中国农业科学 ›› 2022, Vol. 55 ›› Issue (20): 4020-4035.doi: 10.3864/j.issn.0578-1752.2022.20.013
收稿日期:
2022-01-19
接受日期:
2022-06-06
出版日期:
2022-10-16
发布日期:
2022-10-24
通讯作者:
张亚红
作者简介:
刘鑫,E-mail: 基金资助:
LIU Xin1(),ZHANG YaHong2(),YUAN Miao1,DANG ShiZhuo1,ZHOU Juan1
Received:
2022-01-19
Accepted:
2022-06-06
Online:
2022-10-16
Published:
2022-10-24
Contact:
YaHong ZHANG
摘要:
【目的】 葡萄是我国重要的果树树种,花芽分化直接影响葡萄的质量和数量。对‘红地球’葡萄花芽分化过程中的花芽进行比较分析,探索‘红地球’葡萄花芽分化机制,挖掘关键基因,为了解‘红地球’葡萄花芽分化提供理论基础。【方法】 对‘红地球’葡萄花芽分化过程中4个发育阶段:S1(未分化期)、S2(花原始体发育期)、S3(花序主轴发育期)和S4(花序二级轴发育期)的芽进行形态学观察和植物激素测定,并进行转录组测序分析及验证。【结果】 ‘红地球’葡萄花芽分化过程中共发现13 729个差异基因,其中S1-S2、S2-S3、S3-S4和S1-S4分别有4 158、2 050、3 425和7 652个差异基因。在S1-S4差异基因的富集调控网络中发现差异基因在激素介导的信号通路、脱落酸代谢过程、对酸性化学物质的反应和植物细胞壁组织或生物发生等通路富集。在激素介导的信号通路中发现大量与生长素、赤霉素和脱落酸等相关基因,测定表明,生长素在S2时期含量最高,而在S3和S4时期含量最低;赤霉素含量在花芽分化过程中不断降低,在S4时期为S1时期的80%;脱落酸含量在S1和S4时期较高,而在S2时期最低。此外,S1-S4差异基因来自转录因子家族(MYB、ERF、bHLH和MADS-box等),表明这些转录因子家族基因参与了‘红地球’葡萄花芽分化。对差异表达的13个MADS-box家族基因进一步分析表明,MADS8、AGL65、AGL15、AGL12和MADS2在花芽分化进程中表达上调,而AGL30、LeMADS、FBP24、AGL14和MADS3表达下调。对这些MADS-box基因进行qRT-PCR验证,基因表达趋势与转录组数据一致且相关系数较高,表明数据分析结果可靠。【结论】 ‘红地球’葡萄花芽分化是一个复杂的生物过程,其中,植物激素介导的信号通路以及MADS-box家族基因在花芽分化中发挥重要作用。研究结果提供了一个关于转录因子、基因和激素的信息,有助于揭开这一复杂的发育过程,并为‘红地球’葡萄花芽分化综合模型的建立提供理论基础。
刘鑫,张亚红,袁苗,党仕卓,周娟. ‘红地球’葡萄花芽分化过程中的转录组分析[J]. 中国农业科学, 2022, 55(20): 4020-4035.
LIU Xin,ZHANG YaHong,YUAN Miao,DANG ShiZhuo,ZHOU Juan. Transcriptome Analysis During Flower Bud Differentiation of Red Globe Grape[J]. Scientia Agricultura Sinica, 2022, 55(20): 4020-4035.
表1
实时荧光定量PCR引物"
基因名称 Gene name | 基因号 Gene ID | 正向引物 Forward primer (5′-3′) | 反向引物 Reverse primer (5′-3′) |
---|---|---|---|
MADS8 | VIT_14s0068g01800 | AGCGACGAAGCGGAATGATGAAG | GGCGGAGAAGATGATCAGAGCAAG |
AGL65 | VIT_17s0000g06340 | GGGTAGGGTGAGGAGGAATGGATC | ATGGACGGTGGGCTTTGTGAATG |
AGL30 | VIT_04s0008g01980 | TTCTCAGCGGAAGCAAGGCATTC | GGCGAGAACATGAGGAGCAAGAC |
AGL21 | VIT_00s0211g00180 | AGAATCTAGAGCGAGCCGTGAGG | GCCTTCTTCAACAGTCCCTTCCTTC |
AGL21 | VIT_18s0001g07900 | CAACGGGATGGGTTTGGGATGAG | ACGAGACAAGGGAGACGAGTATGG |
AGL15 | VIT_13s0158g00100 | CCACTCATCCACCACTTCCATTCC | GTGCCTTGATGCTGACCTACCTAC |
LeMADS | VIT_03s0017g00360 | TCTCTGTGATGCTGATGTTGCTCTC | GGTCCCCGGAATTTCACTGAGTATG |
FBP24 | VIT_02s0025g02350 | CAGGCAACCACAACCAAATCAAACC | ACTGAGGAGGGATGGGCACAAG |
AGL14 | VIT_15s0048g01240 | CAACTGGGTTTCTGGAGATGGTGAG | AAAGGTGACTTGCCGACTTGTGG |
AGL12 | VIT_18s0041g02140 | GCGTATTGAGAACCCAGTACACAGG | TCAGCATCACACAACACAGAGAGC |
MADS3 | VIT_16s0022g02330 | AGAGAACAAGATCAACCGCCAAGTC | TCAGCATCGCAGAGCACAGAAAG |
MADS2 | VIT_14s0083g01050 | TTCCACACTGCCTATGTTGAACCTG | GGACGGTGCGATTAGAGCCAAC |
MADS2 | VIT_17s0000g05000 | TTCCACACTGCCTATGTTGAACCTG | GGACGGTGCGATTAGAGCCAAC |
Actin1 | XP_008654957.1 | TCCTTGCCTTGCGTCATCTAT | CACCAATCACTCTCCTGCTACAA |
表3
花芽分化中差异MADS-box基因"
基因名称 Gene name | 基因号 Gene ID | 转录因子 TF id | 蛋白质长度 Protein length (aa) | 家族 Family |
---|---|---|---|---|
MADS8 | VIT_14s0068g01800 | GSVIVT01001437001 | 249 | MIKC |
AGL65 | VIT_17s0000g06340 | GSVIVT01003864001 | 225 | MIKC |
AGL30 | VIT_04s0008g01980 | GSVIVT01008139001 | 247 | MIKC |
AGL21 | VIT_00s0211g00180 | GSVIVT01009219001 | 241 | MIKC |
AGL21 | VIT_18s0001g07900 | GSVIVT01015641001 | 218 | MIKC |
AGL15 | VIT_13s0158g00100 | GSVIVT01018450001 | 250 | MIKC |
LeMADS | VIT_03s0017g00360 | GSVIVT01019630001 | 597 | MIKC |
FBP24 | VIT_02s0025g02350 | GSVIVT01025916001 | 199 | MIKC |
AGL14 | VIT_15s0048g01240 | GSVIVT01027579001 | 219 | MIKC |
AGL12 | VIT_18s0041g02140 | GSVIVT01036551001 | 244 | MIKC |
MADS3 | VIT_16s0022g02330 | GSVIVT01007989001 | 87 | Mδ |
MADS2 | VIT_14s0083g01050 | GSVIVT01033067001 | 376 | Mα |
MADS2 | VIT_17s0000g05000 | GSVIVT01035477001 | 184 | Mδ |
表2
质控数据统计表"
样本 Sample | 纯净数据 Clean reads | Q30含量 Q30 (%) | GC含量 GC content (%) | 总读取数 Total reads | 映射总数 Total mapped |
---|---|---|---|---|---|
S1-1 | 56701744 | 93.50 | 46.08 | 56701744 | 51584717 (90.98%) |
S1-2 | 57000078 | 93.57 | 46.30 | 57000078 | 52047737 (91.31%) |
S1-3 | 53106034 | 93.75 | 46.23 | 53106034 | 48593610 (91.5%) |
S2-1 | 57074664 | 93.28 | 45.85 | 57074664 | 52283600 (91.61%) |
S2-2 | 48571060 | 93.29 | 45.78 | 48571060 | 44806530 (92.25%) |
S2-3 | 52541122 | 93.72 | 45.81 | 52541122 | 48822966 (92.92%) |
S3-1 | 44482618 | 93.74 | 45.55 | 44482618 | 41222350 (92.67%) |
S3-2 | 44016334 | 93.83 | 45.42 | 44016334 | 40718241 (92.51%) |
S3-3 | 43775084 | 93.97 | 45.94 | 43775084 | 40797167 (93.2%) |
S4-1 | 43004638 | 93.77 | 46.42 | 43004638 | 33306442 (77.45%) |
S4-2 | 48834670 | 93.72 | 45.92 | 48834670 | 45022453 (92.19%) |
S4-3 | 51647760 | 93.52 | 46.39 | 51647760 | 46614037 (90.25%) |
[51] |
VINING K J, ROMANEL E, JONES R C, KLOCKO A, ALVES- FERREIRA M, HEFER C A, AMARASINGHE V, DHARMAWARDHANA P, NAITHANI S, RANIK M, WESLEY- SMITH J, SOLOMON L, JAISWAL P, MYBURG A A, STRAUSS S H. The floral transcriptome of Eucalyptus grandis. The New Phytologist, 2015, 206(4): 1406-1422. doi: 10.1111/nph.13077.
doi: 10.1111/nph.13077 |
[52] |
SHU J, CHEN C, KOHALMI S E, CUI Y H. Evidence that AGL17 is a significant downstream target of CLF in floral transition control. Plant Signaling & Behavior, 2020, 15(7): 1766851. doi: 10.1080/15592324.2020.1766851.
doi: 10.1080/ 15592324.2020.1766851 |
[53] |
YI X G, YU X Q, CHEN J, ZHANG M, LIU S W, ZHU H, LI M, DUAN Y F, CHEN L, WU L, ZHU S, SUN Z S, LIU X H, WANG X R. The genome of Chinese flowering cherry (Cerasus serrulata) provides new insights into Cerasus species. Horticulture Research, 2020, 7(1): 165. doi: 10.1038/s41438-020-00382-1.
doi: 10.1038/s41438-020-00382-1 |
[54] |
ZHANG G Q, LIU K W, LI Z, LOHAUS R, HSIAO Y Y, NIU S C, WANG J Y, LIN Y C, XU Q, CHEN L J, YOSHIDA K, FUJIWARA S, WANG Z W, ZHANG Y Q, MITSUDA N, WANG M, LIU G H, PECORARO L, HUANG H X, XIAO X J, et al. The Apostasia genome and the evolution of orchids. Nature, 2017, 549(7672): 379-383. doi: 10.1038/nature23897.
doi: 10.1038/nature23897 |
[1] | 郑婷, 张克坤, 张培安, 贾海锋, 房经贵. 葡萄营养生长与生殖生长间的转变研究进展. 植物生理学报, 2020, 56(7): 1361-1372. |
ZHENG T, ZHANG K K, ZHANG P A, JIA H F, FANG J G. Recent progress in the study of transition between vegetative and reproductive growth in grapevine. Plant Physiology Journal, 2020, 56(7): 1361-1372. (in Chinese) | |
[2] |
CRANE O, HALALY T, PANG X Q, LAVEE S, PERL A, VANKOVA R, OR E. Cytokinin-induced VvTFL1A expression may be involved in the control of grapevine fruitfulness. Planta, 2012, 235(1): 181-192. doi: 10.1007/s00425-011-1497-6.
doi: 10.1007/s00425-011-1497-6 pmid: 21863250 |
[3] |
BLÜMEL M, DALLY N, JUNG C. Flowering time regulation in crops—what did we learn from Arabidopsis? Current Opinion in Biotechnology, 2015, 32: 121-129. doi: 10.1016/j.copbio.2014.11.023.
doi: S0958-1669(14)00211-0 pmid: 25553537 |
[4] | 刘丹, 孙欣, 慕茜, 吴伟民, 章镇, 房经贵. 葡萄花芽发育相关基因在不同节位芽中的表达分析. 中国农业科学, 2015, 48(10): 2007-2016. |
LIU D, SUN X, MU Q, WU W M, ZHANG Z, FANG J G. Analysis of expression levels of floral genes in the buds on different branch nodes of grapevine. Scientia Agricultura Sinica, 2015, 48(10): 2007-2016. (in Chinese) | |
[5] |
ANDRÉS F, COUPLAND G. The genetic basis of flowering responses to seasonal cues. Nature Reviews Genetics, 2012, 13(9): 627-639. doi: 10.1038/nrg3291.
doi: 10.1038/nrg3291 pmid: 22898651 |
[6] |
FERRÁNDIZ C, GU Q, MARTIENSSEN R, YANOFSKY M F. Redundant regulation of meristem identity and plant architecture by FRUITFULL, APETALA1 and CAULIFLOWER. Neuropathology, 2000, 127(4): 725-734. doi: 10.1242/dev.127.4.725.
doi: 10.1242/dev.127.4.725 |
[7] |
FORNARA F, DE MONTAIGU A, COUPLAND G. SnapShot: Control of flowering in Arabidopsis. Cell, 2010, 141(3): 550, 550. e1-550, 550.e2. doi: 10.1016/j.cell.2010.04.024.
doi: 10.1016/j.cell.2010.04.024 |
[8] |
THEIßEN G, MELZER R, RÜMPLER F. MADS-domain transcription factors and the floral quartet model of flower development: linking plant development and evolution. Development, 2016, 143(18): 3259-3271. doi: 10.1242/dev.134080.
doi: 10.1242/dev.134080 pmid: 27624831 |
[9] |
邹礼平, 潘铖, 王梦馨, 崔林, 韩宝瑜. 激素调控植物成花机理研究进展. 遗传, 2020, 42(8): 739-751. doi: 10.16288/j.yczz.20-014.
doi: 10.16288/j.yczz.20-014 |
ZOU L P, PAN C, WANG M X, CUI L, HAN B Y. Progress on the mechanism of hormones regulating plant flower formation. Journal of Distance Education, 2020, 42(8): 739-751. doi: 10.16288/j.yczz.20-014. (in Chinese)
doi: 10.16288/j.yczz.20-014 |
|
[10] |
YAMAGUCHI N, WU M F, WINTER C M, WAGNER D. LEAFY and polar auxin transport coordinately regulate Arabidopsis flower development. Plants, 2014, 3(2): 251-265. doi: 10.3390/plants3020251.
doi: 10.3390/plants3020251 |
[11] | 林玲, 黄羽, 谢太理, 张瑛, 周咏梅, 文仁德. 3个葡萄品种花芽分化过程中内源激素含量变化初报. 南方农业学报, 2012, 43(6): 806-809. |
LIN L, HUANG Y, XIE T L, ZHANG Y, ZHOU Y M, WEN R D. Changes of endogenous hormone content during flower bud differentiation in three grape varieties. Journal of Southern Agriculture, 2012, 43(6): 806-809. (in Chinese) | |
[12] | 王海波, 赵君全, 王孝娣, 史祥宾, 王宝亮, 郑晓翠, 刘凤之. 新梢内源激素变化对设施葡萄花芽孕育的影响. 中国农业科学, 2014, 47(23): 4695-4705. |
WANG H B, ZHAO J Q, WANG X D, SHI X B, WANG B L, ZHENG X C, LIU F Z. The influence of changes of endogenous hormones in shoot on the grapes flower bud differentiation in greenhouse. Scientia Agricultura Sinica, 2014, 47(23): 4695-4705. (in Chinese) | |
[13] |
BINENBAUM J, WEINSTAIN R, SHANI E. Gibberellin localization and transport in plants. Trends in Plant Science, 2018, 23(5): 410-421. doi: 10.1016/j.tplants.2018.02.005.
doi: S1360-1385(18)30024-4 pmid: 29530380 |
[14] |
JING D, CHEN W, HU R, ZHANG Y, XIA Y, WANG S, HE Q, GUO Q, LIANG G. An integrative analysis of transcriptome, proteome and hormones reveals key differentially expressed genes and metabolic pathways involved in flower development in loquat. International Journal of Molecular Sciences, 2020, 21(14): E5107. doi: 10.3390/ijms21145107.
doi: 10.3390/ijms21145107 |
[15] |
DÍAZ-RIQUELME J, MARTÍNEZ-ZAPATER J M, CARMONA M J. Transcriptional analysis of tendril and inflorescence development in grapevine (Vitis vinifera L.). PLoS ONE, 2014, 9(3): e92339. doi: 10.1371/journal.pone.0092339.
doi: 10.1371/journal.pone.0092339 |
[16] |
CHEN X L, QI S Y, ZHANG D, LI Y M, AN N, ZHAO C P, ZHAO J, SHAH K, HAN M Y, XING L B. Comparative RNA-sequencing- based transcriptome profiling of buds from profusely flowering ‘Qinguan’ and weakly flowering ‘Nagafu no. 2’ apple varieties reveals novel insights into the regulatory mechanisms underlying floral induction. BMC Plant Biology, 2018, 18(1): 370. doi: 10.1186/s12870-018-1555-3.
doi: 10.1186/ s12870-018-1555-3 |
[17] |
CONTI L. Hormonal control of the floral transition: can one catch them all? Developmental Biology, 2017, 430(2): 288-301. doi: 10.1016/j.ydbio.2017.03.024.
doi: S0012-1606(16)30870-3 pmid: 28351648 |
[18] | 吴雅琴, 常瑞丰, 李春敏, 赵胜建, 郭紫娟, 张新忠. 葡萄实生树开花节位与内源激素变化的关系. 园艺学报, 2006, 33(6): 1313-1316. |
WU Y Q, CHANG R F, LI C M, ZHAO S J, GUO Z J, ZHANG X Z. Relationship between the flower nodes and changes of endogenous hormones in grape seedlings. Acta Horticulturae Sinica, 2006, 33(6): 1313-1316. (in Chinese) | |
[19] |
CUI Z, ZHOU B, ZHANG Z, HU Z. Abscisic acid promotes flowering and enhances LcAP1 expression in Litchi chinensis Sonn. South African Journal of Botany, 2013, 88: 76-79.
doi: 10.1016/j.sajb.2013.05.008 |
[20] | 赵君全, 王海波, 王孝娣, 王宝亮, 郑晓翠, 史祥宾, 刘凤之. 设施栽培条件下‘夏黑’葡萄花芽分化规律及环境影响因子研究. 果树学报, 2014, 31(5): 842-847, 7. |
ZHAO J Q, WANG H B, WANG X D, WANG B L, ZHENG X C, SHI X B, LIU F Z. Flower bud differentiation of ‘Summer Black’ grape in greenhouse and related environmental influence factors. Journal of Fruit Science, 2014, 31(05): 842-847, 7. (in Chinese) | |
[21] | 吴文浩, 曹凡, 刘壮壮, 彭方仁, 梁有旺, 谭鹏鹏. NAA对薄壳山核桃扦插生根过程中内源激素含量变化的影响. 南京林业大学学报(自然科学版), 2016, 40(5): 191-196. |
WU W H, CAO F, LIU Z Z, PENG F R, LIANG Y W, TAN P P. Effects of NAA treatment on the endogenous hormone changes in cuttings of Carya illinoinensis during rooting. Journal of Nanjing Forestry University (Natural Science Edition), 2016, 40(5): 191-196. (in Chinese) | |
[22] | 刘帅, 徐伟荣, 张亚红, 刘鑫, 郭松涛, 胡莉. 基于转录组研究补光对设施‘红地球’葡萄萌芽的影响. 果树学报, 2021, 38(3): 305-317. |
LIU S, XU W R, ZHANG Y H, LIU X, GUO S T, HU L. Effects of supplementary light on the bud burst of ‘Red Globe’ grape under protected cultivation based on transcriptome sequencing. Journal of Fruit Science, 2021, 38(3): 305-317. (in Chinese) | |
[23] | 王海波, 王孝娣, 赵君全, 史祥宾, 王宝亮, 郑晓翠, 刘凤之. 设施促早栽培下耐弱光能力不同的葡萄品种冬芽的花芽分化. 园艺学报, 2016, 43(4): 633-642. |
WANG H B, WANG X D, ZHAO J Q, SHI X B, WANG B L, ZHENG X C, LIU F Z. Studies on the flower bud differentiation of grape cultivars with different tolerant ability of low light in greenhouse. Acta Horticulturae Sinica, 2016, 43(4): 633-642. (in Chinese) | |
[24] |
武春昊, 王强, 卢明艳, 闫兴凯, 胡明玥, 张茂君. 梨花序形成机制研究进展. 植物遗传资源学报, 2021, 22(5): 1200-1208. doi: 10.13430/j.cnki.jpgr.20210324001.
doi: 10.13430/j.cnki.jpgr.20210324001 |
WU C H, WANG Q, LU M Y, YAN X K, HU M Y, ZHANG M J. A review of inflorescence formation mechanism of pear. Journal of Plant Genetic Resources, 2021, 22(5): 1200-1208. doi: 10.13430/j.cnki.jpgr.20210324001. (in Chinese)
doi: 10.13430/j.cnki.jpgr.20210324001 |
|
[25] | 程少禹, 宣铃娟, 董彬, 顾翠花, 申亚梅, 张明如, 戴梦怡, 王卓为, 章颖佳, 陆丹迎. ‘红元宝’紫玉兰两次花芽分化差异代谢通路及关键调控基因筛选. 园艺学报, 2020, 47(8): 1490-1504. |
CHENG S Y, XUAN L J, DONG B, GU C H, SHEN Y M, ZHANG M R, DAI M Y, WANG Z W, ZHANG Y J, LU D Y. Identification of differential metabolic pathways and key regulatory genes in the two flower bud differentiation processes of Magnolia liliiflora. Acta Horticulturae Sinica, 2020, 47(8): 1490-1504. (in Chinese) | |
[26] | 李建军, 连笑雅, 王兰. 忍冬花蕾延迟开花与内源激素调控研究. 园艺学报, 2019, 46(7): 1399-1408. |
LI J J, LIAN X Y, WANG L. Study on the regulation mechanism of endogenous hormones in delayed flowering of Lonicera japonica. Acta Horticulturae Sinica, 2019, 46(7): 1399-1408. (in Chinese) | |
[27] |
李晶晶, 潘学军, 张文娥. 铁核桃叶片矿质元素和内源激素含量与雌花芽分化的关系. 西北植物学报, 2016, 36(5): 971-978. doi: 10.7606/j.issn.1000-4025.2016.05.0971.
doi: 10.7606/j.issn.1000-4025.2016.05.0971 |
LI J J, PAN X J, ZHANG W E. Relationship between mineral nutritions, hormone content and flower bud differentiation of Juglans sigillata. Acta Botanica Boreali-Occidentalia Sinica, 2016, 36(5): 971-978. doi: 10.7606/j.issn.1000-4025.2016.05.0971. (in Chinese)
doi: 10.7606/j.issn.1000-4025.2016.05.0971 |
|
[28] |
阿布都卡尤木·阿依麦提, 樊丁宇, 岳婉婉, 赵婧彤, 郝庆. 枣花芽分化过程中营养物质和内源激素含量及抗氧化酶活性变化研究. 西北植物学报, 2021, 41(1): 142-150. doi: 10.7606/j.issn.1000-4025.2021.01.0142.
doi: 10.7606/j.issn.1000-4025. 2021.01.0142 |
ABUDOUKAYOUMU A, FAN D Y, YUE W W, ZHAO J T, HAO Q. Changes of nutrients, endogenous hormones and antioxidant enzymes activities during flower bud differentiation process of Ziziphus jujuba. Acta Botanica Boreali-Occidentalia Sinica, 2021, 41(1): 142-150. doi: 10.7606/j.issn.1000-4025.2021.01.0142. (in Chinese)
doi: 10.7606/j.issn.1000-4025. 2021.01.0142 |
|
[29] |
XING L B, LI Y M, QI S Y, ZHANG C G, MA W C, ZUO X Y, LIANG J Y, GAO C, JIA P, SHAH K, ZHANG D, AN N, ZHAO C P, HAN M Y, ZHAO J. Comparative RNA-sequencing and DNA methylation analyses of apple (Malus domestica borkh.) buds with diverse flowering capabilities reveal novel insights into the regulatory mechanisms of flower bud formation. Plant & Cell Physiology, 2019, 60(8): 1702-1721. doi: 10.1093/pcp/pcz080.
doi: 10.1093/pcp/pcz080 |
[30] |
LIU Z N, MIAO L M, HUO R X, SONG X Y, JOHNSON C, KONG L J, SUNDARESAN V, YU X L. ARF2-ARF4 and ARF5 are essential for female and male gametophyte development in Arabidopsis. Plant and Cell Physiology, 2017, 59(1): 179-189. doi: 10.1093/pcp/pcx174.
doi: 10.1093/pcp/pcx174 |
[31] |
RICHTER R, BEHRINGER C, ZOURELIDOU M, SCHWECHHEIMER C. Convergence of auxin and gibberellin signaling on the regulation of the GATA transcription factors GNC and GNL in Arabidopsis thaliana. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(32): 13192-13197. doi: 10.1073/pnas.1304250110.
doi: 10.1073/pnas.1304250110 |
[32] | 郭彩华, 牛建新, 全绍文, 刘金明, 亢超, 张中荣. 核桃ARF基因家族的鉴定及生物信息学分析. 分子植物育种, 2021: 1-19. |
GUO C H, NIU J X, QUAN S W, LIU J M, KANG C, ZHANG Z R. Identification and bioinformatics analysis of ARF gene family in walnut (Juglans regia L.). Molecular Plant Breeding, 2021: 1-19. (in Chinese) | |
[33] |
WU M F, YAMAGUCHI N, XIAO J, BARGMANN B, ESTELLE M, SANG Y, WAGNER D. Auxin-regulated chromatin switch directs acquisition of flower primordium founder fate. MicrobiologyOpen, 2015, 4: e09269. doi: 10.7554/elife.09269.
doi: 10.7554/elife.09269 |
[34] |
WILKIE J D, SEDGLEY M, OLESEN T. Regulation of floral initiation in horticultural trees. Journal of Experimental Botany, 2008, 59(12): 3215-3228. doi: 10.1093/jxb/ern188.
doi: 10.1093/jxb/ern188 pmid: 18653697 |
[35] | ZHAO T, CHENG L, CHEN C L, WU Y X, WANG H, ZHANG J Q, ZHU Y F, WANG Y X. Microstructural observation on pistil abortion of ‘Li Guang’ apricot and transcriptome reveal the mechanism of endogenous hormones involved in pistil abortion. Scientia Horticulturae, 2022: 293. |
[36] | 安爽, 高玉迪, 麦迪努尔·玉苏普, 潘益娜, 邵婉, 宗宇, 陈文荣, 杨莉, 郭卫东, 李永强. 外源脱落酸抑制蓝莓早花及相关基因表达特性研究. 果树学报, 2021, 38(3): 325-334. |
AN S, GAO Y D, MAIDIERNU·Y, PAN Y N, SHAO W, ZONG Y, CHEN W R, YANG L, GUO W D, LI Y Q. Research on application exogenous abscisic acid in inhibiting early flowering and associated genes expression characteristics in blueberry. Journal of Fruit Science, 2021, 38(3): 325-334. (in Chinese) | |
[37] |
FUJITA Y, NAKASHIMA K, YOSHIDA T, KATAGIRI T, KIDOKORO S, KANAMORI N, UMEZAWA T, FUJITA M, MARUYAMA K, ISHIYAMA K, KOBAYASHI M, NAKASONE S, YAMADA K, ITO T, SHINOZAKI K, YAMAGUCHI-SHINOZAKI K. Three SnRK2 protein kinases are the main positive regulators of abscisic acid signaling in response to water stress in Arabidopsis. Plant and Cell Physiology, 2009, 50(12): 2123-2132. doi: 10.1093/pcp/pcp147.
doi: 10.1093/ pcp/pcp147 |
[38] |
BAO S J, HUA C M, SHEN L S, YU H. New insights into gibberellin signaling in regulating flowering in Arabidopsis. Journal of Integrative Plant Biology, 2020, 62(1): 118-131. doi: 10.1111/jipb.12892.
doi: 10.1111/jipb. 12892 |
[39] |
SHU K, CHEN Q, WU Y R, LIU R J, ZHANG H W, WANG S F, TANG S Y, YANG W Y, XIE Q. Abscisic acid-insensitive 4 negatively regulates flowering through directly promoting Arabidopsis FLOWERING LOCUS C transcription. Journal of Experimental Botany, 2015, 67(1): 195-205. doi: 10.1093/jxb/erv459.
doi: 10.1093/jxb/erv459 |
[40] |
ACHARD P, HERR A, BAULCOMBE D C, HARBERD N P. Modulation of floral development by a gibberellin-regulated microRNA. Development, 2004, 131(14): 3357-3365. doi: 10.1242/dev.01206.
doi: 10.1242/dev.01206 pmid: 15226253 |
[41] |
SCHILLING S, PAN S R, KENNEDY A, MELZER R. MADS-box genes and crop domestication: the jack of all traits. Journal of Experimental Botany, 2018, 69(7): 1447-1469. doi: 10.1093/jxb/erx479.
doi: 10.1093/jxb/erx479 pmid: 29474735 |
[42] |
DENAY G, CHAHTANE H, TICHTINSKY G, PARCY F. A flower is born: An update on Arabidopsis floral meristem formation. Current Opinion in Plant Biology, 2017, 35: 15-22. doi: 10.1016/j.pbi.2016.09.003.
doi: 10.1016/j.pbi.2016. 09.003 |
[43] | 戚晓利, 卢孟柱. 拟南芥APETALA1基因在花发育中的网络调控及其生物学功能. 中国农学通报, 2011, 27(8): 103-107. |
QI X L, LU M Z. Regulation network and biological roles of APETALA1 of Arabidopsis thaliana in flower development. Chinese Agricultural Science Bulletin, 2011, 27(8): 103-107. (in Chinese) | |
[44] |
LIU C, CHEN H, ER H L, SOO H M, KUMAR P P, HAN J H, LIOU Y C, YU H. Direct interaction of AGL24 and SOC1 integrates flowering signals in Arabidopsis. Development, 2008, 135(8): 1481-1491. doi: 10.1242/dev.020255.
doi: 10.1242/dev.020255 |
[45] |
GREGIS V, SESSA A, COLOMBO L, KATER M M. agl24, short vegetative phase, and apetala1 redundantly control agamous during early stages of flower development in Arabidopsis. The Plant Cell, 2006, 18(6): 1373-1382. doi: 10.1105/tpc.106.041798.
doi: 10.1105/tpc.106.041798 |
[46] |
ADAMCZYK B J, FERNANDEZ D E. MIKC MADS domain heterodimers are required for pollen maturation and tube growth in Arabidopsis. Plant Physiology, 2009, 149(4): 1713-1723. doi: 10.1104/pp.109.135806.
doi: 10. 1104/pp.109.135806 |
[47] | 张新昊, 沈红艳, 文滨滨, 李森, 许琛, 盖瑜, 姜珊, 李冬梅, 陈修德, 肖伟, 李玲, 付喜玲. 桃MADS-box家族PpCMB1基因调控花发育分子机制. 植物生理学报, 2021, 57(6): 1211-1217. |
ZHANG X H, SHEN H Y, WEN B B, LI S, XU C, GAI Y, JIANG S, LI D M, CHEN X D, XIAO W, LI L, FU X L. Molecular mechanism of PpCMB1 gene in peach MADS-box family regulating flower development. Plant Physiology Journal, 2021, 57(6): 1211-1217. (in Chinese) | |
[48] |
FERNANDEZ D E, WANG C T, ZHENG Y M, ADAMCZYK B J, SINGHAL R, HALL P K, PERRY S E. The mads-domain factors agamous-like15 and agamous-like18, along with short vegetative phase and agamous-like24, are necessary to block floral gene expression during the vegetative phase. Plant Physiology, 2014, 165(4): 1591-1603. doi: 10.1104/pp.114.242990.
doi: 10.1104/pp.114.242990 pmid: 24948837 |
[49] |
SMACZNIAK C, IMMINK R G, ANGENENT G C, KAUFMANN K. Developmental and evolutionary diversity of plant MADS-domain factors: insights from recent studies. Development, 2012, 139(17): 3081-3098. doi: 10.1242/dev.074674.
doi: 10.1242/dev.074674 pmid: 22872082 |
[50] |
VILLAR L, LIENQUEO I, LLANES A, ROJAS P, PEREZ J, CORREA F, SAGREDO B, MASCIARELLI O, LUNA V, ALMADA R. Comparative transcriptomic analysis reveals novel roles of transcription factors and hormones during the flowering induction and floral bud differentiation in sweet cherry trees (Prunus avium L. cv. Bing). PLoS ONE, 2020, 15(3): e0230110. doi: 10.1371/journal.pone.0230110.
doi: 10.1371/journal.pone. 0230110 |
[1] | 由玉婉,张雨,孙嘉毅,张蔚. ‘月月粉’月季NAC家族全基因组鉴定及皮刺发育相关成员的筛选[J]. 中国农业科学, 2022, 55(24): 4895-4911. |
[2] | 杜青,陈平,刘姗姗,罗凯,郑本川,杨欢,何舜,杨文钰,雍太文. 玉米-大豆间套作下田间小气候对大豆花形态建成进程的影响[J]. 中国农业科学, 2021, 54(13): 2746-2758. |
[3] | 龙琴,杜美霞,龙俊宏,何永睿,邹修平,陈善春. 转录因子CsWRKY61对柑橘溃疡病抗性的影响[J]. 中国农业科学, 2020, 53(8): 1556-1571. |
[4] | 郝树琳,陈宏伟,廖芳丽,李莉,刘昌燕,刘良军,万正煌,沙爱华. 基于盐胁迫转录组信息的蚕豆F-box基因家族分析[J]. 中国农业科学, 2020, 53(17): 3443-3454. |
[5] | 薛红丽,杨军军,汤沙,智慧,王蕊,贾冠清,乔治军,刁现民. 谷子穗顶端败育突变体sipaa1的表型分析和基因定位[J]. 中国农业科学, 2018, 51(9): 1627-1640. |
[6] | 刘宏祥,徐文娟,朱春红,陶志云,宋卫涛,章双杰,李慧芳. 鸭胚胎发育中后期胸肌发育阻滞的RNA-seq分析[J]. 中国农业科学, 2018, 51(22): 4373-4386. |
[7] | 王成花,孙诗晴,徐巨龙,赵小龙,薛超彬. 抗氟苯虫酰胺小菜蛾差异表达基因及其通路[J]. 中国农业科学, 2018, 51(11): 2106-2115. |
[8] | 严莉,王翠平,陈建伟,乔改霞,李健. 基于转录组信息的黑果枸杞MYB转录因子家族分析[J]. 中国农业科学, 2017, 50(20): 3991-4002. |
[9] | 李慧峰,贾厚振,董庆龙,冉 昆,王宏伟. ‘鲁星’桃中10个MADS-box基因克隆和表达分析[J]. 中国农业科学, 2016, 49(23): 4593-4605. |
[10] | 董庆龙, 冀志蕊, 迟福梅, 田义, 安秀红, 徐成楠, 周宗山. 苹果MADS-box转录因子的生物信息学及其在不同组织中的表达[J]. 中国农业科学, 2014, 47(6): 1151-1161. |
[11] | 刘清1, 童建华1, 史齐1, 彭克勤1, 王若仲1, 蔺万煌1, MohammedHumayunKabir1, 沈革志2, 萧浪涛1. 一个矮秆多分蘖水稻突变体的植物激素动态特性分析[J]. 中国农业科学, 2014, 47(13): 2519-2528. |
[12] | 魏利斌, 苗红梅, 张海洋. 芝麻发育转录组分析[J]. 中国农业科学, 2012, 45(7): 1246-1256. |
[13] | 李洪有, 王婵, 李丽林, 王永勤, 赵瑞. 洋葱花器官B类MADS-box基因AcPI的克隆及表达分析[J]. 中国农业科学, 2012, 45(23): 4759-4769. |
[14] | 张黎, 牛向丽, 张惠莹, 刘永胜. 水稻木葡聚糖内糖基转移酶基因OsXTH11过表达的作用分析[J]. 中国农业科学, 2012, 45(16): 3231-3239. |
[15] | 孙霞, 王秀峰, 郑成淑, 邢世岩, 束怀瑞. 菊花节律钟输出基因CmGI(GIGANTEA)的cDNA全长克隆、序列信息及定量表达分析[J]. 中国农业科学, 2012, 45(13): 2690-2703. |
|