中国农业科学 ›› 2023, Vol. 56 ›› Issue (1): 193-202.doi: 10.3864/j.issn.0578-1752.2023.01.015
• 研究简报 • 上一篇
莫文静(),朱嘉伟(
),何新华,余海霞,江海玲,覃柳菲,张艺粒,李雨泽,罗聪(
)
收稿日期:
2022-03-02
接受日期:
2022-05-12
出版日期:
2023-01-01
发布日期:
2023-01-17
通讯作者:
罗聪
作者简介:
莫文静,E-mail:基金资助:
MO WenJing(),ZHU JiaWei(
),HE XinHua,YU HaiXia,JIANG HaiLing,QIN LiuFei,ZHANG YiLi,LI YuZe,LUO Cong(
)
Received:
2022-03-02
Accepted:
2022-05-12
Online:
2023-01-01
Published:
2023-01-17
Contact:
Cong LUO
摘要:
【目的】锌指蛋白(zinc finger protein,ZFP)在植物非生物胁迫应答中起重要的作用,研究两个锌指蛋白基因MiZAT10A和MiZAT10B转入拟南芥对盐、干旱、重金属以及外源激素等非生物胁迫的应答,为抗逆育种提供理论依据。【方法】利用在线软件PLACE和MEME分别对芒果MiZAT10A和MiZAT10B进行启动子顺式作用元件以及motif预测和分析,并利用TBtools软件和‘四季蜜芒’基因注释文件(GFF文件,未公开)绘制染色体定位图;通过实时荧光定量分析MiZAT10A和MiZAT10B的组织表达模式;构建芒果MiZAT10A和MiZAT10B超量表达载体,采用农杆菌花序浸染法转化模式植物拟南芥,观察并记录转基因拟南芥开花表型以及在盐、干旱、重金属以及外源激素脱落酸和赤霉素处理下的根生长情况。【结果】启动子顺式元件分析显示,两个基因的启动子区域都有许多光响应元件、激素响应元件和非生物胁迫响应元件。表达模式分析显示,MiZAT10A与MiZAT10B在芽和花中表达水平最高。MiZAT10A和MiZAT10B分别获得了9株和14株转基因拟南芥,开花表型分析显示,MiZAT10A和MiZAT10B转基因拟南芥提早开花。在盐胁迫、干旱胁迫和重金属胁迫以及GA3和ABA激素处理下,两个超量表达转基因拟南芥的根长显著长于WT。【结论】超量表达的MiZAT10A与MiZAT10B可使转基因拟南芥提前开花并提高其对盐、干旱、重金属及外源激素GA3和ABA的抗性。
莫文静,朱嘉伟,何新华,余海霞,江海玲,覃柳菲,张艺粒,李雨泽,罗聪. 芒果MiZAT10A和MiZAT10B功能分析[J]. 中国农业科学, 2023, 56(1): 193-202.
MO WenJing,ZHU JiaWei,HE XinHua,YU HaiXia,JIANG HaiLing,QIN LiuFei,ZHANG YiLi,LI YuZe,LUO Cong. Functional Analysis of MiZAT10A and MiZAT10B Genes in Mango[J]. Scientia Agricultura Sinica, 2023, 56(1): 193-202.
表1
引物序列"
引物 Primer | 序列 Sequences (5′-3′) | 用途 Usage |
---|---|---|
AtActin2-F | GCAGAGCGGGAAATTGTAAG | 半定量Semi-quantitative |
AtActin2-R | GTACAGATCCTTCCTGATATCC | 半定量Semi-quantitative |
MiActin-F | CCGAGACATGAAGGAGAAGC | 实时荧光定量qRT-PCR |
MiActin-R | GTGGTCTCATGGATACCAGCA | 实时荧光定量qRT-PCR |
MiZAT10A-F | GCTAAGCGCAAAAGGTCGAA | 实时荧光定量qRT-PCR |
MiZAT10A-R | GGTCGTAGCAGCTGATGGAG | 实时荧光定量qRT-PCR |
MiZAT10B-F | GCGТССТСАCAACCATCCAA | 实时荧光定量qRT-PCR |
MiZAT10B-R | GGAGGTTGACTGCTCGTCG | 实时荧光定量qRT-PCR |
[1] |
MAHAJAN S, TUTEJA N. Cold, salinity and drought stresses: An overview. Archives of Biochemistry and Biophysics, 2005, 444(2): 139-158. doi: 10.1016/j.abb.2005.10.018.
doi: 10.1016/j.abb.2005.10.018 pmid: 16309626 |
[2] | 黄骥, 王建飞, 张红生. 植物C2H2型锌指蛋白的结构与功能. 遗传, 2004, 26(3): 414-418. |
HUANG J, WANG J F, ZHANG H S. Structure and function of plant C2H2zinc finger protein. Hereditas, 2004, 26(3): 414-418. (in Chinese) | |
[3] |
IUCHI S. Three classes of C2H2zinc finger proteins. Cellular and Molecular Life Sciences, 2001, 58(4): 625-635. doi: 10.1007/PL00000885.
doi: 10.1007/PL00000885 |
[4] |
KIEŁBOWICZ-MATUK A. Involvement of plant C2H2-type zinc finger transcription factors in stress responses. Plant Science, 2012, 185/186: 78-85. doi: 10.1016/j.plantsci.2011.11.015.
doi: 10.1016/j.plantsci.2011.11.015 |
[5] | 张佳, 刘俊芳, 赵婷婷, 任婧, 许向阳. 植物C2H2型锌指蛋白研究进展. 分子植物育种, 2018(2): 427-433. |
ZHANG J, LIU J F, ZHAO T T, REN J, XU X Y. Research progress of C2H2 zinc finger protein in plant. Molecular Plant Breeding, 2018(2): 427-433. (in Chinese) | |
[6] |
ENGLBRECHT C C, SCHOOF H, BÖHM S. Conservation, diversification and expansion of C2H2 zinc finger proteins in the Arabidopsis thaliana genome. BMC Genomics, 2004, 5(1): 39. doi: 10.1186/1471-2164-5-39.
doi: 10.1186/1471-2164-5-39 |
[7] |
AGARWAL P, ARORA R, RAY S, SINGH A K, SINGH V P, TAKATSUJI H, KAPOOR S, TYAGI A K. Genome-wide identification of C2H2 zinc-finger gene family in rice and their phylogeny and expression analysis. Plant Molecular Biology, 2007, 65(4): 467-485. doi: 10.1007/s11103-007-9199-y.
doi: 10.1007/s11103-007-9199-y |
[8] |
WEI K F, PAN S, LI Y. Functional characterization of maize C2H2 zinc-finger gene family. Plant Molecular Biology Reporter, 2016, 34(4): 761-776. doi: 10.1007/s11105-015-0958-7.
doi: 10.1007/s11105-015-0958-7 |
[9] |
LAWRENCE S D, NOVAK N G. Comparative analysis of the genetic variability within the Q-type C2H2 zinc-finger transcription factors in the economically important cabbage, canola and Chinese cabbage genomes. Hereditas, 2018, 155(1): 29.
doi: 10.1186/s41065-018-0065-5 |
[10] |
CHEN Y, WANG G, PAN J, WEN H F, DU H, SUN J X, ZHANG K Y, LV D, HE H L, CAI R, PAN J S. Comprehensive genomic analysis and expression profiling of the C2H2 Zinc finger protein family under abiotic stresses in cucumber (Cucumis sativus L.). Genes, 2021, 11(2): 171. doi: 10.21203/rs.3.rs-215409/v1.
doi: 10.21203/rs.3.rs-215409/v1 |
[11] |
JIANG L, PAN L J. Identification and expression of C2H2 transcription factor genes in Carica papaya under abiotic and biotic stresses. Molecular Biology Reports, 2012, 39(6): 7105-7115. doi: 10.1007/s11033-012-1542-y.
doi: 10.1007/s11033-012-1542-y |
[12] |
ARREY-SALAS O, CARIS-MALDONADO J C, HERNÁNDEZ- ROJAS B, GONZALEZ E. Comprehensive genome-wide exploration of C2H2 zinc finger family in grapevine (Vitis vinifera L.): Insights into the roles in the pollen development regulation. Genes, 2021, 12(2): 302. doi: 10.3390/genes12020302.
doi: 10.3390/genes12020302 |
[13] |
CAI S Q, LASHBROOK C C. Stamen abscission zone transcriptome profiling reveals new candidates for abscission control: Enhanced retention of floral organs in transgenic plants overexpressing Arabidopsis zinc finger protein2. Plant Physiology, 2008, 146(3): 1305-1321. doi: 10.1104/pp.107.110908.
doi: 10.1104/pp.107.110908 |
[14] |
WANG L, BAI X D, ZHAO F F, LI R, HAN X. Manipulation of flowering time and branching by overexpression of the tomato transcription factor SlZFP2. Plant Biotechnology Journal, 2016, 14(12): 2310-2321. doi: 10.1111/pbi.12584.
doi: 10.1111/pbi.12584 |
[15] | 杨阔. 苹果C2H2型锌指蛋白MdZAT10调控叶片衰老和干旱胁迫的机理研究[D]. 泰安: 山东农业大学, 2021. |
YANG K. Molecular mechanism of C2H2-type zinc finger protein MdZAT10 regulating leaf senescence and drought stress in apple[D]. Taian: Shandong Agricultural University, 2021. (in Chinese) | |
[16] |
ZHANG A D, LIU D D, HUA C M, YAN A, LIU B H, WU M J, LIU Y H, HUANG L L, ALI I, GAN Y B. The Arabidopsis gene zinc finger protein 3 (ZFP3) is involved in salt stress and osmotic stress response. PLoS ONE, 2016, 11(12): e0168367. doi: 10.1371/journal.pone.0168367.
doi: 10.1371/journal.pone.0168367 |
[17] |
XIE Y J, MAO Y, LAI D W, ZHANG W, SHEN W B. H2 Enhances Arabidopsis salt tolerance by manipulating ZAT10/12-mediated antioxidant defence and controlling sodium exclusion. PLoS ONE, 2012, 7(11): e49800. doi: 10.1371/journal.pone.0049800.
doi: 10.1371/journal.pone.0049800 |
[18] | 杜娟. 枳低温响应基因ERF109和ZFP1转化柑橘及转基因植株鉴定[D]. 武汉: 华中农业大学, 2016. |
DU J. Citrus transformation of Poncirus trifoliata cold-responsive genes ERF109 and ZFP1 and analysis of transgenic plants[D]. Wuhan: Huazhong Agricultural University, 2016. (in Chinese) | |
[19] |
TIAN Z D, ZHANG Y, LIU J, XIE C H. Novel potato C2H2-type zinc finger protein gene, StZFP1, which responds to biotic and abiotic stress, plays a role in salt tolerance. Plant Biology, 2010, 12(5): 689-697. doi: 10.1111/j.1438-8677.2009.00276.x.
doi: 10.1111/j.1438-8677.2009.00276.x |
[20] |
LUO C, HE X H, HU Y, YU H X, OU S J, FANG Z B. Oligo-dT anchored cDNA-SCoT: A novel differential display method for analyzing differential gene expression in response to several stress treatments in mango (Mangifera indica L.). Gene, 2014, 548(2): 182-189. doi:10.1016/j.gene.2014.07.024.
doi: 10.1016/j.gene.2014.07.024 |
[21] |
余海霞, 罗聪, 樊琰, 张秀娟, 王逸涵, 黄方, 卢新喜, 何新华. 芒果MiZFP1和MiZFP2基因克隆与表达模式分析. 分子植物育种, 2019, 17(23): 7692-7699. doi: 10.13271/j.mpb.017.007692.
doi: 10.13271/j.mpb.017.007692 |
YU H X, LUO C, FAN Y, ZHANG X J, WANG Y H, HUANG F, LU X X, HE X H. Cloning and expression analysis of MiZFP1and MiZFP2genes in mango. Molecular Plant Breeding, 2019, 17 (23): 7692-7699. doi: 10.13271/j.mpb.017.007692. (in Chinese)
doi: 10.13271/j.mpb.017.007692 |
|
[22] |
LUO C, HE X H, CHEN H, HU Y, OU S J. Molecular cloning and expression analysis of four actin genes (MiACT) from mango. Biologia Plantarum, 2013, 57(2): 238-244.
doi: 10.1007/s10535-012-0278-9 |
[23] |
CLOUGH S J, BENT A F. Floral dip: A simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant Journal, 1998, 16(6): 735-743. doi: 10.1046/j.1365-313x.1998.00343.x.
doi: 10.1046/j.1365-313x.1998.00343.x |
[24] |
余海霞, 罗聪, 徐趁, 何新华. 一种简单高效提取高质量转基因拟南芥和烟草DNA的方法. 分子植物育种, 2016, 14(6): 1436-1440. doi: 10.13271/j.mpb.014.001436.
doi: 10.13271/j.mpb.014.001436 |
YU H X, LUO C, XU C, HE X H. A simple and efficient method for high quality DNA extraction from transgenic Arabidopsis and tobacco. Molecular Plant Breeding, 2016, 14(6): 1436-1440. doi: 10.13271/j.mpb.014.001436. (in Chinese)
doi: 10.13271/j.mpb.014.001436 |
|
[25] |
王翠, 兰海燕. 植物bHLH转录因子在非生物胁迫中的功能研究进展. 生命科学研究, 2016, 20(4): 358-364. doi: 10.16605/j.cnki.1007-7847.2016.04.013.
doi: 10.16605/j.cnki.1007-7847.2016.04.013 |
WANG C, LAN H Y. Advances in functional studies of plant bHLH transcription factors under abiotic stress. Life Science Research, 2016, 20(4): 358-364. doi: 10.16605/j.cnki.1007-7847. (in Chinese)
doi: 10.16605/j.cnki.1007-7847.2016.04.013 |
|
[26] |
LUO X, BAI X, ZHU D, LI Y, JI W, CAI H, WU J, LIU B H, ZHU Y M. GsZFP1, a new Cys2/His2-type zinc-finger protein, is a positive regulator of plant tolerance to cold and drought stress. Planta, 2012, 2012, 235(6): 1141-1155. doi: 10.1007/s00425-011-1563-0.
doi: 10.1007/s00425-011-1563-0 pmid: 22160567 |
[27] | 王雪, 王盛昊, 于冰. 转录因子和启动子互作分析技术及其在植物应答逆境胁迫中的研究进展. 中国农学通报, 2021, 37(33): 112-119. |
WANG X, WANG S H, YU B. Interaction analysis of transcription factors and promoters and its application in response of plants to stress. Chinese Agricultural Science Bulletin, 2021, 37(33): 112-119. (in Chinese) | |
[28] |
LIU Q G, WANG J C, XU X M, ZHANG H Z, LI C H. Genome-wide analysis of C2H2zinc-finger family transcription factors and their responses to abiotic stresses in Poplar (Populus trichocarpa). PLoS ONE, 2015, 10(8): e0134753. doi: 10.1371/journal.pone.0134753.
doi: 10.1371/journal.pone.0134753 |
[29] |
YANG K, LI C Y, AN J P, WANG D R, WANG X, WANG C K, YOU C X. The C2H2-type zinc finger transcription factor MdZAT10 negatively regulates drought tolerance in apple. Plant Physiology and Biochemistry, 2021, 167: 390-399. doi: 10.1016/j.plaphy.2021.08.014.
doi: 10.1016/j.plaphy.2021.08.014 pmid: 34404010 |
[30] | 李诗娟, 张伟, 魏磊, 黄晓明, 林娜, 徐莺, 陈放. 一个麻疯树C2H2型锌指蛋白基因JcZFP1的克隆与表达分析. 四川大学学报(自然科学版), 2014, 51(1): 206-212. |
LI S J, ZHANG W, WEI L, HUANG X M, LIN N, XU Y, CHEN F. Cloning and expression analysis of a C2H2 type zinc finger protein, JcZFP1, from Jatropha curcas L. Journal of Sichuan University (Natural Science Edition), 2014, 51(1): 206-212. (in Chinese) | |
[31] |
YU Y H, LI X Z, WU Z J, CHEN D X, LI G R, LI X Q, ZHANG G H. VvZFP11, a Cys2His2-type zinc finger transcription factor, is involved in defense responses in Vitis vinifera. Biologia Plantarum, 2016, 60(2): 292-298. doi: 10.1007/s10535-016-0598-2.
doi: 10.1007/s10535-016-0598-2 |
[32] |
SUN B G, ZHAO Y J, SHI S Y, YANG M Y, XIAO K. TaZFP1, a C2H2 type-ZFP gene of T. aestivum, mediates salt stress tolerance of plants by modulating diverse stress-defensive physiological processes. Plant Physiology and Biochemistry, 2019, 136: 127-142.
doi: 10.1016/j.plaphy.2019.01.014 |
[33] |
WANG S, WEI X L, CHENG L J, TONG Z K. Identification of a C2H2-type zinc finger gene family from Eucalyptus grandis and its response to various abiotic stresses. Biologia Plantarum, 2014, 58(2): 385-390. doi: 10.1007/s10535-014-0399-4.
doi: 10.1007/s10535-014-0399-4 |
[34] | 孙姝璟. 水稻TFIIIA型锌指蛋白ZFP179和ZFP182的功能分析[D]. 南京: 南京农业大学, 2010. |
SUN S J. Functional analysis of TFIIIA-type Zinc finger proteins ZFP179 and ZFP182 from rice (Oryza sativa L.)[D]. Nanjing: Nanjing Agricultural University, 2010. (in Chinese) | |
[35] |
JIAO Z J, WANG L P, DU H, WANG Y, WANG W X, LIU J J, HUANG J H, HUANG W, GE L F. Genome-wide study of C2H2 zinc finger gene family in Medicago truncatula. BMC Plant Biology, 2020, 20(1): 401. doi: 10.1186/s12870-020-02619-6.
doi: 10.1186/s12870-020-02619-6 |
[36] |
任美艳, 王志林, 郭慧琴, 薛敏, 殷玉梅, 王茅雁. 沙冬青C2H2型锌指蛋白基因AmZFP1的克隆与表达分析. 华北农学报, 2017, 32(2): 8-13. doi: 10.7668/hbnxb.2017.02.002.
doi: 10.7668/hbnxb.2017.02.002 |
REN M Y, WANG Z L, GUO H Q, XUE M, YIN Y M, WANG M Y. Cloning and expression analysis of AmZFP1, A C2H2-type ZFP gene from Ammopiptanthus mongolicus. Acta Agriculturae Boreali-Sinica, 2017, 32(2): 8-13. doi: 10.7668/HBNXB2017.02.002. (in Chinese)
doi: 10.7668/hbnxb.2017.02.002 |
|
[37] |
刘慧, 郭丹丽, 蔡大润, 黄先忠. 小拟南芥ApZFP基因异源超表达促进拟南芥开花并提高耐逆性. 植物学报, 2016, 51(3): 296-305. doi: 10.7668/hbnxb.2017.02.002.
doi: 10.11983/CBB15127 |
LIU H, GUO D L, CAI D R, HUANG X Z. Heterologous overexpression of ApZFP promotes flowering and improves abiotic tolerance in Arabidopsis thaliana. Bulletin of Botany, 2016, 51(3): 296-305. doi: 10.7668/HBNXB2017.02.002. (in Chinese)
doi: 10.11983/CBB15127 |
|
[38] |
WENG L, ZHAO F F, LI R, XU C J, CHEN K S, XIAO H. The zinc finger transcription factor SlZFP2 negatively regulates abscisic acid biosynthesis and fruit ripening in tomato. Plant Physiology, 2015, 167(3): 931-49. doi: 10.1104/pp.114.255174.
doi: 10.1104/pp.114.255174 |
[39] |
HUANG J, SUN S J, XU D Q, LAN H G, SUN H, WANG Z F, BAO Y M, WANG J F, TANG H J, ZHANG H S. A TFIIIA-type zinc finger protein confers multiple abiotic stress tolerances in transgenic rice (Oryza sativa L.). Plant Molecular Biology, 2012, 80(3):337-350. doi: 10.1007/s11103-012-9955-5.
doi: 10.1007/s11103-012-9955-5 |
[40] |
MA X L, LIANG W J, GU P H, HUANG Z J. Salt tolerance function of the novel C2H2-type zinc finger protein TaZNF in wheat. Plant Physiology and Biochemistry, 2016, 106:129-140. doi: 10.1016/j.plaphy.2016.04.033.
doi: 10.1016/j.plaphy.2016.04.033 pmid: 27156137 |
[41] | 赵栗. 外源GA3和SA对棉花幼苗根系生长的影响. 安徽农学通报, 2021, 27(10): 45-48. |
ZHAO L. Effects of gibberellins and salicylic acid on cotton seedling root growth. Anhui Agricultural Science Bulletin, 2021, 27(10): 45-48. (in Chinese) | |
[42] | 张幸福, 韩栓, 王伟, 江静. ABA和GA刺激的ROS代谢调节水稻幼根伸长分析. 河南大学学报(自然科学版), 2010(1): 62-66. |
ZHANG X F, HAN S, WANG W, JIANG J. Analysis of ABA-and GA-stimulated reactive oxygen species mediating the elongation of rice seeding roots. Journal of Henan University (Natural Science Edition), 2010(1): 62-66. (in Chinese) | |
[43] | 葛坤, 王培军, 邵海林, 郭家雁, 杜宾. 重金属胁迫对植物生理生化的影响及其抗性机理研究. 山西林业科技, 2021, 50(3): 43-46. |
GE K, WANG P J, SHAO H L, GUO J Y, DU B. Study on the effects of heavy metal stress on plant physiology and biochemistry and its resistance mechanism. Shanxi Forestry Science and Technology, 2021, 50(3): 43-46. (in Chinese) |
[1] | 赵慧婷,彭竹,姜玉锁,赵淑果,黄丽,杜亚丽,郭丽娜. 中华蜜蜂气味结合蛋白AcerOBP7的表达及结合特性[J]. 中国农业科学, 2022, 55(3): 613-624. |
[2] | 苏倩,杜文宣,马琳,夏亚迎,李雪,祁智,庞永珍. 紫花苜蓿MsCIPK2的克隆及功能分析[J]. 中国农业科学, 2022, 55(19): 3697-3709. |
[3] | 张云秀,蒋旭,尉春雪,蒋学乾,卢栋宇,龙瑞才,杨青川,王珍,康俊梅. 紫花苜蓿高迁移率族蛋白基因MsHMG-Y调控花期的功能分析[J]. 中国农业科学, 2022, 55(16): 3082-3092. |
[4] | 赵玎玲,王梦璇,孙天杰,苏伟华,赵志华,肖付明,赵青松,闫龙,张洁,王冬梅. 大豆单锌指蛋白基因GmSZFP的克隆及其在SMV与寄主互作中的功能[J]. 中国农业科学, 2022, 55(14): 2685-2695. |
[5] | 刘瑞达, 葛常伟, 王敏轩, 申延会, 李朋珍, 崔子倩, 刘瑞华, 沈倩, 张思平, 刘绍东, 马慧娟, 陈静, 张桂寅, 庞朝友. 陆地棉转录因子基因GhMYB108的克隆及其在抗旱中的作用[J]. 中国农业科学, 2022, 55(10): 1877-1890. |
[6] | 赵晶晶,周浓,曹鸣宇. 非生物胁迫下植物体内丙酮醛代谢的研究进展[J]. 中国农业科学, 2021, 54(8): 1627-1637. |
[7] | 徐欢欢,李逸,高伟,王永勤,刘乐承. 洋葱γ-谷氨酰转肽酶AcGGT的克隆与鉴定[J]. 中国农业科学, 2021, 54(19): 4169-4178. |
[8] | 石国良,武强,杨念婉,黄聪,刘万学,钱万强,万方浩. 苹果蠹蛾几丁质脱乙酰基酶2的基因克隆、表达模式和分子特性[J]. 中国农业科学, 2021, 54(10): 2105-2117. |
[9] | 邢启凯,李铃仙,曹阳,张玮,彭军波,燕继晔,李兴红. 可可毛色二孢全基因组分泌蛋白的预测及分析[J]. 中国农业科学, 2020, 53(24): 5027-5038. |
[10] | 郝树琳,陈宏伟,廖芳丽,李莉,刘昌燕,刘良军,万正煌,沙爱华. 基于盐胁迫转录组信息的蚕豆F-box基因家族分析[J]. 中国农业科学, 2020, 53(17): 3443-3454. |
[11] | 刘佼佼,王学敏,马琳,崔苗苗,曹晓宇,赵威. 紫花苜蓿MsWRKY42的分离、鉴定及其对非生物胁迫的响应[J]. 中国农业科学, 2020, 53(17): 3455-3466. |
[12] | 肖罗丹, 唐磊, 王伟东, 高岳芳, 黄伊凡, 孟阳, 杨亚军, 肖斌. 茶树CsWRKYIIcs转录因子的克隆及功能分析[J]. 中国农业科学, 2020, 53(12): 2460-2476. |
[13] | 彭军波,李兴红,张玮,周莹,黄金宝,燕继晔. 葡萄溃疡病菌外泌蛋白LtGH61A的致病力及基因表达模式[J]. 中国农业科学, 2019, 52(24): 4518-4526. |
[14] | 丁兰,顾宝,李培楹,舒欣,张剑侠. 葡萄SAP家族的鉴定与表达分析[J]. 中国农业科学, 2019, 52(14): 2500-2514. |
[15] | 刘小强,蒋红波,李慧敏,熊英,王进军. 赤拟谷盗章鱼胺受体3(TcOctβR3)cDNA克隆、表达及功能[J]. 中国农业科学, 2018, 51(7): 1315-1324. |
|