中国农业科学 ›› 2014, Vol. 47 ›› Issue (8): 1541-1549.doi: 10.3864/j.issn.0578-1752.2014.08.010

• 土壤肥料·节水灌溉·农业生态环境 • 上一篇    下一篇

自然降雨条件下夏玉米冠层截留特征及影响因素

 韩雪1, 2, 王力1, 2, 王艳萍1   

  1. 1、西北农林科技大学资源环境学院,陕西杨凌 712100;
    2、西北农林科技大学黄土高原土壤侵蚀与旱地农业国家重点实验室,陕西杨凌 712100
  • 收稿日期:2013-11-28 出版日期:2014-04-15 发布日期:2014-02-28
  • 通讯作者: 王力,E-mail:wangli5208@nwsuaf.edu.cn
  • 作者简介:韩雪,E-mail:hanxue0624@sina.com
  • 基金资助:

    国家自然科学基金项目(41390463、51239009)

Canopy Interception of Summer Corn and Its Influencing Factors Under Natural Rainfall

 HAN  Xue-1, 2 , WANG  Li-1, 2 , WANG  Yan-Ping-1   

  1. 1、College of Resources and Environment, Northwest A&F University, Yangling 712100, Shaanxi;
    2、State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling 712100, Shaanxi
  • Received:2013-11-28 Online:2014-04-15 Published:2014-02-28

摘要: 【目的】冠层截留特征和机理研究一直是生态水文的前沿和热点,针对作物冠层截留这一不可忽视的水分通量,以夏玉米为研究对象,研究在自然降雨条件下玉米冠层降雨截留特征和分布规律,分析作物冠层截留量的影响因素,以期更加合理的评价夏玉米对自然降水的水分利用效率,为科学密植、提高旱作农业区作物产量以及防止农耕地土壤侵蚀提供理论依据。【方法】运用水量平衡原理对夏玉米冠层截留量、穿透雨量、茎秆流量及降雨量的田间观测结果进行分析。其中采用玉米行间随机放置承雨槽收集穿透雨,以测量穿透雨量;采用在茎秆基部包裹喇叭口状聚乙烯集水装置收集茎秆流,并在装置底部引出一导管,将收集到的茎秆流转移到另外塑料桶中,以测量茎秆流量;降雨量采用自动气象站实时观测,并采用人工观测进行校正。【结果】夏玉米在不同降雨量级(0.1—4.9,5.0—14.9和15.0—29.9 mm)下,冠层截留量分别为1.1、2.6和13.0 mm,平均值为1.7 mm;冠层截留率分别为12.3%、12.1%、15.3%,平均值为13.3%。通过监测数据,建立了夏玉米冠层截留率与玉米叶面积指数和植株株高的回归方程,相关性显著;分别建立了各气象因子与夏玉米冠层截留量的回归方程,其中降雨历时和水汽压差分别与冠层截留量呈极显著幂函数相关关系;降雨量与冠层截留量呈极显著指数函数相关关系。同时,考虑所有影响因素的综合效应,建立了冠层截留量与影响因素的复合关系模型,相关系数R2=0.946。【结论】本研究中,自然降雨条件下,夏玉米的冠层截留量不可忽略,并且受到多种因素的交互影响,单一因素不能完全解释。夏玉米种植密度、形态指标(株高、叶面积)和气象因子(降雨量、风速、水汽压差、降雨历时)均对夏玉米冠层截留量有影响。建立冠层截留量与多种影响因素的复合关系模型,可为作物的科学密植、提高旱作农业区作物水分利用效率提供更充分理论基础。

关键词: 自然降雨 , 夏玉米 , 冠层截留 , 茎秆流 , 叶面积指数

Abstract: 【Objective】 Canopy interception is commonly considered to be the frontier and hot issue of ecological hydrology. In this study, the characteristics of corn canopy interception and its influencing factors were explored. The purpose was to evaluate the water efficiency of natural rainfall of summer corn much reasonably, provide a theoretical basis for scientific planting, improve agricultural crop production, and prevent farmland from soil erosion in the dry farming region.【Method】The method of water balance was used to measure the canopy interception, throughfall, and stemflow of summer corn. Throughfall was collected by rain gauges. Stemflow was assembled by collection tube at the bottom of stem. A transfer hose was connected with stemflow collection tube to drain the water to the plastic drum, and then collect the stemflow until it can be measured. Total rainfall was observed by automatic weather station in real time and corrected by artificial observation.【Result】Under different rainfall levels (0.1-4.9 mm, 5.0-14.9 mm, 15.0-29.9 mm), the canopy interceptions were 1.1 mm, 2.6 mm and 13.0 mm, and the average of canopy interception was 1.7 mm. The canopy interception rates were 12.3%, 12.1%, 15.3%, and the average of canopy interception rate was 13.3%. A linear regression model was developed to express the relationship of canopy interception rate with leaf area index and plant height. A power function between canopy interception and vapor pressure deficit and rainfall duration was founded. An exponential function between canopy interception and the rainfall amount was developed. Finally, a regression model was considered to express the relationship between corn canopy interception and possible influencing factors (R2=0.946). 【Conclusion】 Under natural rainfall, the summer corn canopy interception was not to be neglected, and it was influenced by many factors. In this study, summer corn canopy interception was impacted by planting density, corn morphological index (height, leaf area) and meteorological factors (such as rainfall, wind speed, vapor pressure deficit, and rainfall duration). Establishing a regression model of canopy interception with a variety of factors can provide a theoretical basis for scientific planting and improve the agricultural water use efficiency in the dry farming region.

Key words: rainfall , summer corn , canopy interception , stemflow , leaf area index