[1]Gong H B, Hu W W, Jiao Y X, Pua E C. Molecular characterization of a Phi-class mustard (Brassica juncea) glutathione-S-transferase gene in Arabidopsis thaliana by 5’-deletion analysis of its promoter. Plant Cell Reports, 2005, 24(7): 439-447.[2]Wilce M C, Parker M W. Structure and function of glutathione- S-transferases. Biochimica et Biophysica Acta-Biomembranes, 1994, 1205(1): 1-18.[3]Edwards R, Dixon D P. The role of glutathione transferases in herbicide metabolism. Herbicides and Their Mechanisms of Action. Sheffield: Sheffield Academic Press, 2000: 38-71.[4]Moons A. Regulatory and functional interactions of plant growth regulators and plant glutathione-S-transferases (GSTs). Vitamins and Hormones, 2005, 72: 155-202.[5]Marrs K A. The functions and regulation of glutathione S-transferases in plants. Annual Review of Plant Physiology and Plant Molecular Biology, 1996, 47(1): 127-158.[6]Droog F. Plant glutathione S-transferases, a tale of theta and Tau. Journal of Plant Growth Regulation, 1997, 16(2): 95-107.[7]Dixon D P, Lapthorn A, Edwards R. Plant glutathione transferases. Genome Biology, 2002, 3(3): 3004. 1-3004.10.[8]Basantani M, Srivastava A. Plant glutathione transferases: A decade falls short. Canadian Journal of Botany, 2007, 85(5): 443-456.[9]Chronopoulou E G, Labrou N E. Glutathione transferases: Emerging multidisciplinary tools in red and green biotechnology. Recent Patents on Biotechnology, 2009, 3(3): 211-223.[10]Conn S, Curtin C, Bézier A, Franco C, Zhang W. Purification, molecular cloning, and characterization of glutathione S-transferases (GSTs) from pigmented Vitis vinifera L. cell suspension cultures as putative anthocyanin transport proteins. Journal of Experimental Botany, 2008, 59(13): 3621-3634.[11]Sappl P G, Carroll A J, Clifton R, Lister R, Whelan J, Harvey Millar A, Singh K B. The Arabidopsis glutathione transferase gene family displays complex stress regulation and co-silencing multiple genes results in altered metabolic sensitivity to oxidative stress. The Plant Journal, 2009, 58(1): 53-68.[12]Soranzo N, Sari Gorla M, Mizzi L, De Toma G, Frova C. Organisation and structural evolution of the rice glutathione S-transferase gene family. Molecular Genetics and Genomics, 2004, 271(5): 511-521.[13]Lan T, Yang Z L, Yang X, Liu Y J, Wang X R, Zeng Q Y. Extensive functional diversification of the Populus glutathione S-transferase supergene family. The Plant Cell, 2009, 21(12): 3749-3766.[14]Dixon D P, Cummins I, Cole D J, Edwards R. Glutathione-mediated detoxification systems in plants. Current Opinion in Plant Biology, 1998, 1(3): 258-266.[15]Nutricati E, Miceli A, Blando F, De Bellis L. Characterization of two Arabidopsis thaliana glutathione-S-transferases. Plant Cell Reports, 2006, 25(9): 997-1005.[16]Wagner U, Edwards R, Dixon D P, Mauch F. Probing the diversity of the Arabidopsis glutathione-S-transferase gene family. Plant Molecular Biology, 2002, 49(5): 515-532. [17]Dixon D P, Davis B G, Edwards R. Functional divergence in the glutathione transferase superfamily in plants. Identification of two classes with putative functions in redox homeostasis in Arabidopsis thaliana. The Journal of Biological Chemistry, 2002, 277(34): 30859-30869.[18]Cottingham C K, Hatzios K K, Meredith S. Influence of chemical treatments on glutathione-S-transferases of maize with activity towards metolachlor and cinnamic acid. Zeitschrift fur Naturforschung C: Journal of Biosciences, 1998, 53(11/12): 973-979.[19]Vollenweider S, Weber H, Stolz S, Chételat A, Farmer E E. Fatty acid ketodienes and fatty acid ketotrienes: Michael addition acceptors that accumulate in wounded and diseased Arabidopsis leaves. The Plant Journal, 2000, 24(4): 467-476.[20]Seppänen M M, Cardi T, Borg Hyökki M, Pehu E. Characterisation and expression of cold induced glutathione S-transferase in freezing tolerant Solanum commersonii, sensitive S. tuberosum and their interspecific somatic hybrids. Plant Science, 2000, 153(2): 125-133.[21]Zhou J M, Goldsbrough P B. An Arabidopsis gene with homology to glutathione S-transferases is regulated by ethylene. Plant Molecular Biology, 1993, 22(3): 517-523.[22]Chen W Q, Singh K B. The auxin, hydrogen peroxide and salicylic acid induced expression of the Arabidopsis GST6 promoter is mediated in part by an ocs element. The Plant Journal, 1999, 19(6): 667-677.[23]Chen W Q, Chao G, Singh K B. The promoter of a H2O2- inducible, Arabidopsis glutathione S-transferase gene contains closely linked OBF- and OBP1-binding sites. The Plant Journal, 1996, 10(6): 955-966.[24]安泽伟, 陈根辉, 程 汉, 赵彦宏, 谢黎黎, 黄华孙. 橡胶树冷应答转录组cDNA-AFLP分析. 林业科学, 2010, 46(3): 62-67.An Z W, Chen G H, Cheng H, Zhao Y H, Xie L L, Huang H S. cDNA-AFLP Analysis on transcriptomics of Hevea brasiliensis induced by cold stress. Scientia Silvae Sinicae, 2010, 46(3): 62-67. (in Chinese)[25]Tang C R, Qi J Y, Li H P, Zhang C L, Wang Y K. A convenient and efficient protocol for isolating high-quality RNA from latex of Hevea brasiliensis (para rubber tree). Journal of Biochemical and Biophysical Methods, 2007, 70(5): 749-754.[26]Kiefer E, Heller W, Ernst D. A simple and efficient protocol for isolation of functional RNA from plant tissues rich in secondary metabolites. Plant Molecular Biology Reporter, 2000, 18(1): 33-39.[27]Tang C R, Huang D B, Yang J H, Liu S J, Sakr S, Li H P, Zhou Y H, Qin Y X. The sucrose transporter HbSUT3 plays an active role in sucrose loading to laticifer and rubber productivity in exploited trees of Hevea brasiliensis (para rubber tree). Plant Cell and Environment, 2010, 33(10): 1708-1720.[28]Moons A. Osgstu3 and osgtu4, encoding tau class glutathione- S-transferases, are heavy metal- and hypoxic-stress induced and differentially salt stress-responsive in rice roots. Federation of European Biochemical Societies, 2003, 553(3): 427-432.[29]Polidoros A N, Scandaios J G. Role of hydrogen peroxide and different classes of antioxidants in the regulation of catalase and glutathione-S-transferase gene expression in maize (Zea mays L.). Physiologia Plantarum, 1999, 106(1): 112-120.[30]许闻献, 校现周. 橡胶死皮树过氧化物酶同工酶和超氧化物歧化酶同工酶的研究. 热带作物学报, 1988, 9(1): 31-36.Xu W X, Xiao X Z. Studies on peroxidase and superoxidase dimutase isozymes in dry rubber trees. Chinese Journal of Tropical Crops, 1988, 9(1): 31-36. (in Chinese)[31]Darussamin A, Suharyanto S, Chaidamsari T. Changes in the chemical compositions and electrophoretic profile of latex and bark proteins related to tapping panel dryness incidence in Hevea brasiliensis. Menara Perkebunan, 1995, 63(2): 52-59. |