中国农业科学 ›› 2023, Vol. 56 ›› Issue (1): 90-103.doi: 10.3864/j.issn.0578-1752.2023.01.007
娄义宝1(),康宏亮1,王文龙1,2(),沙小燕1,冯兰茜2,聂慧莹1,史倩华1
收稿日期:
2021-11-15
接受日期:
2022-02-15
出版日期:
2023-01-01
发布日期:
2023-01-17
通讯作者:
王文龙
作者简介:
娄义宝,E-mail:基金资助:
LOU YiBao1(),KANG HongLiang1,WANG WenLong1,2(),SHA XiaoYan1,FENG LanQian2,NIE HuiYing1,SHI QianHua1
Received:
2021-11-15
Accepted:
2022-02-15
Online:
2023-01-01
Published:
2023-01-17
Contact:
WenLong WANG
摘要:
【目的】探明沟头植被根系垂直分布及其对土壤抗侵蚀性的影响,为沟蚀防治中植被措施优化配置提供理论依据。【方法】以不同植被覆盖(杂草(农地)、冰草、铁杆蒿、苜蓿)沟头为研究对象,通过原状土冲刷试验明确沟头土壤抗冲性特征。采用扫描分析法、ZJ型应变控制式直剪仪等分析和测定根系特征及根-土复合体力学、理化性质。【结果】(1)各植被沟头根系在土壤中分布特征差异明显,根系特征指标(根重密度、根长密度、根表面积密度、根体积密度)总体上呈现冰草地最大,其次为苜蓿地、铁杆蒿地,农地最小;垂直深度上,农地沟头土壤中根系各指标均随土层加深而减小,冰草、铁杆蒿和苜蓿地沟头土壤中根系各指标整体上则表现为先减小后增大的变化趋势。各植被根系以<0.5 mm径级根系为主。(2)各植被沟头土壤容重变异性较小,在1.17—1.37 g·cm-3之间变化。>0.25 mm水稳性团聚体含量呈现出农地和冰草地大于铁杆蒿地和苜蓿地。(3)各植被沟头土壤黏聚力平均值苜蓿地为12.75 kPa、冰草地9.05 kPa、铁杆蒿地8.60 kPa、农地7.25 kPa;在垂直深度上,农地、冰草地和苜蓿地呈现出随着土层的加深呈先减小后增大的变化,铁杆蒿地则呈现随着土层深度加深逐渐减小的变化。(4)沟头0—100 cm土层土壤抗冲系数为苜蓿地(39.31 L·g-1)>冰草地(25.49 L·g-1)>农地(22.39 L·g-1)>铁杆蒿地(14.75 L·g-1);在垂直深度上,表层(0—20 cm)土壤抗冲系数表现为较大值,在34.91—53.30 L·g-1之间变化。【结论】不同形态根系对土壤抗侵蚀性能作用不一,在沟头防护过程中植被选择应将直根系植物与须根系植物相结合。
娄义宝,康宏亮,王文龙,沙小燕,冯兰茜,聂慧莹,史倩华. 黄土高原沟壑区沟头植被根系垂直分布及其对土壤抗侵蚀性的影响[J]. 中国农业科学, 2023, 56(1): 90-103.
LOU YiBao,KANG HongLiang,WANG WenLong,SHA XiaoYan,FENG LanQian,NIE HuiYing,SHI QianHua. Vertical Distribution of Vegetation Roots and Its Influence on Soil Erosion Resistance of Gully Heads on the Gullied Loess Plateau[J]. Scientia Agricultura Sinica, 2023, 56(1): 90-103.
表1
试验样地基本信息"
样地类型 Sample type | 编号 Site code | 优势植被类型 Dominant plant species | 坡度 Slop (°) | 坡向 Aspect | 海拔 Elevation (m) |
---|---|---|---|---|---|
农地 Farmland | FZL | 玉米Zea mays L. | 2 | 阳坡 Sunny | 1293 |
冰草地 Agropyron cristatum land | GAG | 冰草Agropyron cristatum (L.) Gaertn. | 4 | 阳坡 Sunny | 1252 |
铁杆蒿地 Artemisia gmelinii land | GAW | 铁杆蒿Artemisia gmelinii Web. ex Stechm. | 3 | 阳坡 Sunny | 1278 |
苜蓿地 Medicago sativa land | GML | 紫花苜蓿Medicago sativa L. | 3 | 阳坡 Sunny | 1264 |
表2
沟头土壤抗侵蚀性与根系及土壤性质的拟合方程"
土壤抗侵蚀性 Erosion resistance characteristics | 根系及土壤性质 Root and soil characteristics | 回归函数 Regression function | R2 | P |
---|---|---|---|---|
ANS | RMD | y=31.76x+19.43 | 0.25 | <0.05 |
RLD | y=2.69x+15.49 | 0.22 | <0.05 | |
RAD | y=3.72x+15.59 | 0.40 | <0.01 | |
RVD | y=31.62x+14.63 | 0.33 | <0.01 | |
SOM | y=4.69x-15.62 | 0.40 | <0.01 | |
SCF | RMD | y=12.24x+6.73 | 0.40 | <0.01 |
RLD | y=6.19x0.30 | 0.37 | <0.01 | |
RAD | y=12.90x0.30 | 0.40 | <0.01 | |
RVD | y=7.34x0.28 | 0.42 | <0.01 | |
SOM | y=2.72e0.13x | 0.22 | <0.01 |
[1] | ZHENG F, WANG B. Soil erosion in the loess plateau region of China. Ecohydrology, 2014, 5: 77-92. |
[2] |
LI Z, ZHANG Y, ZHU Q K, HE Y M, YAO W J. Assessment of bank gully development and vegetation coverage on the Chinese Loess Plateau. Geomorphology, 2015, 228: 462-469. doi:10.1016/j.geomorph.2014.10.005.
doi: 10.1016/j.geomorph.2014.10.005 |
[3] |
CHEN H, CAI Q G. Impact of hillslope vegetation restoration on gully erosion induced sediment yield. Science in China Series D, 2006, 49(2): 176-192. doi:10.1007/s11430-005-0177-4.
doi: 10.1007/s11430-005-0177-4 |
[4] |
SHI Q H, WANG W L, GUO M M, CHEN Z X, FENG L Q, ZHAO M, XIAO H. The impact of flow discharge on the hydraulic characteristics of headcut erosion processes in the gully region of the Loess Plateau. Hydrological Processes, 2020, 34(3): 718-729. doi:10.1002/hyp.13620.
doi: 10.1002/hyp.13620 |
[5] |
VANNOPPEN W, VANMAERCKE M, DE BAETS S, POESEN J. A review of the mechanical effects of plant roots on concentrated flow erosion rates. Earth-Science Reviews, 2015, 150: 666-678. doi:10.1016/j.earscirev.2015.08.011.
doi: 10.1016/j.earscirev.2015.08.011 |
[6] |
GUO M M, WANG W L, KANG H L, YANG B. Changes in soil properties and erodibility of gully heads induced by vegetation restoration on the Loess Plateau, China. Journal of Arid Land, 2018, 10(5): 712-725. doi:10.1007/s40333-018-0121-z.
doi: 10.1007/s40333-018-0121-z |
[7] |
KANG H L, WANG W L, GUO M M, LI J M, SHI Q H. How does land use/cover influence gully head retreat rates? An in situ simulation experiment of rainfall and upstream inflow in the gullied loess region, China. Land Degradation & Development, 2021, 32(9): 2789-2804. doi:10.1002/ldr.3892.
doi: 10.1002/ldr.3892 |
[8] |
刘定辉, 李勇. 植物根系提高土壤抗侵蚀性机理研究. 水土保持学报, 2003, 17(3): 34-37, 117. doi:10.13870/j.cnki.stbcxb.2003.03.010.
doi: 10.13870/j.cnki.stbcxb.2003.03.010 |
LIU D H, LI Y. Mechanism of plant roots improving resistance of soil to concentrated flow erosion. Journal of Soil Water Conservation, 2003, 17(3): 34-37, 117. doi:10.13870/j.cnki.stbcxb.2003.03.010. (in Chinese)
doi: 10.13870/j.cnki.stbcxb.2003.03.010 |
|
[9] | 李强, 刘国彬, 许明祥, 张正, 孙会. 黄土丘陵区撂荒地土壤抗冲性及相关理化性质. 农业工程学报, 2013, 29(10): 153-159. |
LI Q, LIU G B, XU M X, ZHANG Z, SUN H. Soil anti-scouribility and its related physical properties on abandoned land in the Hilly Loess Plateau. Transactions of the Chinese Society of Agricultural Engineering, 2013, 29(10): 153-159. (in Chinese) | |
[10] |
KNAPEN A, POESEN J, GOVERS G, GYSSELS G, NACHTERGAELE J. Resistance of soils to concentrated flow erosion: A review. Earth-Science Reviews, 2007, 80(1/2): 75-109. doi:10.1016/j.earscirev.2006.08.001.
doi: 10.1016/j.earscirev.2006.08.001 |
[11] | 刘国彬. 黄土高原草地土壤抗冲性及其机理研究. 土壤侵蚀与水土保持学报, 1998, 4(1): 93-96. |
LIU G B. Study on soil anti-scourability and its mechanism of grassland on Loess Plateau. Journal of Soil Erosion and Soil and Water Conservation, 1998, 4(1): 93-96. (in Chinese) | |
[12] |
张荣, 董洪君, 周润惠, 余飞燕, 王敏, 陈聪琳, 喻静, 郝建锋. 四川夹金山灌丛群落根系特征对土壤抗冲性的影响. 生态学杂志, 2020, 39(11): 3558-3566. doi:10.13292/j.1000-4890.202011.012.
doi: 10.13292/j.1000-4890.202011.012 |
ZHANG R, DONG H J, ZHOU R H, YU F Y, WANG M, CHEN C L, YU J, HAO J F. Effects of root characteristics of shrub community on soil anti-scourability in the Jiajin Mountains, Sichuan Province. Chinese Journal of Ecology, 2020, 39(11): 3558-3566. doi:10.13292/j.1000-4890.202011.012. (in Chinese)
doi: 10.13292/j.1000-4890.202011.012 |
|
[13] |
WANG B, LI P P, HUANG C H, LIU G B, YANG Y F. Effects of root morphological traits on soil detachment for ten herbaceous species in the Loess Plateau. Science of the Total Environment, 2021, 754: 142304. doi:10.1016/j.scitotenv.2020.142304.
doi: 10.1016/j.scitotenv.2020.142304 |
[14] | KRAMER J. Relative efficiency of roots and shoots of plants in protecting the soil from erosion[D]. Lincoln, NE: University of Nebraska, 1936. |
[15] | 冯兰茜, 王文龙, 郭明明, 史倩华, 陈同德, 康宏亮. 根系密度对黄土塬沟头溯源侵蚀产沙和形态演化过程的影响. 农业工程学报, 2020, 36(6): 88-96. |
FENG L Q, WANG W L, GUO M M, SHI Q H, CHEN T D, KANG H L. Effects of root density on gully headcut erosion and morphological evolution process in gully regions of Loess Plateau. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(6): 88-96. (in Chinese) | |
[16] |
李鹏, 李占斌, 鲁克新. 黄土区草本植被根系与土壤垂直侵蚀产沙关系研究. 植物生态学报, 2006, 30(2): 302-306.
doi: 10.17521/cjpe.2006.0040 |
LI P, LI Z B, LU K X. Relationship between herbaceous root system and vertical soil sediment yield in loess area. Chinese Journal of Plant Ecology, 2006, 30(2): 302-306. (in Chinese)
doi: 10.17521/cjpe.2006.0040 |
|
[17] |
史东梅, 陈晏. 紫色丘陵区农林混作模式的土壤抗冲性影响因素. 中国农业科学, 2008, 41(5): 1400-1409. doi:10.3864/j.issn.0578-1752.2008.05.018.
doi: 10.3864/j.issn.0578-1752.2008.05.018 |
SHI D M, CHEN Y. The influencing factors of soil anti-scouribility of tree-crop intercropping land in purple soil hilly region. Scientia Agricultura Sinica, 2008, 41(5): 1400-1409. doi:10.3864/j.issn.0578-1752.2008.05.018. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2008.05.018 |
|
[18] | 李勇, 朱显谟, 田积莹. 黄土高原植物根系提高土壤抗冲性的有效性. 科学通报, 1991, 36(12): 935-938. |
LI Y, ZHU X M, TIAN J Y. Effects of plant roots on soil scour resistance in the Loess Plateau. Chinese Science Bulletin, 1991, 36(12): 935-938. (in Chinese) | |
[19] |
STOKES A, ATGER C, BENGOUGH A G, FOURCAUD T, SIDLE R C. Desirable plant root traits for protecting natural and engineered slopes against landslides. Plant and Soil, 2009, 324(1/2): 1-30. doi:10.1007/s11104-009-0159-y.
doi: 10.1007/s11104-009-0159-y |
[20] |
GUO M M, WANG W L, KANG H L, YANG B, LI J M. Changes in soil properties and resistance to concentrated flow across a 25-year passive restoration chronosequence of grasslands on the Chinese Loess Plateau. Restoration Ecology, 2020, 28(1): 104-114. doi:10.1111/rec.13057.
doi: 10.1111/rec.13057 |
[21] |
LI Q, LIU G B, ZHANG Z, TUO D F, XU M X. Effect of root architecture on structural stability and erodibility of topsoils during concentrated flow in hilly Loess Plateau. Chinese Geographical Science, 2015, 25(6): 757-764. doi:10.1007/s11769-014-0723-0.
doi: 10.1007/s11769-014-0723-0 |
[22] |
陈安强, 张丹, 熊东红, 刘刚才. 元谋干热河谷坡面表层土壤力学特性对其抗冲性的影响. 农业工程学报, 2012, 28(5): 108-113. doi:10.3969/j.issn.1002-6819.2012.05.018.
doi: 10.3969/j.issn.1002-6819.2012.05.018 |
CHEN A Q, ZHANG D, XIONG D H, LIU G C. Effects of mechanical properties of surface soil on soil anti-scourability in Yuanmou dry-hot valley. Transactions of the Chinese Society of Agricultural Engineering, 2012, 28(5): 108-113. doi:10.3969/j.issn.1002-6819.2012.05.018. (in Chinese)
doi: 10.3969/j.issn.1002-6819.2012.05.018 |
|
[23] |
DAZIO E R, CONEDERA M, SCHWARZ M. Impact of different chestnut coppice managements on root reinforcement and shallow landslide susceptibility. Forest Ecology and Management, 2018, 417: 63-76. doi:10.1016/j.foreco.2018.02.031.
doi: 10.1016/j.foreco.2018.02.031 |
[24] |
FATTET M, FU Y, GHESTEM M, MA W, FOULONNEAU M, NESPOULOUS J, BISSONNAIS Y L, STOKES A. Effects of vegetation type on soil resistance to erosion: Relationship between aggregate stability and shear strength. Catena, 2011, 87(1): 60-69. doi:10.1016/j.catena.2011.05.006.
doi: 10.1016/j.catena.2011.05.006 |
[25] |
KOMPANI-ZARE M, SOUFI M, HAMZEHZARGHANI H, DEHGHANI M. The effect of some watershed, soil characteristics and morphometric factors on the relationship between the gully volume and length in Fars Province, Iran. Catena, 2011, 86(3): 150-159. doi:10.1016/j.catena.2011.03.008.
doi: 10.1016/j.catena.2011.03.008 |
[26] | 熊燕梅, 夏汉平, 李志安, 蔡锡安. 植物根系固坡抗蚀的效应与机理研究进展. 应用生态学报, 2007, 18(4): 895-904. |
XIONG Y M, XIA H P, LI Z A, CAI X A. Effects and mechanisms of plant roots on slope reinforcement and soil erosion resistance: A research review. Chinese Journal of Applied Ecology, 2007, 18(4): 895-904. (in Chinese) | |
[27] |
张爱国, 李锐, 杨勤科. 中国水蚀土壤抗剪强度研究. 水土保持通报, 2001, 21(3): 5-9. doi:10.13961/j.cnki.stbctb.2001.03.004.
doi: 10.13961/j.cnki.stbctb.2001.03.004 |
ZHANG A G, LI R, YANG Q K. Study on soil anti shearing intensity of water erosion in China. Bulletin of Soil and Water Conservation, 2001, 21(3): 5-9. doi:10.13961/j.cnki.stbctb.2001.03.004. (in Chinese)
doi: 10.13961/j.cnki.stbctb.2001.03.004 |
|
[28] | 胡斐南, 魏朝富, 许晨阳, 魏能峤, 钟茫, 钟守琴. 紫色土区水稻土抗剪强度的水敏性特征. 农业工程学报, 2013, 29(3): 107-114. |
HU F N, WEI C F, XU C Y, WEI N Q, ZHONG M, ZHONG S Q. Water sensitivity of shear strength of purple paddy soils. Transactions of the Chinese Society of Agricultural Engineering, 2013, 29(3): 107-114. (in Chinese) | |
[29] |
林金石, 庄雅婷, 黄炎和, 蒋芳市, 林敬兰, 葛宏力. 不同剪切方式下崩岗红土层抗剪特征随水分变化规律. 农业工程学报, 2015, 31(24): 106-110. doi:10.11975/j.issn.1002-6819.2015.24.017.
doi: 10.11975/j.issn.1002-6819.2015.24.017 |
LIN J S, ZHUANG Y T, HUANG Y H, JIANG F S, LIN J L, GE H L. Shear strengths of collapsing hill in red soil as affected by soil moisture under different experimental methods. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(24): 106-110. doi:10.11975/j.issn.1002-6819.2015.24.017. (in Chinese)
doi: 10.11975/j.issn.1002-6819.2015.24.017 |
|
[30] |
葛芳红, 周正朝, 刘俊娥, 王宁, 李静, 蒋平海. 黄土丘陵区4种典型植物根系分布特征及对土壤分离速率的影响. 水土保持学报, 2017, 31(6): 164-169. doi:10.13870/j.cnki.stbcxb.2017.06.027.
doi: 10.13870/j.cnki.stbcxb.2017.06.027 |
GE F H, ZHOU Z C, LIU J E, WANG N, LI J, JIANG P H. Distribution characteristics of root and their effect on soil separation rate of four typical plants in loess hilly region. Journal of Soil and Water Conservation, 2017, 31(6): 164-169. doi:10.13870/j.cnki.stbcxb.2017.06.027. (in Chinese)
doi: 10.13870/j.cnki.stbcxb.2017.06.027 |
|
[31] |
PARHIZKAR M, SHABANPOUR M, KHALEDIAN M, CERDÀ A, ROSE C W, ASADI H, LUCAS-BORJA M E, ZEMA D A. Assessing and modeling soil detachment capacity by overland flow in forest and woodland of northern Iran. Forests, 2020, 11(1): 65. doi:10.3390/f11010065.
doi: 10.3390/f11010065 |
[32] | 吴彦, 刘世全, 王金锡. 植物根系对土壤抗侵蚀能力的影响. 应用与环境生物学报, 1997, 3(2): 119-124. |
WU Y, LIU S Q, WANG J X. Effect of plant root system on soil anti-erosion. Chinese Journal of Applied and Environmental Biology, 1997, 3(2): 119-124. (in Chinese) | |
[33] |
JASTROW J D, MILLER R M, LUSSENHOP J. Contributions of interacting biological mechanisms to soil aggregate stabilization in restored prairie. Soil Biology and Biochemistry, 1998, 30(7): 905-916. doi:10.1016/S0038-0717(97)00207-1.
doi: 10.1016/S0038-0717(97)00207-1 |
[34] |
王向荣, 王政权, 韩有志, 谷加存, 郭大立, 梅莉. 水曲柳和落叶松不同根序之间细根直径的变异研究. 植物生态学报, 2005, 29(6): 871-877.
doi: 10.17521/cjpe.2005.0123 |
WANG X R, WANG Z Q, HAN Y Z, GU J C, GUO D L, MEI L. Variations of fine root diameter with root order in Manchurian ash and Dahurian larch plantations. Chinese Journal of Plant Ecology, 2005, 29(6): 871-877. (in Chinese)
doi: 10.17521/cjpe.2005.0123 |
|
[35] |
WANG B, ZHANG G H, YANG Y F, LI P P, LIU J X. Response of soil detachment capacity to plant root and soil properties in typical grasslands on the Loess Plateau. Agriculture, Ecosystems & Environment, 2018, 266: 68-75. doi:10.1016/j.agee.2018.07.016.
doi: 10.1016/j.agee.2018.07.016 |
[36] |
毛瑢, 孟广涛, 周跃. 植物根系对土壤侵蚀控制机理的研究. 水土保持研究, 2006, 13(2): 241-243. doi:10.3969/j.issn.1005-3409.2006.02.076.
doi: 10.3969/j.issn.1005-3409.2006.02.076 |
MAO R, MENG G T, ZHOU Y. Mechanism of plant roots on soil erosion control. Research of Soil and Water Conservation, 2006, 13(2): 241-243. doi:10.3969/j.issn.1005-3409.2006.02.076. (in Chinese)
doi: 10.3969/j.issn.1005-3409.2006.02.076 |
|
[37] | 蒋定生, 范兴科, 李新华, 赵合理. 黄土高原水土流失严重地区土壤抗冲性的水平和垂直变化规律研究. 水土保持学报, 1995, 9(2): 1-8. |
JIANG D S, FAN X K, LI X H, ZHAO H L. Study on horizontal and vertical regulation of soil anti-scourability in area with serious soil erosion on loess plateau. Journal of Soil and Water Conservation, 1995, 9(2): 1-8. (in Chinese) | |
[38] |
胡敏, 李为萍, 史海滨, 梁建财. 布根方式及根系径级对根土复合体抗剪性能的影响. 水土保持通报, 2012, 32(1): 42-44. doi:10.13961/j.cnki.stbctb.2012.01.034.
doi: 10.13961/j.cnki.stbctb.2012.01.034 |
HU M, LI W P, SHI H B, LIANG J C. Effects of root layout and diameter on shear performance in root-soil composite. Bulletin of Soil and Water Conservation, 2012, 32(1): 42-44. doi:10.13961/j.cnki.stbctb.2012.01.034. (in Chinese)
doi: 10.13961/j.cnki.stbctb.2012.01.034 |
|
[39] |
谌芸, 何丙辉, 练彩霞, 刘志鹏, 彭石磊. 三峡库区陡坡根-土复合体抗冲性能. 生态学报, 2016, 36(16): 5173-5181. doi:10.5846/stxb201501270211.
doi: 10.5846/stxb201501270211 |
CHEN Y, HE B H, LIAN C X, LIU Z P, PENG S L. Root-soil system anti-scourability on steep slopes in the Three Gorges Reservoir Area. Acta Ecologica Sinica, 2016, 36(16): 5173-5181. doi:10.5846/stxb201501270211. (in Chinese)
doi: 10.5846/stxb201501270211 |
|
[40] |
GUO M M, WANG W L, WANG T C, WANG W X, KANG H L. Impacts of different vegetation restoration options on gully head soil resistance and soil erosion in loess tablelands. Earth Surface Processes and Landforms, 2020, 45(4): 1038-1050. doi:10.1002/esp.4798.
doi: 10.1002/esp.4798 |
[41] |
BISCHETTI G B, CHIARADIA E A, SIMONATO T, SPEZIALI B, VITALI B, VULLO P, ZOCCO A. Root strength and root area ratio of forest species in Lombardy (northern Italy). Plant and Soil, 2005, 278(1/2): 11-22. doi:10.1007/s11104-005-0605-4.
doi: 10.1007/s11104-005-0605-4 |
[42] |
MATTIA C, BISCHETTI G B, GENTILE F. Biotechnical characteristics of root systems of typical Mediterranean species. Plant and Soil, 2005, 278(1/2): 23-32. doi:10.1007/s11104-005-7930-5.
doi: 10.1007/s11104-005-7930-5 |
[43] |
肖培青, 姚文艺, 王国庆, 杨春霞, 申震洲. 植被作用下土壤抗剪强度和径流侵蚀力的耦合效应. 水科学进展, 2016, 27(2): 224-230. doi:10.14042/j.cnki.32.1309.2016.02.007.
doi: 10.14042/j.cnki.32.1309.2016.02.007 |
XIAO P Q, YAO W Y, WANG G Q, YANG C X, SHEN Z Z. Effects of soil shear strength and runoff erosivity on slopes with different vegetation cover. Advances in Water Science, 2016, 27(2): 224-230. doi:10.14042/j.cnki.32.1309.2016.02.007. (in Chinese)
doi: 10.14042/j.cnki.32.1309.2016.02.007 |
|
[44] |
安然, 柴军瑞, 覃源, 许增光. 植被根系形态对边坡稳定性的影响分析. 水利水电技术, 2018, 49(3): 150-156. doi:10.13928/j.cnki.wrahe.2018.03.022.
doi: 10.13928/j.cnki.wrahe.2018.03.022 |
AN R, CHAI J R, QIN Y, XU Z G. Analysis on effect of vegetation root-system morphology on slope stability. Water Resources and Hydropower Engineering, 2018, 49(3): 150-156. doi:10.13928/j.cnki.wrahe.2018.03.022. (in Chinese)
doi: 10.13928/j.cnki.wrahe.2018.03.022 |
[1] | 周萌,韩晓旭,郑恒彪,程涛,田永超,朱艳,曹卫星,姚霞. 基于参数化和非参数化法的棉花生物量高光谱遥感估算[J]. 中国农业科学, 2021, 54(20): 4299-4311. |
[2] | 周珂,柳乐,张俨娜,苗茹,杨阳. GEE支持下的河南省冬小麦面积提取及长势监测[J]. 中国农业科学, 2021, 54(11): 2302-2318. |
[3] | 李美炫,朱西存,白雪源,彭玉凤,田中宇,姜远茂. 基于无人机影像阴影去除的苹果树冠层氮素含量遥感反演[J]. 中国农业科学, 2021, 54(10): 2084-2094. |
[4] | 江娜,史东梅,蒋光毅,宋鸽,司承静,叶青. 土壤侵蚀对紫色土坡耕地耕层物理及力学特性的影响[J]. 中国农业科学, 2020, 53(9): 1845-1859. |
[5] | 项方林,李鑫格,马吉锋,刘小军,田永超,朱艳,曹卫星,曹强. 基于冠层时序植被指数的冬小麦单产预测[J]. 中国农业科学, 2020, 53(18): 3679-3692. |
[6] | 程伟, 辛晓平. 基于TVDI的内蒙古草地干旱变化特征分析[J]. 中国农业科学, 2020, 53(13): 2728-2742. |
[7] | 辛晓平,丁蕾,程伟,朱晓昱,陈宝瑞,刘钟龄,何广礼,青格勒,杨桂霞,唐华俊. 北方草地及农牧交错区草地植被碳储量及其影响因素[J]. 中国农业科学, 2020, 53(13): 2757-2768. |
[8] | 王文鑫,王文龙,郭明明,王天超,康宏亮,杨波,赵满,陈卓鑫. 黄土高塬沟壑区植被恢复对沟头土壤团聚体特征及土壤可蚀性的影响[J]. 中国农业科学, 2019, 52(16): 2845-2857. |
[9] | 张翠梅,师尚礼,吴芳. 干旱胁迫对不同抗旱性苜蓿品种根系生长及生理特性影响[J]. 中国农业科学, 2018, 51(5): 868-882. |
[10] | 刘宪锋,胡宝怡,任志远. 黄土高原植被生态系统水分利用效率时空变化及驱动因素[J]. 中国农业科学, 2018, 51(2): 302-314. |
[11] | 束美艳, 顾晓鹤, 孙林, 朱金山, 杨贵军, 王延仓, 张丽妍. 基于新型植被指数的冬小麦LAI高光谱反演[J]. 中国农业科学, 2018, 51(18): 3486-3496. |
[12] | 陈智芳,宋妮,王景雷,孙景生. 基于高光谱遥感的冬小麦叶水势估算模型[J]. 中国农业科学, 2017, 50(5): 871-880. |
[13] | 张潇元,张立福,张霞,王树东,田静国,翟涌光. 不同光谱植被指数反演冬小麦叶氮含量的敏感性研究[J]. 中国农业科学, 2017, 50(3): 474-485. |
[14] | 高佳,史建国,董树亭,刘鹏,赵斌,张吉旺. 花粒期光照强度对夏玉米根系生长和产量的影响[J]. 中国农业科学, 2017, 50(11): 2104-2113. |
[15] | 陈昌为,朱秀芳,蔡毅,郭航. 一种基于趋势单产和遥感修正模型的混合估产模型[J]. 中国农业科学, 2017, 50(10): 1792-1801. |
|