[1] 朱兆良. 中国土壤氮素研究. 土壤学报, 2008, 45(5): 778-783.
Zhu Z L. Chinese soil nitrogen research. Journal of Soil, 2008, 45(5): 778-783. (in Chinese)
[2] Howden N J, Burt T P, Worrall F, Mathias S A, Whelan M J. Farming for water quality: balancing food security and nitrate pollution in UK river basins. Annals of the Association of American Geographers, 2013, 103(2): 397-407.
[3] 杜连凤, 赵同科, 张成军, 安志装, 吴琼, 刘宝存, 李鹏, 马茂亭. 京郊地区3种典型农田系统硝酸盐污染现状调查. 中国农业科学, 2009, 42(8): 2837-2843
Du L F, Zhao T K, Zhang C J, An Z Z, Wu Q , Liu B C, Li P, Ma M T. Investigation on nitrate pollution in soils, ground water and vegetables of three typical farmlands in Beijing region. Scientia Agricultura Sinica, 2009, 42(8): 2837-2843.(in Chinese)
[4] Lehmann J, Gaunt J, Rondon M. Biochar sequestration in terresterial ecosystems - a review. Mitig Adapt Strat Global Change, 2006, 11: 403-427.
[5] Demirbas A. Effects of temperature and particle size on biochar yield from pyrolysis of agricultural residues. Journal of Analytical and Applied Pyrolysis, 2004, 72: 243-248.
[6] Schmidt M W I, Noack A G. Black carbon in soils and sediments: analysis, distribution, implications, and current challenges. Global Biogeochemical Cycles, 2000, 14(3): 777-793.
[7] Glaser B, Lehmann J, Zech W. Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal-a review. Biology Fertility of Soils, 2002, 35: 219-230.
[8] Steiner C, Glaser B, Teixeira W G, Lehmann J, Blum W E H, Zech W. Nitrogen retention and plant uptake on a highly weathered central Amazonian Ferralsol amended with compost and charcoal. Soil Seience and Plant Nutrition, 2008, 171: 275-290.
[9] Warnock D D, Lehmann J, Kuyper T W, Rillig M C. Mycorrhizal responses to biochar in soil-concepts and mechanisms. Plant and Soil, 2007, 300: 9-20.
[10] Liang B, Lehmann J, Solomon D. Black carbon increase cation exchange capacity in soils. Soil Science Society of America Journal, 2006, 70(5): 1719-1730.
[11] Glaser B, Haumaier L, Guggenberger G, Zech W. The ‘Terra Preta’ phenomenon: a model for sustainable agriculture in the humid tropics. Naturwissenschaften, 2001, 88: 37-41.
[12] Saito M, Marumoto T. Inoculation with arbuscular mycorrhizal fungi: The status quo in Japan and the future prospects. Plant and Soil, 2002, 244: 273-279.
[13] Wang J, Zhang M, Zheng Q, Liu P, Pan G. Effects of biochar addition on N2O and CO2 emissions from two paddy soils. Biology and Fertility of Soils, 2011, 47: 887-896
[14] Kammann C, Ratering S, Eckhard C. Biochar and hydrochar effects on greenhouse gas (carbon dioxide, nitrous oxide, and methane) fluxes from soils. Journal of Environmental Quality,2012, 41(4): 1052-1066.
[15] Felber R, Hüppi R, Leifeld J, Neftel A. Nitrous oxide emission reduction in temperate biochar-amended soils. Biogeosciences Discuss, 2012, 9: 151-189.
[16] Wang Z, Zheng H, Luo Y, Deng X, Herbert S, Xing B. Characterization and influence of biochars on nitrous oxide emission from agricultural soil. Environmental Pollution, 2013, 174: 289-296.
[17] Giles M, Morley N, Baggs E M, Daniell T J. Soil nitrate reducing processes - drivers, mechanisms for spatial variation, and significance for nitrous oxide production. Front Microbiology, 2012, 3(407): 1-16.
[18] Atkinson C J, Fitzgerald J D, Hipps N A. Potential mechanisms for achieving agricultural benefits from biochar application to temperate soils: a review. Plant and Soil, 2010, 37: 1-18.
[19] Warnock D D, Lehmann J, Kuyper T W, Rillig M C. Mycorrhizal responses to biochar in soil-concepts and mechanisms . Plant and Soil, 2007, 300: 9-20.
[20] 高华君, 杨洪强, 杜方岭. 平邑甜茶幼苗生长过程中精氨酸和一氧化氮水平的变化.植物营养与肥料学报, 2008, 14(4): 774-778.
Gao H J, Yang H Q, Du F L. Changes in arginine and nitric oxide levels in Malus hupehensis Rehd. seedlings during plant development. Plant Nutrition and Fertilizer Science, 2008, 14(4): 774-778. (in Chinese)
[21] Hageman R H, Hucklesby D P. Nitrate reductase from higher plants. Methods in Enzymology, 1971, 23: 491-503.
[22] 关荫松. 土壤酶及其研究法. 北京: 农业出版社, 1986: 320-338.
Guan Y S. Soil Enzyme and Its Methodology. Beijing: Agriculture Press, 1986: 320-338. (in Chinese)
[23] 唐光木, 葛春辉, 徐万里, 王西和, 郑金伟, 李恋卿, 潘根兴. 施用生物黑炭对新疆灰漠土肥力与玉米生长的影响. 农业环境科学学报, 2011, 30(9): 1797-1802.
Tang G M, Ge C H Xu W L, Wang X H, Zheng J W, Li L Q, Pan G X. Effect of applying biochar on the quality of grey desert soil and maize cropping in Xinjiang, China. Journal of Agro-Environment Science, 2011, 30(9): 1797-1802. (in Chinese)
[24] Laird D A, Fleming P, Davis D D, Horton R, Wang B, Karlen D L. Impact of biochar amendment on the quality of a typical Midwestern agricultural soil. Geoderma, 2010, 158: 443-449.
[25] Nacry P, Bouguyon E, Gojon A. Nitrogen acquisition by roots: physiological and developmental mechanisms ensuring plant adaptation to a fluctuating resource. Plant and Soil, 2013, 370(1/2): 1-29.
[26] Neill S, Hancock J, Desikan R. Preface to nitric oxide signalling: plant growth and development. Journal of Experimental Botany, 2006, 57(3): 462.
[27] Gouvea C M C P, Souza J F, Magalhaes A C N, Martins I S. NO2 releasing substances that induce growth elongation in maize root segments. Plant Growth Regulation, 1997, 21(3): 183-187. |