | |
Seita.5G140800 | 5 | 12377439-12378609 | 206 | 5.25 | 21.84 | -0.101 | |
Seita.5G302400 | 5 | 35644268-35645327 | 175 | 4.93 | 18.81 | -0.210 | |
Seita.5G369100 | 5 | 40592575-40593198 | 207 | 6.75 | 22.70 | -0.252 | |
Seita.9G311900 | 9 | 36003871-36005478 | 207 | 5.24 | 22.13 | -0.195 | |
Seita.9G437300 | 9 | 48993016-48994206 | 220 | 6.58 | 22.92 | 0.036 | |
SnRK2 | Seita.1G190000 | 1 | 27251818-27256180 | 454 | 8.49 | 51.77 | -0.605 |
Seita.2G394500 | 2 | 45956776-45961725 | 339 | 5.30 | 38.47 | -0.177 | |
Seita.3G003200 | 3 | 157270-159276 | 380 | 5.99 | 43.11 | -0.547 | |
Seita.3G230400 | 3 | 19092668-19097929 | 360 | 5.68 | 41.77 | -0.546 | |
Seita.3G369900 | 3 | 47387035-47389674 | 374 | 4.94 | 41.46 | -0.224 | |
Seita.5G395400 | 5 | 42440116-42444731 | 362 | 6.06 | 42.33 | -0.619 | |
Seita.7G100500 | 7 | 20312278-20317276 | 358 | 6.00 | 40.98 | -0.558 | |
Seita.9G318200 | 9 | 36623246-36626468 | 333 | 5.48 | 37.93 | -0.467 | |
Seita.9G079800 | 9 | 4716246-4721220 | 366 | 4.81 | 41.48 | -0.308 | |
Seita.9G169200 | 9 | 11473484-11476494 | 362 | 4.73 | 40.73 | -0.283 | |
Seita.9G379000 | 9 | 43841287-43845704 | 344 | 5.10 | 39.13 | -0.238 |
表2
模块GO富集情况"
类型 Type | 基因编号 Gene ID | GO富集 GO term | P-value |
---|---|---|---|
MEpaleturquoise | GO:0000775 | 染色体、着丝粒区域Chromosome, centromeric region | 0.02291 |
GO:0008135 | 翻译因子活性、核酸结合位点Translation factor activity, nucleic acid binding | 0.03575 | |
GO:0006075 | 1-3-beta-D-葡聚糖生物合成过程 1-3-beta-D-glucan biosynthetic process | 0.0002 | |
GO:2000112 | 调控细胞大分子生物合成过程Regulation of cellular macromolecule biosynthetic process | 0.0015 | |
GO:0051552 | 类黄酮代谢过程Flavone metabolic process | 0.0249 | |
GO:0051553 | 类黄酮生物合成过程Flavone biosynthetic process | 0.0249 | |
GO:0055074 | 钙离子平衡Calcium ion homeostasis | 0.0249 | |
GO:0016780 | 磷酸转移酶活性,用于其他取代磷酸基Phosphotransferase activity, for other substituted phosphate groups | 0.02825 | |
MEbrown | GO:0003995 | 脂酰CoA脱氢酶活性Acyl-CoA dehydrogenase activity | 0.001849608 |
GO:0051171 | 调节氮化合物代谢过程Regulation of nitrogen compound metabolic process | 1.95E-05 | |
GO:0009755 | 激素介导的信号通路Hormone-mediated signaling pathway | 7.67E-05 | |
GO:0071383 | 细胞对类固醇激素刺激的反应Cellular response to steroid hormone stimulus | 8.79E-04 | |
GO:0009725 | 激素响应Response to hormone | 0.002160987 | |
GO:0009742 | 油菜素类内酯介导的信号通路Brassinosteroid mediated signaling pathway | 0.002538882 | |
GO:0002376 | 免疫系统的过程Immune system process | 0.003433683 | |
GO:0043207 | 对外界生物刺激的反应Response to external biotic stimulus | 0.018615083 | |
GO:0009873 | 乙烯激活的信号通路Ethylene-activated signaling pathway | 0.018737534 | |
GO:0009607 | 生物刺激反应Response to biotic stimulus | 0.019137736 | |
GO:0080134 | 应激反应的调节Regulation of response to stress | 0.019394085 | |
GO:0006631 | 脂肪酸代谢过程Fatty acid metabolic process | 0.022668677 | |
GO:0009744 | 蔗糖响应Response to sucrose | 0.023618658 | |
GO:0044038 | 细胞壁大分子生物合成过程Cell wall macromolecule biosynthetic process | 0.033696381 | |
GO:0009620 | 响应真菌Response to fungus | 0.043398934 |
表3
模块核心基因功能注释"
候选基因 Candidate gene | 水稻同源基因 Homologous genes in O. sativa | 基因功能 Gene function | 拟南芥同源基因 Homologous genes in A. thaliana | 基因功能 Gene function |
---|---|---|---|---|
Seita.4G105600 | LOC_Os06g33480 | 包含蛋白质的WD结构域、G-beta重复结构域 WD domain, G-beta repeat domain containing protein | AT1G24130 | 转导蛋白/WD40重复超家族蛋白 Transduction/WD40 repeat-like superfamily protein |
Seita.6G218100 | LOC_Os12g01180 | WRKY57转录因子 WRKY57 transcription factors | AT5G46780 | 包含VQ基序的蛋白 VQ motif-containing protein |
Seita.9G138400 | LOC_Os06g36670 | TIFY 转录因子 TIYF transcription factors | AT1G51600 | TIFY2A转录因子 TIYF2A transcription factors |
[1] |
CUTLER S R, RODRIGUEZ P L, FINKELSTEIN R R, ABRAMS S R. Abscisic acid: Emergence of a core signaling network. Annual Review of Plant Biology, 2010,61:651-679. DOI: 10.1146/annurev- arplant-042809-112122.
pmid: 20192755 |
[2] |
丁冰杰, 孔祥强, 董合忠. 脱落酸受体PYLs的结构与功能研究进展. 分子植物育种, http://kns.cnki.net/kcms/detail/46.1068.s. 20191031.1538.004.html..
pmid: 31598026 |
DING B J, KONG X Q, DONG H Z. Research progress on the structure and function of abscisic acid receptor PYLs. Molecular Plant Breeding, http://kns.cnki.net/kcms/detail/46.1068.s.20191031.1538. 004.html..(in Chinese)
pmid: 31598026 |
|
[3] |
NEMHAUSER J L, HONG F X, CHORY J. Different plant hormones regulate similar processes through largely nonoverlapping transcriptional responses. Cell, 2006,126:467-475. DOI: 10.1016/j.cell.2006.05.050.
pmid: 16901781 |
[4] | 张雪峰. 中国谷子产业发展问题研究[D]. 哈尔滨: 东北农业大学, 2013. |
ZHANG X F. Studies on the issues of millet industry development in China. Harbin: Northeast Agricultural University, 2013. (in Chinese) | |
[5] |
JIANG C J, SHIMONO M, SUGANO S, KOJIMA M, YAZAWA K, YOSHIDA R, INOUE H, HAYASHI N, SAKAKIBARA H, TAKATSUJI H. Abscisic acid interacts antagonistically with salicylic acid signaling pathway in rice-Magnaporthe grisea interaction. Molecular Plant-Microbe Interactions, 2010,23(6):791-798. DOI: 10.1094/MPMI-23-6-0791.
doi: 10.1094/MPMI-23-6-0791 pmid: 20459318 |
[6] | CAO J D, YANG C, LI L J, JIANG L, WU Y, WU C W, BU Q Y, XIA G X, LIU X Y, LUO Y M, LIU J. Rice plasma membrane proteomics reveals Magnaporthe oryzae promotes susceptibility by sequential activation of host hormone signaling pathways. Molecular Plant- Microbe Interactions, 2016,29(11):902-913. DOI: 10.1094/MPMI- 08-16-0165-R. |
[7] |
SONG W W, MA X R, TAN H, ZHOU J Y. Abscisic acid enhances resistance to Alternaria solani in tomato seedlings. Plant Physiology and Biochemistry, 2011,49:693-700. DOI: 10.1016/j.plaphy.2011. 03.018.
doi: 10.1016/j.plaphy.2011.03.018 pmid: 21530290 |
[8] |
MUKHERJEE A, MAZUMDER M, JANA J, SRIVASTAVA A K, MONDAL B, DE A, GHOSH S, SAHA U, BOSE R, CHATTERJEE S, DEY N, BASU D. Enhancement of ABA sensitivity through conditional expression of the ARF10 gene in Brassica juncea reveals fertile plants with tolerance against Alternaria brassicicola. Molecular Plant-Microbe Interactions, 2019,32(10):1429-1447. DOI: 10.1094/ MPMI-05-19-0132-R.
doi: 10.1094/MPMI-05-19-0132-R pmid: 31184524 |
[9] | 黎家, 李传友. 新中国成立70年来植物激素研究进展. 中国科学: 生命科学, 2019,49(10):1227-1281. |
LI J, LI C Y. Seventy-year major research progress in plant hormones by Chinese scholars. Scientia Sinica Vitae, 2019,49(10):1227-1281. (in Chinese) | |
[10] |
FUJITA Y, NAKASHIMA K, YOSHIDA T, KATAGIRI T, KIDOKORO S, KANAMORI N, UMEZAWA T, FUJITA M, MARUYAMA K, ISHIYAMA K, et al. Three SnRK2 protein kinases are the main positive regulators of abscisic acid signaling in response to water stress in Arabidopsis. Plant and Cell Physiology, 2009,50(12):2123-2132. DOI: 10.1093/pcp/pcp147.
pmid: 19880399 |
[11] | GEIDER D, SCHERZER S, MUMM P, STANGE A, MARTEN I, BAUER H, ACHE P, MATSCHI S, LIEAE A, AL-RASHEID K A S, ROMEIS T, HEDRICH R. Activity of guard cell anion channel SLAC1 is controlled by drought-stress signaling kinase-phosphatase pair. Proceedings of the National Academy of Sciences of the United State of America, 2009,106(50):21425-21430. DOI:10.1073/pnas. 0912021106. |
[12] |
YIN P, FAN H, HAO Q, YUAN X Q, WU D, PANG Y X, YAN C Y, LI W Q, WANG J W, YAN N. Structural insights into the mechanism of abscisic acid signaling by PYL proteins. Nature Structural and Molecular Biology, 2009,16(12):1230-1236. DOI: 10.1038/nsmb. 1730.
pmid: 19893533 |
[13] |
HAO Q, YIN P, LI W Q, WANG L, YAN C Y, LIN Z H, WU J Z, WANG J W, YAN S F, YAN N. The molecular basis of ABA-independent inhibition of PP2Cs by a subclass of PYL proteins. Molecular Cell, 2011,42:662-672. DOI: 10.1016/j.molcel.2011.05. 011.
pmid: 21658606 |
[14] | CAI Z Y, LIU J J, WANG H J, YANG C J, CHEN Y X, LI Y C, PAN S J, DONG R, TANG G L, BARAJAS-LOPEZ J, FUJII H, WANG X L. GSK3-like kinases positively modulate abscisic acid signaling through phosphorylating subgroup III SnRK2s in Arabidopsis. Proceedings of the National Academy of Sciences of the United State of America, 2014,111(26):9651-9656. DOI: 10.1073/pnas.1316717111. |
[15] | 易文凯, 王佳, 杨辉, 田云, 卢向阳. 植物ABA受体及其介导的信号转导通路. 植物学报, 2012,47(5):515-524. |
YI W K, WANG J, YANG H, TIAN Y, LU X Y. Abscisic acid receptors: Abscisic acid signaling transduction pathways in plants. Chinese Bulletin of Botany, 2012,47(5):515-524. (in Chinese) | |
[16] |
ZHANG F, ZENG D, HUANG L Y, SHI Y Y, CHEN T J, ZHANG F, ZHOU Y L. Stress-activated protein kinase OsSAPK9 regulates tolerance to salt stress and resistance to bacterial blight in rice. Rice, 2019,12:80. DOI: 10.1186/s12284-019-0338-2.
pmid: 31712918 |
[17] |
YAO L S, LI Y M, MA C Y, TONG L X, DU F L, XU M L. Combined genome-wide association study and transcriptome analysis reveal candidate genes for resistance to Fusarium ear rot in maize. Journal of Integrative Plant Biology, 2020. DOI: 10.1111/jipb.12911.
pmid: 32542992 |
[18] |
FINN R D, CLEMENTS J, EDDY S R. HMMER web server: Interactive sequence similarity searching. Nucleic Acids Research, 2011,39:W29-W37. DOI: 10.1093/nar/gkr367.
pmid: 21593126 |
[19] |
CHEN C J, XIA R, CHEN H, HE Y H. TBtools, a toolkit for biologists integrating various HTS-data handling tools with a user-friendly interface. bioRxiv, 2018. DOI: https://doi.org/10.1101/ 289660.
pmid: 32817944 |
[20] | 艾嘉, 刘坤, 张蕾, 吴明旭, 陈硕, 朱德辉, 韩毅强, 高亚梅. 细菌漆酶的生物信息学分析. 基因组学与应用生物学, 2019,28(3):1070-1078. |
AI J, LIU K, ZHANG L, WU M X, CHEN S, ZHU D H, HAN Y Q, GAO Y M. Bioinformatics analysis of bacteria laccase. Genomics and Applied Biology, 2019,28(3):1070-1078. (in Chinese) | |
[21] |
KUMAR S, STECHER G, TAMURA K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology and Evolution, 2016,33(7):1870-1874. DOI: 10.1093/molbev/msw054.
pmid: 27004904 |
[22] | 张春晓, 王文棋, 蒋湘宁, 陈雪梅. 植物基因启动子研究进展. 遗传学报, 2004,31(12):1455-1464. |
ZHANG C X, WANG W Q, JIANG X N, CHEN X M. Review on plant gene promoters. Journal of Genetics and Genomics, 2004,31(12):1455-1464. (in Chinese) | |
[23] | 李宗霆, 周燮. 植物激素及其免疫检测技术. 南京: 江苏科学技术出版社, 1996. |
LI Z T, ZHOU X. Plant Hormones and Their Immunological Detection Techniques. Nanjing: Jiangsu Science and Technology Press, 1996. (in Chinese) | |
[24] |
REEN D J. Enzyme-linked immunosorbent assay (ELISA)//WALKER J M. Methods in Molecular Biology, 1994,32:461-466.
doi: 10.1385/0-89603-268-X:461 pmid: 7951745 |
[25] |
LANGFELDER P, HORVATH S. WGCNA: An R package for weighted correlation network analysis. BMC Bioinformatics, 2008,9:559. DOI: 10.1186/1471-2105-9-559.
pmid: 19114008 |
[26] | SU G, MORRIS J H, DENCHAK B, BADER G D. Biological network exploration with Cytoscape 3. Current Protocols in Bioinformatics, 2014,47: 8.13.1-8.13.24. DOI: 10.1002/0471250953. bi0813s47. |
[27] |
DE VLEESSCHAUWER D, YANG Y N, CRUZ C V, HOFTE M. Abscisic acid-induced resistance against the brown spot pathogen Cochliobolus miyabeanus in rice involves MAP kinase-mediated repression of ethylene signaling. Plant Physiology, 2010,152:2036-2052. DOI: 10.1104/pp.109.152702.
pmid: 20130100 |
[28] | ULFERTS S, DELVENTHAL R, SPLIVALLO R, KARLOVSKY P, SCHAFFRATH U. Abscisic acid negatively interferes with basal defence of barley againstMagnaporthe oryzae. BMC Plant Biology, 2015,15:e7. DOI: 10.1186/s12870-014-0409-x. |
[29] |
KOBAYASHI Y, YAMAMOTO S, MINAMI H, KAGAYA Y, HATTORI T. Differential activation of the rice sucrose nonfermenting 1-related protein kinase2 family by hyperosmotic stress and abscisic acid. The Plant Cell, 2004,16(5):1163-1177. DOI:10.1105/tpc. 019943.
doi: 10.1105/tpc.019943 pmid: 15084714 |
[30] |
BOUDSOCQ M, BARBIER-BRYGOO H, LAURIERE C. Identification of nine sucrose nonfermenting 1-related protein kinases 2 activated by hyperosmotic and saline stresses in Arabidopsis thaliana. Journal of Biological Chemistry, 2004,279:41758-41766. DOI: 10.1074/jbc.M405259200.
pmid: 15292193 |
[31] |
HUAI J, WANG M, HE J, ZHENG J, DONG Z, LV H, ZHAO J, WANG G. Cloning and characterization of the SnRK2 gene family from Zea mays. Plant Cell Reports, 2008,27:1861-1868. DOI:10.1007/s00299-008-0608-8.
pmid: 18797872 |
[32] | LI L B, ZHANG Y R, LIU K C, NI Z F, FANG Z J, SUN Q X, GAO J W. Identification and bioinformatics analysis of SnRK2 and CIPK family genes in soghum. Agricultural Sciences in China, 2010,9(1):19-30. DOI: 10.1016/S1671-2927(09)60063-8. |
[33] | 田晓杰. 水稻ABA受体OsPYLs基因家族的鉴定和功能研究[D]. 北京: 中国科学院大学, 2017. |
TIAN X J. Characterization and functional analysis of pyrabactin resistance-like abscisic acid receptor family in rice. Beijing: University of Chinese Academy of Sciences, 2017. (in Chinese) | |
[34] | 贾振华. 植物黄酮类化合物槲皮素与转录因子AtMYB44诱导和调控植物防卫反应的研究[D]. 南京: 南京农业大学, 2010. |
JIA Z H. Studies on roles of flavonoid quercetin and transcription factor AtMYB44 in induction and regulation of defense responses in Arabidopsis thaliana. Nanjing: Nanjing Agricultural University, 2010. (in Chinese) | |
[35] |
CHANDA B, VENUGOPAL S C, KULSHRESTHA S, NAVARRE D A, DOWNIE B, VAILLANCOURT L, KACHROO A, KACHROO P. Glycerol-3-phosphate levels are associated with basal resistance to the hemibiotrophic fungus Colletotrichum higginsianum in Arabidopsis. Plant Physiology, 2008,147:2017-2029. DOI: 10.1104/pp.108. 121335.
pmid: 18567828 |
[36] |
CHASSOT C, NAWRATH C, METRAUX J P. Cuticular defects lead to full immunity to a major plant pathogen. The Plant Journal, 2007,49(6):972-980. DOI: 10.1111/j.1365-313X.2006.03017.x.
pmid: 17257167 |
[37] |
NAKASHITA H, YASUDA M, NITTA T, ASAMI T, FUJIOKA S, ARAI Y, SEKIMATA K, TAKATSUTO S, YAMAGUCHI I, YOSHIDA S. Brassinosteroid functions in a broad range of disease resistance in tobacco and rice. The Plant Journal, 2003,33(5):887-898. DOI: 10.1046/j.1365-313X.2003.01675.x.
pmid: 12609030 |
[38] | 李宝燕. 烟草WD40蛋白TTG2对生长发育和抗病性的调控作用[D]. 南京: 南京农业大学, 2012. |
LI B Y. Regulatory roles of WD40-domain protein TTG2 in growth, development and pathogen defense of tobacco[D]. Nanjing: Nanjing Agricultural University, 2012. (in Chinese) | |
[39] |
JIANG Y J, YU D Q. The WRKY57 transcription factor affects the expression of jasmonate ZIM-domain genes transcriptionally to compromise Botrytis cinerea resistance. Plant Physiology, 2016,171(4):2771-2782. DOI: 10.1104/pp.16.00747.
doi: 10.1104/pp.16.00747 pmid: 27268959 |
[40] | YU Y, WAN Y T, JIAO Z L, BIAN L, YU K K, ZHANG G H, GUO D L. Functional characterization of resistance to powdery mildew of VvTIFY9 from Vitis vinifera. International Journal of Molecular Sciences, 2019,20(17):4286. DOI: 10.3390/ijms20174286. |
[1] | 贾冠清, 刁现民. 中国谷子种业创新现状与未来展望[J]. 中国农业科学, 2022, 55(4): 653-665. |
[2] | 温玉霞,张坚,王琴,王靖,裴悦宏,田绍锐,樊光进,马小舟,孙现超. 本氏烟NbMBF1c的克隆、表达及在TMV侵染过程中的功能[J]. 中国农业科学, 2022, 55(18): 3543-3555. |
[3] | 郭淑青,宋慧,柴少华,郭岩,石兴,杜丽红,邢璐,解慧芳,张扬,李龙,冯佰利,刘金荣,杨璞. 谷子生育期及穗相关性状的QTL定位[J]. 中国农业科学, 2022, 55(15): 2883-2898. |
[4] | 武翠卿,孙静鑫,郭平毅,王宏富,武新慧. 农艺措施对谷子产量及抗倒伏力学性能的影响[J]. 中国农业科学, 2021, 54(6): 1127-1142. |
[5] | 张婷,王根平,罗焱杰,李琳,高翔,程汝宏,师志刚,董立,张喜瑞,杨伟红,许立闪. 色差分析在优质小米选育中的应用[J]. 中国农业科学, 2021, 54(5): 901-908. |
[6] | 李顺国, 刘斐, 刘猛, 程汝宏, 夏恩君, 刁现民. 中国谷子产业和种业发展现状与未来展望[J]. 中国农业科学, 2021, 54(3): 459-470. |
[7] | 郭淑青,宋慧,杨清华,高金锋,高小丽,冯佰利,杨璞. 谷子株高及穗部性状主基因+多基因混合遗传模型分析[J]. 中国农业科学, 2021, 54(24): 5177-5193. |
[8] | 张硕,智慧,唐婵娟,罗明昭,汤沙,贾冠清,贾彦超,刁现民. 谷子条纹叶突变体A36-S的细胞学特性分析及基因定位[J]. 中国农业科学, 2021, 54(14): 2952-2964. |
[9] | 张林林,智慧,汤沙,张仁梁,张伟,贾冠清,刁现民. 谷子抽穗时间基因SiTOC1的表达与单倍型变异分析[J]. 中国农业科学, 2021, 54(11): 2273-2286. |
[10] | 杨延兵,秦岭,王润丰,陈二影,尹秀波,刘玉芹,张素梅,丛新军,李国瑜,王乐政,管延安. 山东省不同生态条件气候因素对谷子产量的影响[J]. 中国农业科学, 2020, 53(7): 1348-1358. |
[11] | 宋松泉,刘军,徐恒恒,刘旭,黄荟. 脱落酸代谢与信号传递及其调控种子休眠与萌发的分子机制[J]. 中国农业科学, 2020, 53(5): 857-873. |
[12] | 赵娟,尹艺臻,王晓璐,马春英,尹美强,温银元,宋喜娥,董淑琦,杨雪芳,原向阳. 不同品种谷子愈伤组织对拿捕净胁迫的生理响应[J]. 中国农业科学, 2020, 53(5): 917-928. |
[13] | 郭美俊,白亚青,高鹏,申洁,董淑琦,原向阳,郭平毅. 二甲四氯胁迫对谷子幼苗叶片衰老特性和 内源激素含量的影响[J]. 中国农业科学, 2020, 53(3): 513-526. |
[14] | 李会霞,田岗,王玉文,刘鑫,刘红. 谷子杂交种与亲本性状的遗传相关性[J]. 中国农业科学, 2020, 53(2): 239-246. |
[15] | 李颖,赵继浩,李金融,钱必长,刘兆新,高芳,杨东清,李向东. 外源6-BA对不同生育时期淹水花生根系生长和荚果产量的影响[J]. 中国农业科学, 2020, 53(18): 3665-3678. |
|