中国农业科学 ›› 2022, Vol. 55 ›› Issue (3): 425-437.doi: 10.3864/j.issn.0578-1752.2022.03.001
收稿日期:
2021-07-21
接受日期:
2021-08-09
出版日期:
2022-02-01
发布日期:
2022-02-11
通讯作者:
景蕊莲
作者简介:
李龙,E-mail: 基金资助:
LI Long(),LI ChaoNan,MAO XinGuo,WANG JingYi,JING RuiLian()
Received:
2021-07-21
Accepted:
2021-08-09
Online:
2022-02-01
Published:
2022-02-11
Contact:
RuiLian JING
摘要: 根系是作物固定植株并吸收土壤水分和养分的主要器官,其表型特征直接影响作物的生产力和适应性。优化根系表型被认为是实现第二次“绿色革命”的重要途径之一。然而,根系的隐匿性、复杂性和可塑性极大地制约着根系表型鉴定效率,导致根系优化进程远远滞后于地上部器官。随着光谱成像、机器学习和三维重建等新技术的快速发展,根系表型鉴定方法逐渐由传统取样观测向原位、无损、自动化检测转变,评价依据由二维形态指标向立体构型参数拓展,促进了根系表型鉴定效率大幅提升,根系表型数据快速增长。与此同时,海量数据也带来了信息冗余及利用率低等问题,对根系表型研究提出了规范化和共享化的时代新要求。本文概述了现行主要根系表型鉴定方法的原理和技术要点,从精准度、通量和成本等方面对不同方法进行系统比较,并从使用许可、运行平台和分析方式等方面对常用根系表型量化软件进行归纳总结;进一步提出今后重点研究方向,即开发高效的田间根系表型鉴定方法,建立根系可塑性鉴定评价技术体系,加强根系解剖结构的鉴定和利用,强化分子检测技术在根系表型鉴定中的应用,推进根系表型鉴定技术规范化和数据信息共享化,以期为合理选用和改进作物根系表型鉴定评价方法提供参考,促进作物根系改良。
李龙, 李超男, 毛新国, 王景一, 景蕊莲. 作物根系表型鉴定评价方法的现状与展望[J]. 中国农业科学, 2022, 55(3): 425-437.
LI Long, LI ChaoNan, MAO XinGuo, WANG JingYi, JING RuiLian. Advances and Perspectives of Approaches to Phenotyping Crop Root System[J]. Scientia Agricultura Sinica, 2022, 55(3): 425-437.
表1
田间根系表型鉴定方法评价"
方法 Method | 精确度 Accuracy | 工作量 Workload | 鉴定范畴 Scope | 动态性 Dynamic | 成本 Cost | 通量 Throughput |
---|---|---|---|---|---|---|
挖掘法 Excavation | +++ | +++ | +++ | --- | --- | --- |
土芯法 Soil core | ++ | +++ | + | -- | --- | --- |
网袋法 Mesh bag | - | ++ | +++ | --- | -- | -- |
小篮子法 Basket | +++ | +++ | +++ | --- | - | --- |
剖面法 Soil profile | ++ | +++ | ++ | - | --- | --- |
微根管法 Minirhizotron | - | + | ++ | +++ | ++ | + |
电容法 Electrical capacitance | -- | --- | - | +++ | - | ++ |
探地雷达法 Ground-penetrating radar | ? | --- | -- | +++ | +++ | ++ |
替代性状法 Proxy trait | --- | --- | --- | +++ | --- | +++ |
+++:极高;---:极低;?:精确度与待测植物根直径有关 +++: Very high; ---: Very low; ?: The accuracy depends on the root diameter of the plant to be measured |
表2
常用根系表型分析软件"
软件 Software | 使用许可 License | 运行平台 Operating platform | 分析方式 Analysis mode | 批量处理 Batch | 三维成像 3D-imaging |
---|---|---|---|---|---|
ArchiDART[ | 免费、开源 Free, open-source | Windows, Mac, Linux | 自动化 Automated | 能 Yes | 不能 No |
DART[ | 免费、闭源 Free, closed-source | Windows, Mac, Linux | 手动 Manual | 不能 No | 不能 No |
DIRT[ | 免费、开源 Free, open-source | Network platform | 自动化 Automated | 能 Yes | 不能 No |
DynamicRoots[ | 免费、开源 Free, open-source | Windows | 半自动化 Semi-automated | 不能 No | 能 Yes |
EZ-Root-VIS[ | 免费、闭源 Free, closed-source | Windows | 半自动化 Semi-automated | 不能 No | 不能 No |
GiA Roots[ | 免费、闭源 Free, closed-source | Windows, Mac, Linux | 自动化 Automated | 能 Yes | 不能 No |
GT-RootS[ | 免费、开源 Free, open-source | Windows, Mac, Linux | 自动化 Automated | 能 Yes | 不能 No |
iRoCS Toolbox[ | 免费、开源 Free, open-source | Windows, Linux | 半自动化 Semi-automated | 不能 No | 能 Yes |
MyROOT[ | 免费、闭源 Free, closed-source | Windows, Mac, Linux | 半自动化 Semi-automated | 能 Yes | 不能 No |
RhizoVision Crown[ | 免费、开源 Free, open-source | Windows | 自动化 Automated | 能 Yes | 不能 No |
RootNav[ | 免费、开源 Free, open-source | Windows | 半自动化 Semi-automated | 能 Yes | 不能 No |
RooTrak[ | 免费、闭源 Free, closed-source | Windows | 半自动化 Semi-automated | 不能 No | 能 Yes |
RootReader2D[ | 免费、闭源 Free, closed-source | Windows | 半自动化 Semi-automated | 能 Yes | 不能 No |
RootReader3D[ | 收费、闭源 Charge, closed-source | Windows | 自动化 Automated | 不能 No | 能 Yes |
saRIA[ | 免费、闭源 Free, closed-source | Windows, Linux | 半自动化 Semi-automated | 能 Yes | 不能 No |
SegRoot[ | 免费、开源 Free, open-source | Windows, Mac, Linux | 自动化 Automated | 能 Yes | 不能 No |
SmartRoot[ | 免费、开源 Free, open-source | Windows, Mac, Linux | 半自动化 Semi-automated | 不能 No | 不能 No |
WinRhizo[ | 收费、闭源 Charge, closed-source | Windows | 自动化 Automated | 不能 No | 不能 No |
[1] |
TRACY S R, NAGEL K A, POSTMA J A, FASSBENDER H, WASSON A, WATT M. Crop improvement from phenotyping roots: Highlights reveal expanding opportunities. Trends in Plant Science, 2020, 25:105-118.
doi: 10.1016/j.tplants.2019.10.015 |
[2] |
THORUP-KRISTENSEN K, HALBERG N, NICOLAISEN M, OLESEN J E, CREWS T E, HINSINGER P, KIRKEGAARD J, PIERRET A, DRESBOLL D B. Digging deeper for agricultural resources, the value of deep rooting. Trends in Plant Science, 2020, 25:406-417.
doi: 10.1016/j.tplants.2019.12.007 |
[3] | GREGORY P J, MCGOWAN M, BISCOE P V. Water relations of winter wheat. 2. Soil water relations. Journal of Agricultural Science, 1978, 91:103-116. |
[4] |
VAN DER BOM F J T, WILLIAMS A, BELL M J. Root architecture for improved resource capture: Trade-offs in complex environments. Journal of Experimental Botany, 2020, 71:5752-5763.
doi: 10.1093/jxb/eraa324 |
[5] |
SUN B, GAO Y, LYNCH J P. Large crown root number improves topsoil foraging and phosphorus acquisition. Plant Physiology, 2018, 177:90-104.
doi: 10.1104/pp.18.00234 |
[6] |
LYNCH J P. Root phenotypes for improved nutrient capture: An underexploited opportunity for global agriculture. New Phytologist, 2019, 223:548-564.
doi: 10.1111/nph.2019.223.issue-2 |
[7] |
BAILEY-SERRES J, PARKER J E, AINSWORTH E A, OLDROYD G E D, SCHROEDER J I. Genetic strategies for improving crop yields. Nature, 2019, 575:109-118.
doi: 10.1038/s41586-019-1679-0 |
[8] |
LI L, PENG Z, MAO X G, WANG J Y, CHANG X P, REYNOLDS M P, JING R L. Genome-wide association study reveals genomic regions controlling root and shoot traits at late growth stages in wheat. Annals of Botany, 2019, 124:993-1006.
doi: 10.1093/aob/mcz041 |
[9] |
ATKINSON J A, POUND M P, BENNETT M J, WELLS D M. Uncovering the hidden half of plants using new advances in root phenotyping. Current Opinion in Biotechnology, 2019, 55:1-8.
doi: 10.1016/j.copbio.2018.06.002 |
[10] | BEKKERING C S, HUANG J, TIAN L. Image-based, organ-level plant phenotyping for wheat improvement. Agronomy-Basel, 2020, 10:1287. |
[11] |
TAKAHASHI H, PRADAL C. Root phenotyping: Important and minimum information required for root modeling in crop plants. Breeding Science, 2021, 71:109-116.
doi: 10.1270/jsbbs.20126 |
[12] |
WASSON A P, NAGEL K A, TRACY S, WATT M. Beyond digging: Noninvasive root and rhizosphere phenotyping. Trends in Plant Science, 2020, 25:119-120.
doi: 10.1016/j.tplants.2019.10.011 |
[13] |
WALLER S, WILDER S L, SCHUELLER M J, HOUSH A B, FERRIERI R A. Quantifying plant-borne carbon assimilation by root-associating bacteria. Microorganisms, 2020, 8:700.
doi: 10.3390/microorganisms8050700 |
[14] |
LIU X L, LI R Z, CHANG X P, JING R L. Mapping QTLs for seedling root traits in a doubled haploid wheat population under different water regimes. Euphytica, 2013, 189:51-66.
doi: 10.1007/s10681-012-0690-4 |
[15] |
RICHARD C A I, HICKEY L T, FLETCHER S, JENNINGS R, CHENU K, CHRISTOPHER J T. High-throughput phenotyping of seminal root traits in wheat. Plant Methods, 2015, 11:13.
doi: 10.1186/s13007-015-0055-9 |
[16] |
RICH S M, CHRISTOPHER J, RICHARDS R, WATT M. Root phenotypes of young wheat plants grown in controlled environments show inconsistent correlation with mature root traits in the field. Journal of Experimental Botany, 2020, 71:4751-4762.
doi: 10.1093/jxb/eraa201 |
[17] |
PAEZ-GARCIA A, MOTES C M, SCHEIBLE W R, CHEN R J, BLANCAFLOR E B, MONTEROS M J. Root traits and phenotyping strategies for plant improvement. Plants, 2015, 4:334-355.
doi: 10.3390/plants4020334 |
[18] |
CORONA-LOPEZ D D J, SOMMER S, ROLFE S A, PODD F, GRIEVE B D. Electrical impedance tomography as a tool for phenotyping plant roots. Plant Methods, 2019, 15:49.
doi: 10.1186/s13007-019-0438-4 |
[19] |
TERAMOTO S, TAKAYASU S, KITOMI Y, ARAI-SANOH Y, TANABATA T, UGA Y. High-throughput three-dimensional visualization of root system architecture of rice using X-ray computed tomography. Plant Methods, 2020, 16:66.
doi: 10.1186/s13007-020-00612-6 |
[20] |
VAN DUSSCHOTEN D, METZNER R, KOCHS J, POSTMA J A, PFLUGFELDER D, BUEHLER J, SCHURR U, JAHNKE S. Quantitative 3D analysis of plant roots growing in soil using magnetic resonance imaging. Plant Physiology, 2016, 170:1176-1188.
doi: 10.1104/pp.15.01388 |
[21] |
ROGERS E D, MONAENKOVA D, MIJAR M, NORI A, GOLDMAN D I, BENFEY P N. X-ray computed tomography reveals the response of root system architecture to soil texture. Plant Physiology, 2016, 171:2028-2040.
doi: 10.1104/pp.16.00397 |
[22] | BAO Y, AGGARWAL P, ROBBINS N E, STURROCK C J, THOMPSON M C, TAN H Q, THAM C, DUAN L, RODRIGUEZ P L, VERNOUX T, MOONEY S J, BENNETT M J, DINNENY J R. Plant roots use a patterning mechanism to position lateral root branches toward available water. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111:9319-9324. |
[23] |
PFLUGFELDER D, METZNER R, VAN DUSSCHOTEN D, REICHEL R, JAHNKE S, KOLLER R. Non-invasive imaging of plant roots in different soils using magnetic resonance imaging (MRI). Plant Methods, 2017, 13:102.
doi: 10.1186/s13007-017-0252-9 |
[24] |
METZNER R, EGGERT A, VAN DUSSCHOTEN D, PFLUGFELDER D, GERTH S, SCHURR U, UHLMANN N, JAHNKE S. Direct comparison of MRI and X-ray CT technologies for 3D imaging of root systems in soil: Potential and challenges for root trait quantification. Plant Methods, 2015, 11:17.
doi: 10.1186/s13007-015-0060-z |
[25] |
JAHNKE S, MENZEL M I, VAN DUSSCHOTEN D, ROEB G W, BUEHLER J, MINWUYELET S, BLUEMLER P, TEMPERTON V M, HOMBACH T, STREUN M, BEER S, KHODAVERDI M, ZIEMONS K, COENEN H H, SCHURR U. Combined MRI-PET dissects dynamic changes in plant structures and functions. The Plant Journal, 2009, 59:634-644.
doi: 10.1111/tpj.2009.59.issue-4 |
[26] | OYIGA B C, PALCZAK J, WOJCIECHOWSKI T, LYNCH J P, NAZ A A, LEON J, BALLVORA A. Genetic components of root architecture and anatomy adjustments to water-deficit stress in spring barley. Plant, Cell & Environment, 2020, 43:692-711. |
[27] |
ZHENG Z, HEY S, JUBERY T, LIU H, YANG Y, COFFEY L, MIAO C, SIGMON B, SCHNABLE J C, HOCHHOLDINGER F, GANAPATHYSUBRAMANIAN B, SCHNABLE P S. Shared genetic control of root system architecture between Zea mays and Sorghum bicolor. Plant Physiology, 2020, 182:977-991.
doi: 10.1104/pp.19.00752 |
[28] |
WASSON A P, REBETZKE G J, KIRKEGAARD J A, CHRISTOPHER J, RICHARDS R A, WATT M. Soil coring at multiple field environments can directly quantify variation in deep root traits to select wheat genotypes for breeding. Journal of Experimental Botany, 2014, 65:6231-6249.
doi: 10.1093/jxb/eru250 |
[29] | KITOMI Y, HANZAWA E, KUYA N, INOUE H, HARA N, KAWAI S, KANNO N, ENDO M, SUGIMOTO K, YAMAZAKI T, SAKAMOTO S, SENTOKU N, WU J, KANNO H, MITSUDA N, TORIYAMA K, SATO T, UGA Y. Root angle modifications by the DRO1 homolog improve rice yields in saline paddy fields. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117:21242-21250. |
[30] |
VOSS-FELS K P, ROBINSON H, MUDGE S R, RICHARD C, NEWMAN S, WITTKOP B, STAHL A, FRIEDT W, FRISCH M, GABUR I, MILLER-COOPER A, CAMPBELL B C, KELLY A, FOX G, CHRISTOPHER J, CHRISTOPHER M, CHENU K, FRANCKOWIAK J, MACE E S, BORRELL A K, EAGLES H, JORDAN D R, BOTELLA J R, HAMMER G, GODWIN I D, TREVASKIS B, SNOWDON R J, HICKEY L T. VERNALIZATION1 modulates root system architecture in wheat and barley. Molecular Plant, 2018, 11:226-229.
doi: 10.1016/j.molp.2017.10.005 |
[31] |
LOU Q, CHEN L, MEI H, WEI H, FENG F, WANG P, XIA H, LI T, LUO L. Quantitative trait locus mapping of deep rooting by linkage and association analysis in rice. Journal of Experimental Botany, 2015, 66:4749-4757.
doi: 10.1093/jxb/erv246 |
[32] |
UGA Y, SUGIMOTO K, OGAWA S, RANE J, ISHITANI M, HARA N, KITOMI Y, INUKAI Y, ONO K, KANNO N, INOUE H, TAKEHISA H, MOTOYAMA R, NAGAMURA Y, WU J, MATSUMOTO T, TAKAI T, OKUNO K, YANO M. Control of root system architecture by DEEPER ROOTING 1 increases rice yield under drought conditions. Nature Genetics, 2013, 45:1097-1102.
doi: 10.1038/ng.2725 |
[33] | BATES G H. A device for the observation of root growth in the soil. Nature, 1937, 139:966-967. |
[34] |
MAJDI H. Root sampling methods - applications and limitations of the minirhizotron technique. Plant and Soil, 1996, 185:255-258.
doi: 10.1007/BF02257530 |
[35] |
SVANE S F, DAM E B, CARSTENSEN J M, THORUP- KRISTENSEN K. A multispectral camera system for automated minirhizotron image analysis. Plant and Soil, 2019, 441:657-672.
doi: 10.1007/s11104-019-04132-8 |
[36] |
WANG T, ROSTAMZA M, SONG Z, WANG L, MCNICKLE G, IYER-PASCUZZI A S, QIU Z, JIN J. Segroot: A high throughput segmentation method for root image analysis. Computers and Electronics in Agriculture, 2019, 162:845-854.
doi: 10.1016/j.compag.2019.05.017 |
[37] |
ALANI A M, LANTINI L. Recent advances in tree root mapping and assessment using non-destructive testing methods: A focus on ground penetrating radar. Surveys in Geophysics, 2020, 41:605-646.
doi: 10.1007/s10712-019-09548-6 |
[38] |
STREDA T, HABERLE J, KLIMESOVA J, KLIMEK-KOPYRA A, STREDOVA H, BODNER G, CHLOUPEK O. Field phenotyping of plant roots by electrical capacitance-a standardized methodological protocol for application in plant breeding: A review. International Agrophysics, 2020, 34:173-184.
doi: 10.31545/intagr/117622 |
[39] |
WASSON A P, RICHARDS R A, CHATRATH R, MISRA S C, PRASAD S V S, REBETZKE G J, KIRKEGAARD J A, CHRISTOPHER J, WATT M. Traits and selection strategies to improve root systems and water uptake in water-limited wheat crops. Journal of Experimental Botany, 2012, 63:3485-3498.
doi: 10.1093/jxb/ers111 |
[40] |
LI X, INGVORDSEN C H, WEISS M, REBETZKE G J, CONDON A G, JAMES R A, RICHARDS R A. Deeper roots associated with cooler canopies, higher normalized difference vegetation index, and greater yield in three wheat populations grown on stored soil water. Journal of Experimental Botany, 2019, 70:4963-4974.
doi: 10.1093/jxb/erz232 |
[41] |
JIN X, ZARCO-TEJADA P J, SCHMIDHALTER U, REYNOLDS M P, HAWKESFORD M J, VARSHNEY R K, YANG T, NIE C, LI Z, MING B, XIAO Y, XIE Y, LI S. High-throughput estimation of crop traits: A review of ground and aerial phenotyping platforms. IEEE Geoscience and Remote Sensing Magazine, 2021, 9:200-231.
doi: 10.1109/MGRS.6245518 |
[42] |
DELORY B M, LI M, TOPP C N, LOBET G. Archidart v3.0: A new data analysis pipeline allowing the topological analysis of plant root systems version 1; referees: 2 approved, 1 approved with reservations. F1000Research, 2018, 7:22.
doi: 10.12688/f1000research |
[43] |
LE BOT J, SERRA V, FABRE J, DRAYE X, ADAMOWICZ S, PAGES L. Dart: A software to analyse root system architecture and development from captured images. Plant and Soil, 2010, 326:261-273.
doi: 10.1007/s11104-009-0005-2 |
[44] |
DAS A, SCHNEIDER H, BURRIDGE J, ASCANIO A K M, WOJCIECHOWSKI T, TOPP C N, LYNCH J P, WEITZ J S, BUCKSCH A. Digital imaging of root traits (DIRT): A high- throughput computing and collaboration platform for field-based root phenomics. Plant Methods, 2015, 11:51.
doi: 10.1186/s13007-015-0093-3 |
[45] |
SYMONOVA O, TOPP C N, EDELSBRUNNER H. Dynamicroots: A software platform for the reconstruction and analysis of growing plant roots. PLoS ONE, 2015, 10:e0127657.
doi: 10.1371/journal.pone.0127657 |
[46] |
SHAHZAD Z, KELLERMEIER F, ARMSTRONG E M, ROGERS S, LOBET G, AMTMANN A, HILLS A. EZ-root-VIS: A software pipeline for the rapid analysis and visual reconstruction of root system architecture. Plant Physiology, 2018, 177:1368-1381.
doi: 10.1104/pp.18.00217 |
[47] |
GALKOVSKYI T, MILEYKO Y, BUCKSCH A, MOORE B, SYMONOVA O, PRICE C A, TOPP C N, IYER-PASCUZZI A S, ZUREK P R, FANG S, HARER J, BENFEY P N, WEITZ J S. GiA roots: Software for the high throughput analysis of plant root system architecture. BMC Plant Biology, 2012, 12:116.
doi: 10.1186/1471-2229-12-116 |
[48] |
BORIANNE P, SUBSOL G, FALLAVIER F, DARDOU A, AUDEBERT A. GT-RootS: An integrated software for automated root system measurement from high-throughput phenotyping platform images. Computers and Electronics in Agriculture, 2018, 150:328-342.
doi: 10.1016/j.compag.2018.05.003 |
[49] |
SCHMIDT T, PASTERNAK T, LIU K, BLEIN T, AUBRY-HIVET D, DOVZHENKO A, DUERR J, TEALE W, DITENGOU F A, BURKHARDT H, RONNEBERGER O, PALME K. The iRoCS Toolbox-3D analysis of the plant root apical meristem at cellular resolution. The Plant Journal, 2014, 77:806-814.
doi: 10.1111/tpj.12429 |
[50] |
GONZALEZ A, SEVILLANO X, BETEGON-PUTZE I, BLASCO- ESCAMEZ D, FERRER M, CANO-DELGADO A I. MYROOT 2.0: An automatic tool for high throughput and accurate primary root length measurement. Computers and Electronics in Agriculture, 2020, 168:105125.
doi: 10.1016/j.compag.2019.105125 |
[51] | SEETHEPALLI A, GUO H, LIU X, GRIFFITHS M, ALMTARFI H, LI Z, LIU S, ZARE A, FRITSCHI F B, BLANCAFLOR E B, MA X, YORK L M. RhizoVision Crown: An integrated hardware and software platform for root crown phenotyping. Plant Phenomics, 2020, 2020:3074916. |
[52] |
POUND M P, FRENCH A P, ATKINSON J A, WELLS D M, BENNETT M J, PRIDMORE T. RootNav: Navigating images of complex root architectures. Plant Physiology, 2013, 162:1802-1814.
doi: 10.1104/pp.113.221531 |
[53] |
MAIRHOFER S, ZAPPALA S, TRACY S R, STURROCK C, BENNETT M, MOONEY S J, PRIDMORE T. RooTrak: Automated recovery of three-dimensional plant root architecture in soil from X-ray microcomputed tomography images using visual tracking. Plant Physiology, 2012, 158:561-569.
doi: 10.1104/pp.111.186221 |
[54] | CLARK R T, FAMOSO A N, ZHAO K, SHAFF J E, CRAFT E J, BUSTAMANTE C D, MCCOUCH S R, ANESHANSLEY D J, KOCHIAN L V. High-throughput two-dimensional root system phenotyping platform facilitates genetic analysis of root growth and development. Plant, Cell & Environment, 2013, 36:454-466. |
[55] |
CLARK R T, MACCURDY R B, JUNG J K, SHAFF J E, MCCOUCH S R, ANESHANSLEY D J, KOCHIAN L V. Three-dimensional root phenotyping with a novel imaging and software platform. Plant Physiology, 2011, 156:455-465.
doi: 10.1104/pp.110.169102 |
[56] |
NARISETTI N, HENKE M, SEILER C, SHI R, JUNKER A, ALTMANN T, GLADILIN E. Semi-automated root image analysis (saRIA). Scientific Reports, 2019, 9:19674.
doi: 10.1038/s41598-019-55876-3 |
[57] |
LOBET G, PAGES L, DRAYE X. A novel image-analysis toolbox enabling quantitative analysis of root system architecture. Plant Physiology, 2011, 157:29-39.
doi: 10.1104/pp.111.179895 |
[58] |
PANG W, CROW W T, LUC J E, MCSORLEY R, GIBLIN-DAVIS R M, KENWORTHY K E, KRUSE J K. Comparison of water displacement and WINRHIZO software for plant root parameter assessment. Plant Disease, 2011, 95:1308-1310.
doi: 10.1094/PDIS-01-11-0026 |
[59] | BEYER S, DABA S, TYAGI P, BOCKELMAN H, BROWN- GUEDIRA G, MOHAMMADI M, IWGSC . Loci and candidate genes controlling root traits in wheat seedlings - a wheat root GWAS. Functional & Integrative Genomics, 2019, 19:91-107. |
[60] | FERNANDO K M C, EHOCHE O G, ATKINSON J A, SPARKES D L. Root system architecture and nitrogen uptake efficiency of wheat species. Journal of Agricultural Sciences, 2021, 16:37-53. |
[61] | VESCIO R, ABENAVOLI M R, SORGONA A. Single and combined abiotic stress in maize root morphology. Plants-Basel, 2021, 10:5. |
[62] |
YASRAB R, ATKINSON J A, WELLS D M, FRENCH A P, PRIDMORE T P, POUND M P. RootNav 2.0: Deep learning for automatic navigation of complex plant root architectures. Gigascience, 2019, 8: giz123.
doi: 10.1093/gigascience/giz123 |
[63] |
GUICHARD M, ALLAIN J M, BIANCHI M W, FRACHISSE J M. Root hair sizer: An algorithm for high throughput recovery of different root hair and root developmental parameters. Plant Methods, 2019, 15:104.
doi: 10.1186/s13007-019-0483-z |
[64] |
PAULUS S. Measuring crops in 3D: Using geometry for plant phenotyping. Plant Methods, 2019, 15:103.
doi: 10.1186/s13007-019-0490-0 |
[65] |
UGA Y, ASSARANURAK I, KITOMI Y, LARSON B G, CRAFT E J, SHAFF J E, MCCOUCH S R, KOCHIAN L V. Genomic regions responsible for seminal and crown root lengths identified by 2D & 3D root system image analysis. BMC Genomics, 2018, 19:273.
doi: 10.1186/s12864-018-4639-4 |
[66] |
POSTMA J A, KUPPE C, OWEN M R, MELLOR N, GRIFFITHS M, BENNETT M J, LYNCH J P, WATT M. OPENSIMROOT: Widening the scope and application of root architectural models. New Phytologist, 2017, 215:1274-1286.
doi: 10.1111/nph.2017.215.issue-3 |
[67] |
LOBET G, POUND M P, DIENER J, PRADAL C, DRAYE X, GODIN C, JAVAUX M, LEITNER D, MEUNIER F, NACRY P, PRIDMORE T P, SCHNEPF A. Root system markup language: Toward a unified root architecture description language. Plant Physiology, 2015, 167:617-627.
doi: 10.1104/pp.114.253625 |
[68] |
LOBET G, DRAYE X, PÉRILLEUX C. An online database for plant image analysis software tools. Plant Methods, 2013, 9:38.
doi: 10.1186/1746-4811-9-38 |
[69] | 刘旭, 李立会, 黎裕, 方沩. 作物种质资源研究回顾与发展趋势. 农学学报, 2018, 8:1-6. |
LIU X, LI L H, LI Y, FANG W. Crop germplasm resources: Advances and trends. Journal of Agriculture, 2018, 8:1-6. (in Chinese) | |
[70] |
LI C N, LI L, REYNOLDS M P, WANG J Y, CHANG X P, MAO X G, JING R L. Recognizing the hidden half in wheat: Root system attributes associated with drought tolerance. Journal of Experimental Botany, 2021, 72:5117-5133.
doi: 10.1093/jxb/erab124 |
[71] |
PATURKAR A, SEN GUPTA G, BAILEY D. Making use of 3D models for plant physiognomic analysis: A review. Remote Sensing, 2021, 13:2232.
doi: 10.3390/rs13112232 |
[72] | GAO K, CHEN F, YUAN L, ZHANG F, MI G. A comprehensive analysis of root morphological changes and nitrogen allocation in maize in response to low nitrogen stress. Plant, Cell & Environment, 2015, 38:740-750. |
[73] | VYSOTSKAYA L, AKHIYAROVA G, FEOKTISTOVA A, AKHTYAMOVA Z, KOROBOVA A, IVANOV I, DODD I, KULUEV B, KUDOYAROVA G. Effects of phosphate shortage on root growth and hormone content of barley depend on capacity of the roots to accumulate ABA. Plants-Basel, 2020, 9:1722. |
[74] |
SCHNEIDER H M, LYNCH J P. Should root plasticity be a crop breeding target? Frontiers in Plant Science, 2020, 11:546.
doi: 10.3389/fpls.2020.00546 |
[75] |
SIDDIQUI M N, LEON J, NAZ A A, BALLVORA A. Genetics and genomics of root system variation in adaptation to drought stress in cereal crops. Journal of Experimental Botany, 2021, 72:1007-1019.
doi: 10.1093/jxb/eraa487 |
[76] |
WANG C, LI X, CARAGEA D, BHEEMANAHALLIA R, JAGADISH S V K. Root anatomy based on root cross-section image analysis with deep learning. Computers and Electronics in Agriculture, 2020, 175:105549.
doi: 10.1016/j.compag.2020.105549 |
[77] | 武晶, 黎裕. 基于作物种质资源的优异等位基因挖掘: 进展与展望. 植物遗传资源学报, 2019, 20:1380-1390. |
WU J, LI Y. Mining superior alleles in crop germplasm resources: Advances and perspectives. Journal of Plant Genetic Resources, 2019, 20:1380-1390. (in Chinese) | |
[78] |
DEJA-MUYLLE A, PARIZOT B, MOTTE H, BEECKMAN T. Exploiting natural variation in root system architecture via genome- wide association studies. Journal of Experimental Botany, 2020, 71:2379-2389.
doi: 10.1093/jxb/eraa029 |
[79] | 刘旭. 四十年改革开放几代人梦想成真——记中国作物种质资源40年发展巨变. 中国种业, 2019, 1:1-6. |
LIU X. Forty years of reform and opening-up and several generations' dreams come true-Recording the great changes in the development of crop germplasm resources in China in the past 40 years. China Seed Industry, 2019, 1:1-6. (in Chinese) |
[1] | 张洪程,胡雅杰,戴其根,邢志鹏,魏海燕,孙成明,高辉,胡群. 中国大田作物栽培学前沿与创新方向探讨[J]. 中国农业科学, 2022, 55(22): 4373-4382. |
[2] | 黄翀,侯相君. 基于Bi-LSTM模型的时间序列遥感作物分类研究[J]. 中国农业科学, 2022, 55(21): 4144-4157. |
[3] | 李玉浩,王红叶,崔振岭,营浩,曲潇琳,张骏达,王新宇. 我国主要粮食作物耕地基础地力的时空变化[J]. 中国农业科学, 2022, 55(20): 3960-3969. |
[4] | 王楚涵,刘菲,高健永,张慧芳,谢英荷,曹寒冰,谢钧宇. 减氮覆膜下土壤有机碳组分含量的变化特征[J]. 中国农业科学, 2022, 55(19): 3779-3790. |
[5] | 马超,王玉宝,邬刚,王泓,汪建飞,朱林,李佳佳,马晓静,柴如山. 近十年安徽省秸秆直接还田研究进展[J]. 中国农业科学, 2022, 55(18): 3584-3599. |
[6] | 钟佳霖,许觜妍,张怡云,李婕,刘晓雨,李恋卿,潘根兴. 原料、炭化温度和生物质炭组分对小白菜生长的影响[J]. 中国农业科学, 2022, 55(14): 2775-2785. |
[7] | 卢慧,袁玉洁,张丝琪,陈虹,陈多,钟晓媛,李博,邓飞,陈勇,李贵勇,任万军. 基于3种方法的西南杂交籼稻稻米食味评价及品种优选[J]. 中国农业科学, 2021, 54(6): 1243-1257. |
[8] | 雷豪杰,李贵春,柯华东,魏崃,丁武汉,徐驰,李虎. 滴灌施肥对两种典型作物系统土壤N2O排放的影响及其调控差异[J]. 中国农业科学, 2021, 54(4): 768-779. |
[9] | 肖浏骏,刘蕾蕾,邱小雷,汤亮,曹卫星,朱艳,刘兵. 小麦生长模型对拔节期和孕穗期低温胁迫响应能力的比较[J]. 中国农业科学, 2021, 54(3): 504-521. |
[10] | 赵立群,邱艳红,张晓飞,刘慧,杨静静,张建,张海军,徐秀兰,温常龙. TaqMan探针法实时荧光定量PCR检测西瓜潜隐病毒[J]. 中国农业科学, 2021, 54(20): 4337-4347. |
[11] | 米晓田,石磊,何刚,王朝辉. 陕西省小农户作物生产的减肥潜力及经济效益评价[J]. 中国农业科学, 2021, 54(20): 4370-4384. |
[12] | 李鑫,张文菊,邬磊,任意,张骏达,徐明岗. 土壤质量评价指标体系的构建及评价方法[J]. 中国农业科学, 2021, 54(14): 3043-3056. |
[13] | 陈鹏飞,马啸. 作物种植行自动检测研究现状与趋势[J]. 中国农业科学, 2021, 54(13): 2737-2745. |
[14] | 柴如山,徐悦,程启鹏,王擎运,马超,叶新新,章力干,郜红建. 安徽省主要作物秸秆养分资源量及还田利用潜力[J]. 中国农业科学, 2021, 54(1): 95-109. |
[15] | 李方杰,任建强,吴尚蓉,陈仲新,张宁丹. 河南省冬小麦种植频率时空变化及影响因素分析[J]. 中国农业科学, 2020, 53(9): 1773-1794. |
|