中国农业科学 ›› 2022, Vol. 55 ›› Issue (6): 1172-1188.doi: 10.3864/j.issn.0578-1752.2022.06.010
巢成生(),王玉乾,沈欣杰,代晶,顾炽明,李银水,谢立华,胡小加,秦璐(),廖星()
收稿日期:
2021-02-03
接受日期:
2021-04-13
出版日期:
2022-03-16
发布日期:
2022-03-25
通讯作者:
秦璐,廖星
作者简介:
巢成生,E-mail: 基金资助:
CHAO ChengSheng(),WANG YuQian,SHEN XinJie,DAI Jing,GU ChiMing,LI YinShui,XIE LiHua,HU XiaoJia,QIN Lu(),LIAO Xing()
Received:
2021-02-03
Accepted:
2021-04-13
Online:
2022-03-16
Published:
2022-03-25
Contact:
Lu QIN,Xing LIAO
摘要:
【目的】氮素吸收效率是影响作物氮效率的重要方面,开展油菜氮高效吸收转运特征研究旨在为提升油菜氮吸收效率及产量提供理论依据。【方法】为探究油菜氮高效吸收转运机理,以一对氮效率差异显著的油菜种质:氮高效种质‘498’和氮低效种质‘428’为试验材料,在营养液培养条件下,设置正常供氮(9.5 mmol∙L-1)和低氮(0.475 mmol∙L-1)处理,研究不同氮浓度下油菜在3个生长时期(物候生长期12、14和16)的生理指标差异;并运用15N同位素示踪技术研究不同种质对NO3-和NH4+的吸收和转运能力。同时,利用实时荧光定量PCR技术分析氮吸收转运相关基因(BnNPFs、BnNRT2s和BnAMTs)在氮效率不同油菜种质中的表达差异。【结果】不同氮浓度处理下,油菜种质‘498’的植株生长和根系发育均表现较强优势,根系形态指标(主根长、总根长、根表面积、根体积和侧根数)、生物量、氮累积量和氮吸收效率均显著高于油菜种质‘428’。15N同位素示踪试验也表明,油菜种质‘498’对NO3-和NH4+的吸收累积强于‘428’,尤其是NH4+,‘498’在高低氮浓度处理下植株15NH4+累积量均显著高于‘428’。实时荧光定量PCR分析结果进一步显示,在正常供氮处理下,参与NO3-、NH4+吸收与转运的基因(BnNPF6.3a、BnNRT2.1e、BnNPF7.2a、BnNPF7.2c、BnNPF6.2c、BnAMT1;2a、BnAMT1;3c、BnAMT1;4a、BnAMT2;1a和BnAMT2;1b)在‘498’中的相对表达量显著高于‘428’;而在低氮处理下,‘498’根中参与NO3-吸收与转运的基因(BnNRT2.4a、BnNRT2.5a和BnNRT2.5b)的相对表达量显著低于‘428’,但是参与调控NO3-转运及再分配的基因(BnNPF7.3a 和BnNPF6.2c)表达水平较高,同时,参与NH4+吸收转运的基因(BnAMT1;1a、BnAMT1;2a、BnAMT1;3c、BnAMT1;4a、BnAMT2;1a和BnAMT2;1b)的表达水平也显著高于‘428’。【结论】与氮低效种质‘428’相比,氮高效种质‘498’的根长、根表面积(体积)、侧根数均表现出显著优势,并且其对氮(尤其是NH4+)的吸收累积能力较强;正常供氮处理下,参与NO3-、NH4+吸收转运的基因在‘498’中表达相对较高,而低氮处理下参与NO3-转运与再分配及NH4+吸收转运的基因在‘498’中相对表达量显著高于‘428’,说明‘498’相对较高的氮吸收效率可能与部分BnNPFs和BnAMTs基因的高表达水平相关。
巢成生,王玉乾,沈欣杰,代晶,顾炽明,李银水,谢立华,胡小加,秦璐,廖星. 甘蓝型油菜苗期氮高效吸收转运特征研究[J]. 中国农业科学, 2022, 55(6): 1172-1188.
CHAO ChengSheng,WANG YuQian,SHEN XinJie,DAI Jing,GU ChiMing,LI YinShui,XIE LiHua,HU XiaoJia,QIN Lu,LIAO Xing. Characteristics of Efficient Nitrogen Uptake and Transport of Rapeseed at Seedling Stage[J]. Scientia Agricultura Sinica, 2022, 55(6): 1172-1188.
表1
不同氮浓度对氮效率差异油菜种质苗期氮浓度及氮效率相关指标的影响"
物候生长期 Phenological growth stages | 处理 Treatment | 种质 Germplasm | 氮浓度 N concentration (%) | 氮累积量 N accumulation (mg/plant) | 氮转运效率 NTE (%) | 氮吸收效率 NAE (%) | 氮利用效率 NutE (%) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Shoot | Root | Shoot | Root | Total | |||||||||||
12 | CK | 498 | 5.55a | 4.74a | 1.26ab | 0.24b | 1.50ab | 84.03c | 3.00c | 18.5c | |||||
428 | 5.63a | 4.65a | 1.39a | 0.18b | 1.57ab | 88.51a | 3.15c | 18.2d | |||||||
LN | 498 | 5.05b | 4.40b | 1.35ab | 0.33a | 1.68a | 80.34d | 67.45a | 20.38b | ||||||
428 | 4.93b | 4.02c | 1.12b | 0.18b | 1.30b | 86.38b | 51.96b | 20.91a | |||||||
14 | CK | 498 | 5.47a | 4.90a | 16.39a | 2.35a | 18.74a | 87.39a | 7.83c | 18.55d | |||||
428 | 5.05b | 5.05a | 13.33b | 2.15a | 15.48a | 86.04a | 6.47c | 19.80c | |||||||
LN | 498 | 3.45c | 3.44b | 7.81c | 1.89ab | 9.70b | 80.55b | 81.05a | 28.96b | ||||||
428 | 3.16d | 3.44b | 6.25c | 1.46b | 7.70b | 81.03b | 64.36b | 31.11a | |||||||
16 | CK | 498 | 5.06b | 4.65a | 52.48a | 9.10a | 61.58a | 85.16a | 14.88c | 20.02c | |||||
428 | 5.34a | 4.81a | 40.61b | 6.79b | 47.41b | 85.64a | 11.46d | 19.03d | |||||||
LN | 498 | 2.87c | 2.22b | 11.32c | 4.60c | 15.92c | 71.02b | 76.97a | 37.78b | ||||||
428 | 2.74c | 2.26b | 8.71d | 3.22d | 11.94d | 72.93b | 57.69b | 38.56a |
[1] |
王汉中. 以新需求为导向的油菜产业发展战略. 中国油料作物学报, 2018,40(5):613-617. doi: 10.7505/j.issn.1007-9084.2018.05.001.
doi: 10.7505/j.issn.1007-9084.2018.05.001 |
WANG H Z. New-demand oriented oilseed rape industry developing strategy. Chinese Journal of Oil Crop Sciences, 2018,40(5):613-617. doi: 10.7505/j.issn.1007-9084.2018.05.001. (in Chinese)
doi: 10.7505/j.issn.1007-9084.2018.05.001 |
|
[2] |
BOUCHET A S, LAPERCHE A, BISSUEL-BELAYGUE C, SNOWDON R, NESI N, STAHL A. Nitrogen use efficiency in rapeseed. A review. Agronomy for Sustainable Development, 2016,36(2):1-20. doi: 10.1007/s13593-016-0371-0.
doi: 10.1007/s13593-016-0371-0 |
[3] |
LASSALETTA L, BILLEN G, GRIZZETTI B, ANGLADE J, GARNIER J. 50 year trends in nitrogen use efficiency of world cropping systems: the relationship between yield and nitrogen input to cropland. Environmental Research Letters, 2014,9(10):105011. doi: 10.1088/1748-9326/9/10/105011.
doi: 10.1088/1748-9326/9/10/105011 |
[4] |
朱兆良, 金继运. 保障我国粮食安全的肥料问题. 植物营养与肥料学报, 2013,19(2):259-273. doi: 10.11674/zwyf.2013.0201.
doi: 10.11674/zwyf.2013.0201 |
ZHU Z L, JIN J Y. Fertilizer use and food security in China. Plant Nutrition and Fertilizer Science, 2013,19(2):259-273. doi: 10.11674/zwyf.2013.0201. (in Chinese)
doi: 10.11674/zwyf.2013.0201 |
|
[5] |
XU G H, FAN X R, MILLER A J. Plant nitrogen assimilation and use efficiency. Annual Review of Plant Biology, 2012,63:153-182. doi: 10.1146/annurev-arplant-042811-105532.
doi: 10.1146/annurev-arplant-042811-105532 |
[6] |
康亮, 梁琼月, 姚一华, 蒋强, 董蒙蒙, 顾明华, 何冰. 不同氮效率木薯品种根系形态、构型及氮吸收动力学特征. 植物营养与肥料学报, 2019,25(11):1920-1928. doi: 10.11674/zwyf.19024.
doi: 10.11674/zwyf.19024 |
KANG L, LIANG Q Y, YAO Y H, JIANG Q, DONG M M, GU M H, HE B. Root morphology, configuration and nitrogen absorption kinetics of cassava cultivars with different nitrogen efficiencies. Journal of Plant Nutrition and Fertilizers, 2019,25(11):1920-1928. doi: 10.11674/zwyf.19024. (in Chinese)
doi: 10.11674/zwyf.19024 |
|
[7] |
刘代平, 宋海星, 刘强, 荣湘民, 彭建伟, 谢桂先, 刘浩荣. 油菜根系形态和生理特性与其氮效率的关系. 土壤, 2008,40(5):765-769. doi: 10.3321/j.issn:0253-9829.2008.05.015.
doi: 10.3321/j.issn:0253-9829.2008.05.015 |
LIU D P, SONG H X, LIU Q, RONG X M, PENG J W, XIE G X, LIU H R. Relationship between root morphologic and physiological properties and nitrogen efficiency of oilseed rape cultivars. Soils, 2008,40(5):765-769. doi: 10.3321/j.issn:0253-9829.2008.05.015. (in Chinese)
doi: 10.3321/j.issn:0253-9829.2008.05.015 |
|
[8] |
熊淑萍, 吴克远, 王小纯, 张捷, 杜盼, 吴懿鑫, 马新明. 不同氮效率基因型小麦根系吸收特性与氮素利用差异的分析. 中国农业科学, 2016,49(12):2267-2279. doi: 10.3864/j.issn.0578-1752.2016.12.003.
doi: 10.3864/j.issn.0578-1752.2016.12.003 |
XIONG S P, WU K Y, WANG X C, ZHANG J, DU P, WU Y X, MA X M. Analysis of root absorption characteristics and nitrogen utilization of wheat genotypes with different N efficiency. Scientia Agricultura Sinica, 2016,49(12):2267-2279. doi: 10.3864/j.issn.0578-1752.2016.12.003. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2016.12.003 |
|
[9] |
WANG G L, DING G D, LI L, CAI H M, YE X S, ZOU J, XU F S. Identification and characterization of improved nitrogen efficiency in interspecific hybridized new-type Brassica napus. Annals of Botany, 2014,114(3):549-559. doi: 10.1093/aob/mcu135.
doi: 10.1093/aob/mcu135 |
[10] |
KAMH M, WIESLER F, ULAS A, HORST W J. Root growth and N-uptake activity of oilseed rape (Brassica napus L.) cultivars differing in nitrogen efficiency. Journal of Plant Nutrition and Soil Science, 2005,168(1):130-137. doi: 10.1002/jpln.200421453.
doi: 10.1002/jpln.200421453 |
[11] |
刘强, 宋海星, 荣湘民, 彭建伟, 谢桂先. 不同品种油菜氮效率差异及其生理基础研究. 植物营养与肥料学报, 2008,14(1):113-119. doi: 10.3321/j.issn:1008-505X.2008.01.018.
doi: 10.3321/j.issn:1008-505X.2008.01.018 |
LIU Q, SONG H X, RONG X M, PENG J W, XIE G X. Differences in nitrogen use efficiency among different rape varieties and their physiological basis. Plant Nutrition and Fertilizer Science, 2008,14(1):113-119. doi: 10.3321/j.issn:1008-505X.2008.01.018. (in Chinese)
doi: 10.3321/j.issn:1008-505X.2008.01.018 |
|
[12] | 洪娟. 油菜氮高效种质的筛选及其生理机制的初步研究[D]. 武汉: 华中农业大学, 2007. |
HONG J. Screening of nitrogen efficient germplasm and preliminary study on its phsiological mechanism in rapeseed[D]. Wuhan: Huazhong Agricultural University, 2007. (in Chinese) | |
[13] |
TENG W, HE X, TONG Y P. Transgenic approaches for improving use efficiency of nitrogen, phosphorus and potassium in crops. Journal of Integrative Agriculture, 2017,16(12):2657-2673. doi: 10.1016/S2095-3119(17)61709-X.
doi: 10.1016/S2095-3119(17)61709-X |
[14] |
FAN X R, NAZ M, FAN X R, XUAN W, MILLER A J, XU G H. Plant nitrate transporters: from gene function to application. Journal of Experimental Botany, 2017,68(10):2463-2475. doi: 10.1093/jxb/erx011.
doi: 10.1093/jxb/erx011 |
[15] |
TSAY Y F, CHIU C C, TSAI C B, HO C H, HSU P K. Nitrate transporters and peptide transporters. FEBS Letters, 2007,581(12):2290-2300. doi: 10.1016/j.febslet.2007.04.047.
doi: 10.1016/j.febslet.2007.04.047 |
[16] |
LIU K H, TSAY Y F. Switching between the two action modes of the dual-affinity nitrate transporter CHL1 by phosphorylation. The EMBO Journal, 2003,22(5):1005-1013. doi: 10.1093/emboj/cdg118.
doi: 10.1093/emboj/cdg118 |
[17] |
LÉRAN S, VARALA K, BOYER J C, CHIURAZZI M, CRAWFORD N, DANIEL-VEDELE F, DAVID L, DICKSTEIN R, FERNANDEZ E, FORDE B, GASSMANN W, GEIGER D, GOJON A, GONG J M, HALKIER B A, HARRIS J M, HEDRICH R, LIMAMI A M, LACOMBE B. A unified nomenclature of NITRATE TRANSPORTER 1/PEPTIDE TRANSPORTER family members in plants. Trends in Plant Science, 2014,19(1):5-9. doi: 10.1016/j.tplants.2013.08.008.
doi: 10.1016/j.tplants.2013.08.008 |
[18] |
LUDEWIG U, NEUHÄUSER B, DYNOWSKI M. Molecular mechanisms of ammonium transport and accumulation in plants. FEBS Letters, 2007,581(12):2301-2308. doi: 10.1016/j.febslet.2007.03.034.
doi: 10.1016/j.febslet.2007.03.034 |
[19] |
HAN Y L, SONG H X, LIAO Q, YU Y, JIAN S F, LEPO J E, LIU Q, RONG X M, TIAN C, ZENG J, GUAN C Y, ISMAIL A M, ZHANG Z H. Nitrogen use efficiency is mediated by vacuolar nitrate sequestration capacity in roots of Brassica napus. Plant Physiology, 2016,170(3):1684-1698. doi: 10.1104/pp.15.01377.
doi: 10.1104/pp.15.01377 |
[20] | 张玉莹. 不同氮效率油菜NRT基因的表达差异研究[D]. 杨凌: 西北农林科技大学, 2013. |
ZHANG Y Y. The expression differences study on the NRT rape genes of different nitrogen efficiency[D]. Yangling: Northwest A & F University, 2013. (in Chinese) | |
[21] | 徐子先. 甘蓝型油菜氮效率评价及其差异的生理机制探究[D]. 北京: 中国农业科学院, 2017. |
XU Z X. Researches on nitrogen efficiency evaluation in rapeseed (Brassica napus L.) germplasm and its physiological mechanism[D]. Beijing: Chinese Academy of Agricultural Sciences, 2017. (in Chinese) | |
[22] | MEIER U. Growth stages of mono-and dicotyledonous plants. 2001. https://www.politicheagricole.it/flex/AppData/WebLive/Agrometeo/MIEPFY800/BBCHengl2001.pdf. |
[23] | 鲍士旦. 土壤农化分析. 3版. 北京: 中国农业出版社, 2000. |
BAO S D. Soil and Agricultural Chemistry Analysis. Beijing: Chinese Agriculture Press, 2000. (in Chinese) | |
[24] |
顾炽明, 韩配配, 胡琼, 李银水, 廖祥生, 张志华, 谢立华, 胡小加, 秦璐, 廖星. 甘蓝型油菜苗期氮效率评价. 中国油料作物学报, 2018,40(6):851-860. doi: 10.7505/j.issn.1007-9084.2018.06.015.
doi: 10.7505/j.issn.1007-9084.2018.06.015 |
GU C M, HAN P P, HU Q, LI Y S, LIAO X S, ZHANG Z H, XIE L H, HU X J, QIN L, LIAO X. Nitrogen efficiency evaluation in rapeseed (Brassica napus L.) at seedling stage. Chinese Journal of Oil Crop Sciences, 2018,40(6):851-860. doi: 10.7505/j.issn.1007-9084.2018.06.015. (in Chinese)
doi: 10.7505/j.issn.1007-9084.2018.06.015 |
|
[25] | 王改丽. 新型甘蓝型油菜氮高效种质的筛选及其氮高效机制的研究[D]. 武汉: 华中农业大学, 2014. |
WANG G L. Screening of high nitrogen efficient germplasms and its mechanism in new-type Brassica napus[D]. Wuhan: Huazhong Agricultural University, 2014. (in Chinese) | |
[26] | 晏娟, 沈其荣, 尹斌, 万新军. 应用15N示踪技术研究水稻对氮肥的吸收和分配. 核农学报, 2009,23(3):487-491, 496. |
YAN J, SHEN Q R, YIN B, WAN X J. Fertilizer-n uptake and distribution in rice plants using 15n tracer technique. Journal of Nuclear Agricultural Sciences, 2009,23(3):487-491, 496. (in Chinese) | |
[27] |
O'BRIEN J A, VEGA A, BOUGUYON E, KROUK G, GOJON A, CORUZZI G, GUTIÉRREZ R A. Nitrate transport, sensing, and responses in plants. Molecular Plant, 2016,9(6):837-856. doi: 10.1016/j.molp.2016.05.004.
doi: 10.1016/j.molp.2016.05.004 |
[28] |
LU K, LI T, HE J, CHANG W, ZHANG R, LIU M, YU M N, FAN Y H, MA J Q, SUN W, QU C M, LIU L Z, LI N N, LIANG Y, WANG R, QIAN W, TANG Z L, XU X F, LEI B, ZHANG K, LI J N. qPrimerDB: a thermodynamics-based gene-specific qPCR primer database for 147 organisms. Nucleic Acids Research, 2017,46(D1):D1229-D1236. doi: 10.1093/nar/gkx725.
doi: 10.1093/nar/gkx725 |
[29] |
TONG J F, WALK T C, HAN P P, CHEN L Y, SHEN X J, LI Y S, GU C M, XIE L H, HU X J, LIAO X, QIN L. Genome-wide identification and analysis of high-affinity nitrate transporter 2 (NRT2) family genes in rapeseed (Brassica napus L.) and their responses to various stresses. BMC Plant Biology, 2020,20(1):464. doi: 10.1186/s12870-020-02648-1.
doi: 10.1186/s12870-020-02648-1 |
[30] |
HU J H, ZHANG F G, GAO G Z, LI H, WU X M. Auxin-related genes associated with leaf petiole angle at the seedling stage are involved in adaptation to low temperature in Brassica napus. Environmental and Experimental Botany, 2021,182:104308. doi: 10.1016/j.envexpbot.2020.104308.
doi: 10.1016/j.envexpbot.2020.104308 |
[31] |
LIVAK K J, SCHMITTGEN T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods, 2001,25(4):402-408. doi: 10.1006/meth.2001.1262.
doi: 10.1006/meth.2001.1262 |
[32] |
TEGEDER M, MASCLAUX-DAUBRESSE C. Source and sink mechanisms of nitrogen transport and use. New Phytologist, 2018,217(1):35-53. doi: 10.1111/nph.14876.
doi: 10.1111/nph.14876 |
[33] |
LIN S H, KUO H F, CANIVENC G, LIN C S, LEPETIT M, HSU P K, TILLARD P, LIN H L, WANG Y Y, TSAI C B, GOJON A, TSAY Y F. Mutation of the Arabidopsis NRT1.5 nitrate transporter causes defective root-to-shoot nitrate transport. The Plant Cell, 2008,20(9):2514-2528. doi: 10.1105/tpc.108.060244.
doi: 10.1105/tpc.108.060244 |
[34] |
LI J Y, FU Y L, PIKE S M, BAO J, TIAN W, ZHANG Y, CHEN C Z, ZHANG Y, LI H M, HUANG J, LI L G, SCHROEDER J I, GASSMANN W, GONG J M. The Arabidopsis nitrate transporter NRT1.8 functions in nitrate removal from the xylem sap and mediates cadmium tolerance. The Plant Cell, 2010,22(5):1633-1646. doi: 10.1105/tpc.110.075242.
doi: 10.1105/tpc.110.075242 |
[35] | 吴宇. 低氮诱导的水稻根系形态解剖结构变化及其对氮素吸收分配的影响[D]. 武汉: 华中农业大学, 2020. |
WU Y. Low nitrogen induced changes of morphological and anatomical characterics and its effects on nitrogen uptake and distribution in rice[D]. Wuhan: Huazhong Agricultural University, 2020. (in Chinese) | |
[36] |
岳慧芳, 任永哲, 李乐, 王新博, 吕伟增, 龚璞, 王志强, 辛泽毓, 林同保. 不同基因型小麦品种根系形态对低氮胁迫的响应. 河南农业大学学报, 2017,51(4):447-452. doi: 10.16445/j.cnki.1000-2340.2017.04.001.
doi: 10.16445/j.cnki.1000-2340.2017.04.001 |
YUE H F, REN Y Z, LI L, WANG X B, LÜ W Z, GONG P, WANG Z Q, XIN Z Y, LIN T B. The response of root morphological traits to low nitrogen stress in different genotypic wheat cultivars. Journal of Henan Agricultural University, 2017,51(4):447-452. doi: 10.16445/j.cnki.1000-2340.2017.04.001. (in Chinese)
doi: 10.16445/j.cnki.1000-2340.2017.04.001 |
|
[37] |
魏海燕, 张洪程, 张胜飞, 杭杰, 戴其根, 霍中洋, 许轲, 马群, 张庆, 刘艳阳. 不同氮利用效率水稻基因型的根系形态与生理指标的研究. 作物学报, 2008,34(3):429-436. doi: 10.3321/j.issn:0496-3490.2008.03.013.
doi: 10.3321/j.issn:0496-3490.2008.03.013 |
WEI H Y, ZHANG H C, ZHANG S F, HANG J, DAI Q G, HUO Z Y, XU K, MA Q, ZHANG Q, LIU Y Y. Root morphological and physiological characteristics in rice genotypes with different N use efficiencies. Acta Agronomica Sinica, 2008,34(3):429-436. doi: 10.3321/j.issn:0496-3490.2008.03.013. (in Chinese)
doi: 10.3321/j.issn:0496-3490.2008.03.013 |
|
[38] |
唐伟杰, 官春云, 林良斌, 李丽萍, 张振华, 王峰, 肖钢, 李博, 刘屹湘. 不同硝铵比对油菜生长、生理与产量的影响. 植物营养与肥料学报, 2018,24(5):1338-1348. doi: 10.11674/zwyf.17495.
doi: 10.11674/zwyf.17495 |
TANG W J, GUAN C Y, LIN L B, LI L P, ZHANG Z H, WANG F, XIAO G, LI B, LIU Y X. Effects of nitrate and ammonium supply ratios on growth, physiology and yield of oilseed rape (Brassica napus L.). Journal of Plant Nutrition and Fertilizers, 2018,24(5):1338-1348. doi: 10.11674/zwyf.17495. (in Chinese)
doi: 10.11674/zwyf.17495 |
|
[39] | 李生秀. 中国旱地土壤植物氮素. 北京: 科学出版社, 2008. |
LI S X. Soil and Plant Nitrogen in Dryland Areas of China. Beijing: Science Press, 2008. (in Chinese) | |
[40] |
LI Q, DING G D, YANG N M, WHITE P J, YE X S, CAI H M, LU J W, SHI L, XU F S. Comparative genome and transcriptome analysis unravels key factors of nitrogen use efficiency in Brassica napus L. Plant, Cell & Environment, 2020,43(3):712-731. doi: 10.1111/pce.13689.
doi: 10.1111/pce.13689 |
[41] |
VERA J S, SPERANDIO M V L, FERNANDES M S, SANTOS L A. Overexpression of rice genes OsNRT1.1A and OsNRT1.1B restores chlorate uptake and NRT2.1/NAR2.1 expression in Arabidopsis thaliana chl1-5 mutant. Journal of Plant Growth Regulation, 2021,40(4):1701-1713. doi: 10.1007/s00344-020-10219-9.
doi: 10.1007/s00344-020-10219-9 |
[42] |
HU B, WANG W, OU S J, TANG J Y, LI H, CHE R H, ZHANG Z H, CHAI X Y, WANG H R, WANG Y Q, LIANG C Z, LIU L C, PIAO Z Z, DENG Q Y, DENG K, XU C, LIANG Y, ZHANG L H, LI L G, CHU C C. Variation in NRT1.1B contributes to nitrate-use divergence between rice sub species. Nature Genetics, 2015,47(7):834-838. doi: 10.1038/ng.3337.
doi: 10.1038/ng.3337 |
[43] |
HO C H, LIN S H, HU H C, TSAY Y F. CHL1 functions as a nitrate sensor in plants. Cell, 2009,138(6):1184-1194. doi: 10.1016/j.cell.2009.07.004.
doi: 10.1016/j.cell.2009.07.004 |
[44] |
ZHENG Y, DRECHSLER N, RAUSCH C, KUNZE R. The Arabidopsis nitrate transporter NPF7.3/NRT1.5 is involved in lateral root development under potassium deprivation. Plant Signaling & Behavior, 2016,11(5):e1176819. doi: 10.1080/15592324.2016.1176819.
doi: 10.1080/15592324.2016.1176819 |
[45] |
ZHOU Y, BAI L, SONG C P. Ammonium homeostasis and signaling in plant cells. Science Bulletin, 2015,60(8):741-747. doi: 10.1007/s11434-015-0759-2.
doi: 10.1007/s11434-015-0759-2 |
[46] |
LOQUÉ D, YUAN L X, KOJIMA S, GOJON A, WIRTH J, GAZZARRINI S, ISHIYAMA K, TAKAHASHI H, VON WIRÉN N. Additive contribution of AMT1;1 and AMT1;3 to high-affinity ammonium uptake across the plasma membrane of nitrogen-deficient Arabidopsis roots. The Plant Journal, 2006,48(4):522-534. doi: 10.1111/j.1365-313x.2006.02887.x.
doi: 10.1111/j.1365-313x.2006.02887.x |
[47] |
YUAN L X, LOQUÉ D, KOJIMA S, RAUCH S, ISHIYAMA K, INOUE E, TAKAHASHI H, VON WIRÉN N. The organization of high-affinity ammonium uptake in Arabidopsis roots depends on the spatial arrangement and biochemical properties of AMT1-type transporters. The Plant Cell, 2007,19(8):2636-2652. doi: 10.1105/tpc.107.052134.
doi: 10.1105/tpc.107.052134 |
[48] |
GIEHL R F H, LAGINHA A M, DUAN F Y, RENTSCH D, YUAN L X, VON WIRÉN N. A critical role of AMT2;1 in root-to-shoot translocation of ammonium in Arabidopsis. Molecular Plant, 2017,10(11):1449-1460. doi: 10.1016/j.molp.2017.10.001.
doi: 10.1016/j.molp.2017.10.001 |
[49] |
LIMA J E, KOJIMA S, TAKAHASHI H, VON WIRÉN N. Ammonium triggers lateral root branching in Arabidopsis in an AMMONIUM TRANSPORTER1;3-dependent manner. The Plant Cell, 2010,22(11):3621-3633. doi: 10.1105/tpc.110.076216.
doi: 10.1105/tpc.110.076216 |
[50] |
YUAN L X, GRAFF L, LOQUÉ D, KOJIMA S, TSUCHIYA Y N, TAKAHASHI H, VON WIRÉN N. AtAMT1;4, a pollen-specific high-affinity ammonium transporter of the plasma membrane in Arabidopsis. Plant and Cell Physiology, 2008,50(1):13-25. doi: 10.1093/pcp/pcn186.
doi: 10.1093/pcp/pcn186 |
[51] |
ZHONG L H, HUANG X M, ZHU Y N, KOU E F, LIU H C, SUN G W, CHEN R Y, SONG S W. Characterization and expression analysis of BcAMT1;4, an ammonium transporter gene in flowering Chinese cabbage. Horticulture, Environment, and Biotechnology, 2019,60(4):563-572. doi: 10.1007/s13580-019-00155-3.
doi: 10.1007/s13580-019-00155-3 |
[1] | 肖德顺, 徐春梅, 王丹英, 章秀福, 陈松, 褚光, 刘元辉. 水培条件下根际氧环境对水稻幼苗磷吸收的影响及其生理机制[J]. 中国农业科学, 2023, 56(2): 236-248. |
[2] | 胡盛,李阳阳,唐章林,李加纳,曲存民,刘列钊. 干旱胁迫下甘蓝型油菜籽粒含油量和蛋白质含量变化的全基因组关联分析[J]. 中国农业科学, 2023, 56(1): 17-30. |
[3] | 桑世飞,曹梦雨,王亚男,王君怡,孙晓涵,张文玲,姬生栋. 水稻氮高效相关基因的研究进展[J]. 中国农业科学, 2022, 55(8): 1479-1491. |
[4] | 谢伶俐,韦丁一,章子爽,徐劲松,张学昆,许本波. 甘蓝型油菜发育进程中赤霉素动态变化及其与产量的关系[J]. 中国农业科学, 2022, 55(24): 4793-4807. |
[5] | 房孟颖,卢霖,王庆燕,董学瑞,闫鹏,董志强. 乙矮合剂对不同施氮量夏玉米根系形态构建和产量的影响[J]. 中国农业科学, 2022, 55(24): 4808-4822. |
[6] | 钟佳霖,许觜妍,张怡云,李婕,刘晓雨,李恋卿,潘根兴. 原料、炭化温度和生物质炭组分对小白菜生长的影响[J]. 中国农业科学, 2022, 55(14): 2775-2785. |
[7] | 胡继杰,钟楚,胡志华,张均华,曹小闯,刘守坎,金千瑜,朱练峰. 溶解氧浓度对水稻分蘖期根系生长及氮素利用特性的影响[J]. 中国农业科学, 2021, 54(7): 1525-1536. |
[8] | 郜永博,王世显,魏珉,李静,高中强,孟伦,杨凤娟. 氮磷钾用量对基质培茄子产量、根系形态和根际微生物数量与酶活性的影响[J]. 中国农业科学, 2021, 54(21): 4623-4634. |
[9] | 王刘艳,王瑞莉,叶桑,郜欢欢,雷维,陈柳依,吴家怡,孟丽姣,袁芳,唐章林,李加纳,周清元,崔翠. 苯磺隆胁迫下甘蓝型油菜萌发期关联性状的QTL定位及候选基因筛选[J]. 中国农业科学, 2020, 53(8): 1510-1523. |
[10] | 李波,孙君,魏新光,郑思宇,葛东,付诗宁. 滴灌下限对日光温室葡萄生长、产量及根系分布的影响[J]. 中国农业科学, 2020, 53(7): 1432-1443. |
[11] | 陈雪,王瑞,井付钰,张胜森,贾乐东,段谋正,吴宇. 基于二代测序的甘蓝型油菜白花基因候选区间定位及连锁标记验证[J]. 中国农业科学, 2020, 53(6): 1108-1117. |
[12] | 万华方,魏帅,冯宇霞,钱伟. 以六倍体(AnAnCnCnCoCo)为桥梁创制抗旱新型甘蓝型油菜(AnArCnCo)[J]. 中国农业科学, 2020, 53(16): 3225-3234. |
[13] | 万华方,丁一娟,陈致富,梅家琴,钱伟. 利用野生甘蓝改良油菜Ogu CMS恢复材料的菌核病抗性[J]. 中国农业科学, 2020, 53(10): 1950-1958. |
[14] | 杨光圣,辛强,董发明,洪登峰. 一种简化的油菜杂交F1种子的生产方法[J]. 中国农业科学, 2019, 52(8): 1334-1340. |
[15] | 叶桑,崔翠,郜欢欢,雷维,王刘艳,王瑞莉,陈柳依,曲存民,唐章林,李加纳,周清元. 基于SNP遗传图谱对甘蓝型油菜部分脂肪酸 组成性状的QTL定位[J]. 中国农业科学, 2019, 52(21): 3733-3747. |
|