中国农业科学 ›› 2022, Vol. 55 ›› Issue (23): 4702-4716.doi: 10.3864/j.issn.0578-1752.2022.23.011
郭绍雷1(),许建兰1,王晓俊1,2,宿子文1,2,张斌斌1,马瑞娟1,俞明亮1,*()
收稿日期:
2022-02-23
接受日期:
2022-07-24
出版日期:
2022-12-01
发布日期:
2022-12-06
联系方式:
郭绍雷,E-mail:guoshaolei0305@126.com。
基金资助:
GUO ShaoLei1(),XU JianLan1,WANG XiaoJun1,2,SU ZiWen1,2,ZHANG BinBin1,MA RuiJuan1,YU MingLiang1,*()
Received:
2022-02-23
Accepted:
2022-07-24
Published:
2022-12-01
Online:
2022-12-06
摘要: 目的 通过桃木葡聚糖内糖基转移/水解酶(xyloglucan endotransglucosylase/hydrolase,XTH)基因家族鉴定与不同肉质桃贮藏过程中相关基因的表达分析,发掘PpXTHs家族成员中参与桃果实软化的重要候选基因,为深入解析PpXTHs在果实采后贮藏过程中的功能研究奠定基础。方法 根据XTH蛋白保守结构域Glyco_hydro_16 domain和XET_C domain,利用Hmmer 3.1软件对桃蛋白质数据库进行搜索,鉴定桃XTH基因家族成员;利用在线软件ProtParam预测其分子量、理论等电点等理化性质;利用在线分析工具Plant-mPLoc预测其亚细胞定位;MEGA11软件构建系统进化树;运用在线工具MEME对其保守motif进行分析,Tbtools呈现蛋白保守结构域和基因结构图谱;MapChart软件绘制基因在染色体上的分布图;利用实时荧光定量PCR(quantitative reverse transcription PCR,qRT-PCR)技术检测PpXTHs在不同肉质桃贮藏过程中的表达特性。结果 在桃基因组共鉴定XTH基因家族成员27个,分布在7条染色体上。系统进化树显示,PpXTHs家族成员可分为祖先类群、Ⅰ/Ⅱ亚家族以及ⅢA和ⅢB亚家族。蛋白结构域分析显示所有PpXTHs成员均含有Glyco_hydro_16和XET_C两个蛋白保守结构域。qRT-PCR结果表明,属于ⅢB亚家族的PpXTH33随着溶质桃贮藏期延长,表达量上调,且表达量显著高于同期硬质桃贮藏过程的表达水平;PpXTH33克隆测序结果显示其CDS序列与桃参考基因组一致,长度为924 bp,编码307个氨基酸;激光共聚焦显微镜观察发现PpXTH33与GFP融合蛋白可能主要于细胞壁与细胞核上产生绿色荧光信号。结论 桃27个PpXTHs家族成员蛋白结构均含有2个XTH蛋白保守结构域,不均匀分布在7条染色体上。PpXTHs在溶质桃和硬质桃贮藏过程中的表达特性显示,PpXTH33与桃采后果实软化密切相关。
郭绍雷, 许建兰, 王晓俊, 宿子文, 张斌斌, 马瑞娟, 俞明亮. 桃XTH家族基因鉴定及其在桃果实贮藏过程中的表达特性[J]. 中国农业科学, 2022, 55(23): 4702-4716.
GUO ShaoLei, XU JianLan, WANG XiaoJun, SU ZiWen, ZHANG BinBin, MA RuiJuan, YU MingLiang. Genome-Wide Identification and Expression Analysis of XTH Gene Family in Peach Fruit During Storage[J]. Scientia Agricultura Sinica, 2022, 55(23): 4702-4716.
表1
用于qRT-PCR与亚细胞定位的引物"
基因 Gene | 正向引物 Forward primer (5′-3′) | 反向引物 Reverse primer (5′-3′) |
---|---|---|
PpXTH1a | ATGGCTTTCTCAGTGGTTCGT | AAAGCCGGACTTCTCTTCCA |
PpXTH1b | GCAATCACGCTGCAGACAAA | TAGGCTGTGTTGGGTAGGGA |
PpXTH5 | CCGCAGCTTACCACTCCTAC | AGAATTTGGCCTCCACCGAG |
PpXTH6 | GAGTTCTTGGGGAACCGGAC | GGGTTGGAGCTTGGGGTATG |
PpXTH8 | GATGGGTGCCAATGGGAAGA | GGCAAAGTTGGGTAGCGTTC |
PpXTH9 | CAAGGACCAAGCTATGGGGG | CTGCTGCACTTCTTTGCGTT |
PpXTH10 | GGAAATGTGGCAGGCAAACC | AGCTGTCGCCATTCCATAGG |
PpXTH16a | GCCAAACCGCGATGAGATTG | ACGCTGAGGGTTCCAAAGAA |
PpXTH16b | AAACGGACTGGTCAAAGGCA | CACTCAACTGGAGGGCCTTG |
PpXTH16c | AAGACTGACTGGAGCCATGC | CGGGAACTTAGGACGGTCAG |
PpXTH16d | CTGGAACTCTCAGCGCATC | AGGAGCTTGTGTCCAGTCAG |
PpXTH16e | TCTTCTCAAGGGCCAACCCA | GGCTGTTCCAGACAATGGAGT |
PpXTH16f | ATGACTTCTTCCAAGGTCACTGT | TGAGAAGCTGTCCTCCGTTG |
PpXTH16g | CCCTACACTCTCCACACAAAC | GGGTTGGCTTTTGGGAAATGG |
PpXTH16h | GGTGCTCATTCTTTCTTTGGTC | TCTGCATGTCAATCCTGCCC |
PpXTH25a | CCACAAGAGGTGGACTGGTG | ACCCATGCCATCTTCCCTTG |
PpXTH25b | CAGGCTCTTCCCGTTGTTCT | GTGGGAAGCGCTTGGTATCT |
PpXTH25c | AACGCCAATGCTTGCGTATG | TTCAGGAGGGAGGCCTTGT |
PpXTH25d | ACTGGGCTACAAGAGGAGGT | TCTTGGCCGGTGGAGTCTAA |
PpXTH25e | AATGCCTGCGTATGGTCCTC | AGCCTTGGGGAAATCTCTTGG |
PpXTH25f | AGAGCTCCTTTCACTGCTTCC | CAGCCTCTCCTGCCTTGTTA |
PpXTH26 | CAGGGGATTGCTTACCCCAA | TGTCTCCGTTCCACTTGCAG |
PpXTH28 | CTACACGGCTGTGCAGTTGA | TGTGACGGGGTCAAACACTC |
PpXTH30 | CAGGTTCAGGCAGCGATACA | GATTGCGATTGCGGGTTCTC |
PpXTH32a | CTGGGGTCCTCAGCATCAAA | GTCATGGTACCCCGGATGAG |
PpXTH32b | TGTGGGGTCCACAGATCAC | CCTGATCAAACCCTACTGTGCT |
PpXTH33 | CTACACAAGCCCAAGCGTTC | ACAACCCCAGAAGTGAGACC |
TEF2 | GGTGTGACGATGAAGAGTGATG | TGAAGGAGAGGGAAGGTGAAAG |
pCAMBIA1302-PpXTH33-GFP | AACACGGGGGACTCTTGAccatgg ATGGCATTTTTGCAGGGAAAAC TCC | GAAAAGTTCTTCTCCTTTactagt TTTGCACTCTGGTGGCATGAC |
表2
桃XTH基因家族成员特征分析"
命名方式 Symbol | 基因号 Gene ID | 氨基酸数量 Number of amino acid | 分子量 Mw (Da) | 理论等电点 pI | 亚细胞定位 Subcellular localization |
---|---|---|---|---|---|
PpXTH1a | Prupe.8G200900.1 | 287 | 33055.89 | 6.19 | 细胞壁 Cell wall |
PpXTH1b | Prupe.8G201000.1 | 289 | 33545.54 | 6.31 | 细胞壁 Cell wall |
PpXTH5 | Prupe.1G210900.1 | 332 | 38568.82 | 8.73 | 细胞壁 Cell wall, 细胞质 Cytoplasm |
PpXTH6 | Prupe.6G213600.1 | 291 | 33271.63 | 7.60 | 细胞壁 Cell wall |
PpXTH8 | Prupe.4G025600.1 | 300 | 34771.06 | 4.92 | 细胞壁 Cell wall |
PpXTH9 | Prupe.3G223200.1 | 296 | 33606.76 | 5.73 | 细胞壁 Cell wall |
PpXTH10 | Prupe.8G152500.1 | 295 | 34300.00 | 9.35 | 细胞壁 Cell wall |
PpXTH16a | Prupe.4G072800.1 | 282 | 32460.74 | 9.44 | 细胞壁 Cell wall, 细胞质 Cytoplasm |
PpXTH16b | Prupe.1G169700.1 | 277 | 31640.95 | 9.28 | 细胞壁 Cell wall, 细胞质 Cytoplasm |
PpXTH16c | Prupe.3G172100.1 | 269 | 30385.02 | 8.58 | 细胞壁 Cell wall |
PpXTH16d | Prupe.3G171500.1 | 285 | 32329.43 | 8.36 | 细胞壁 Cell wall, 细胞质 Cytoplasm |
PpXTH16e | Prupe.3G171600.1 | 285 | 32263.44 | 8.91 | 细胞壁 Cell wall, 细胞质 Cytoplasm |
PpXTH16f | Prupe.3G171700.1 | 282 | 32083.21 | 8.98 | 细胞壁 Cell wall, 细胞质 Cytoplasm |
PpXTH16g | Prupe.3G172000.1 | 285 | 32135.26 | 8.70 | 细胞壁 Cell wall, 细胞质 Cytoplasm |
PpXTH16h | Prupe.3G171800.1 | 288 | 32353.36 | 8.48 | 细胞壁 Cell wall, 细胞质 Cytoplasm |
PpXTH25a | Prupe.1G088500.1 | 297 | 33791.75 | 4.80 | 细胞壁 Cell wall |
PpXTH25b | Prupe.1G069800.1 | 285 | 31908.85 | 8.25 | 细胞壁 Cell wall, 细胞质 Cytoplasm |
PpXTH25c | Prupe.1G088800.1 | 284 | 32099.38 | 8.49 | 细胞壁 Cell wall, 细胞质 Cytoplasm |
PpXTH25d | Prupe.1G088600.1 | 293 | 32945.77 | 5.12 | 细胞壁 Cell wall, 细胞质 Cytoplasm |
PpXTH25e | Prupe.1G089000.1 | 299 | 33370.47 | 5.49 | 细胞壁 Cell wall, 细胞质 Cytoplasm |
PpXTH25f | Prupe.1G088900.1 | 296 | 32990.73 | 6.74 | 细胞壁 Cell wall, 细胞质 Cytoplasm |
PpXTH26 | Prupe.7G225000.1 | 290 | 32996.23 | 8.20 | 细胞壁 Cell wall |
PpXTH28 | Prupe.1G337000.1 | 338 | 38610.43 | 6.94 | 细胞壁 Cell wall |
PpXTH30 | Prupe.5G027800.1 | 359 | 41218.83 | 8.96 | 细胞壁 Cell wall |
PpXTH32a | Prupe.7G128000.1 | 292 | 33720.45 | 9.52 | 细胞壁 Cell wall |
PpXTH32b | Prupe.6G110300.1 | 351 | 39654.76 | 5.97 | 细胞壁 Cell wall |
PpXTH33 | Prupe.1G255100.1 | 307 | 34235.96 | 8.39 | 细胞壁 Cell wall |
[1] |
YOSHIOKA H, HAYAMA H, TATSUKI M, NAKAMURA Y. Cell wall modification during development of mealy texture in the stony-hard peach “Odoroki” treated with propylene. Postharvest Biology and Technology, 2010, 55(1): 1-7.
doi: 10.1016/j.postharvbio.2009.08.005 |
[2] |
BRUMMELL D A, HARPSTER M H. Cell wall metabolism in fruit softening and quality and its manipulation in transgenic plants. Plant Molecular Biology, 2001, 47(1/2): 311-340.
doi: 10.1023/A:1010656104304 |
[3] |
MA M M, YUAN Y B, CHENG C X, ZHANG Y, YANG S L. The MdXTHB gene is involved in fruit softening in ‘Golden Del. Reinders’ (Malus pumila). Journal of the Science of Food and Agriculture, 2021, 101(2): 564-572.
doi: 10.1002/jsfa.10668 |
[4] |
WITASARI L D, HUANG F C, HOFFMANN T, ROZHON W, FRY S C, SCHWAB W. Higher expression of the strawberry xyloglucan endotransglucosylase/hydrolase genes FvXTH9 and FvXTH6 accelerates fruit ripening. The Plant Journal, 2019, 100(6): 1237-1253. doi: 10.1111/tpj.14512.
doi: 10.1111/tpj.14512 |
[5] |
HAN Y, BAN Q Y, LI H, HOU Y L, JIN M J, HAN S K, RAO J P. DkXTH8, a novel xyloglucan endotransglucosylase/hydrolase in persimmon, alters cell wall structure and promotes leaf senescence and fruit postharvest softening. Scientific Reports, 2016, 6: 39155. doi: 10.1038/srep39155.
doi: 10.1038/srep39155 pmid: 27966647 |
[6] | 韩叶. 柿果实木葡聚糖内糖基转移/水解酶基因表达特性及功能分析[D]. 杨凌: 西北农林科技大学, 2017. |
HAN Y. Expression and functional analysis of xyloglucan endotransglycosylase/hydrolase genes in persimmon fruit[D]. Yangling: Northwest A&F University, 2017. (in Chinese) | |
[7] |
ZHU Q G, ZHANG Z K, RAO J P, HUBER D J, LV J Y, HOU Y L, SONG K H. Identification of xyloglucan endotransglucosylase/ hydrolase genes (XTHs) and their expression in persimmon fruit as influenced by 1-methylcyclopropene and gibberellic acid during storage at ambient temperature. Food Chemistry, 2013, 138(1): 471-477. doi: 10.1016/j.foodchem.2012.09.141.
doi: 10.1016/j.foodchem.2012.09.141 |
[8] |
SCHRÖDER R, ATKINSON R G, LANGENKÄMPER G, REDGWELL R J. Biochemical and molecular characterisation of xyloglucan endotransglycosylase from ripe kiwifruit. Planta, 1998, 204(2): 242-251. doi: 10.1007/s004250050253.
doi: 10.1007/s004250050253 pmid: 9487728 |
[9] |
EKLÖF J M, BRUMER H. The XTH gene family: an update on enzyme structure, function, and phylogeny in xyloglucan remodeling. Plant Physiology, 2010, 153(2): 456-466. doi: 10.1104/pp.110.156844.
doi: 10.1104/pp.110.156844 pmid: 20421457 |
[10] |
BAUMANN M J, EKLÖF J M, MICHEL G, KALLAS A M, TEERI T T, CZJZEK M, BRUMER H. Structural evidence for the evolution of xyloglucanase activity from xyloglucan endo-transglycosylases: biological implications for cell wall metabolism. The Plant Cell, 2007, 19(6): 1947-1963. doi: 10.1105/tpc.107.051391.
doi: 10.1105/tpc.107.051391 |
[11] |
ROSE J K C, BRAAM J, FRY S C, NISHITANI K. The XTH family of enzymes involved in xyloglucan endotransglucosylation and endohydrolysis: Current perspectives and a new unifying nomenclature. Plant and Cell Physiology, 2002, 43(12): 1421-1435. doi: 10.1093/pcp/pcf171.
doi: 10.1093/pcp/pcf171 pmid: 12514239 |
[12] |
COSGROVE D J. Growth of the plant cell wall. Nature Reviews Molecular Cell Biology, 2005, 6(11): 850-861.
pmid: 16261190 |
[13] |
ATKINSON R G, JOHNSTON S L, YAUK Y K, SHARMA, SCHRODER R. Analysis of xyloglucan endotransglucosylase/ hydrolase (XTH) gene families in kiwifruit and apple. Postharvest Biology and Technology, 2009, 51(2): 149-157.
doi: 10.1016/j.postharvbio.2008.06.014 |
[14] |
WU D, LIU A Q, QU X Y, LIANG J Y, SONG M. Genome-wide identification, and phylogenetic and expression profiling analyses of XTH gene families in Brassica rapa L. and Brassica oleracea L.. BMC Genomics, 2020, 21(1): 782.
doi: 10.1186/s12864-020-07153-1 |
[15] |
LI Q Y, LI H Y, YIN C Y, WANG X T, JIANG Q, ZHANG R, GE F F, CHEN Y D, YANG, L. Genome-wide identification and characterization of xyloglucan endotransglycosylase/hydrolase in Ananas comosus during development. Genes, 2019, 10(7): E537. doi: 10.3390/genes10070537.
doi: 10.3390/genes10070537 |
[16] |
FU M M, LIU C, WU F B. Genome-wide identification, characterization and expression analysis of xyloglucan endotransglucosylase/hydrolase genes family in barley (Hordeum vulgare). Molecules (Basel, Switzerland), 2019, 24(10): E 1935. doi: 10.3390/molecules24101935.
doi: 10.3390/molecules24101935 |
[17] |
WANG M, XU Z C, DING A M, Kong Y Z. Genome-wide identification and expression profiling analysis of the xyloglucan endotransglucosylase/hydrolase gene family in tobacco (Nicotiana tabacum L.). Genes, 2018, 9(6): 273.
doi: 10.3390/genes9060273 |
[18] |
ZHANG Z Y, WANG N, JIANG S H, XU H F, WANG Y C, WANG C Z, LI M, LIU J X, QU C Z, LIU W, WU S J, CHEN X L, CHEN X S. Analysis of the xyloglucan endotransglucosylase/hydrolase gene family during apple fruit ripening and softening. Journal of Agricultural and Food Chemistry, 2017, 65(2): 429-434. doi: 10.1021/acs.jafc.6b04536.
doi: 10.1021/acs.jafc.6b04536 pmid: 28025888 |
[19] |
HAN Y, ZHU Q G, ZHANG Z K, MENG K, HOU Y L, BAN Q Y, SUO J T, RAO J P. Analysis of xyloglucan endotransglycosylase/ hydrolase (XTH) genes and diverse roles of isoenzymes during persimmon fruit development and postharvest softening. PLoS ONE, 2015, 10(4): e0123668.
doi: 10.1371/journal.pone.0123668 |
[20] | 丛郁, 刘洪, 李慧, 颜志梅, 俞明亮, 常有宏.成熟砂梨果实木葡聚糖转移酶基因PpXTH1的克隆及其在夏季货架期的表达规律, 江苏农业学报, 2010, 26(1): 143-151. |
CONG Y, LIU H, LI H, YAN Z M, YU M L, CHANG Y H. Cloning of an xyloglucan endotransglycosylase/hydrolase gene (PpXTH1) from mature sandy pear fruit and its expression characteristics during summer shelf life. Jiangsu Journal of Agricultural Sciences, 2010, 26(1): 143-151. (in Chinese) | |
[21] |
OPAZO M C, LIZANA R, STAPPUNG Y, DAVIS T M, HERRERA R, MOYA-LEÓN M A. XTHs from Fragaria vesca: genomic structure and transcriptomic analysis in ripening fruit and other tissues. BMC Genomics, 2017, 18(1): 852. doi: 10.1186/s12864-017-4255-8.
doi: 10.1186/s12864-017-4255-8 |
[22] | LU W J, NAKANO R, KUBO Y, INABA A, JIANG Y M. Cloning and expression analysis of an XET cDNA in the peel and pulp of banana fruit ripening and softening. Acta Botanica Sinica, 2004, 46(3): 355-362. |
[23] |
YOKOYAMA R, NISHITANI K. A comprehensive expression analysis of all members of a gene family encoding cell-wall enzymes allowed us to predict cis-regulatory regions involved in cell-wall construction in specific organs of Arabidopsis. Plant and Cell Physiology, 2001, 42(10): 1025-1033. doi: 10.1093/pcp/pce154.
doi: 10.1093/pcp/pce154 |
[24] |
YOKOYAMA R, ROSE J K C, NISHITANI K. A surprising diversity and abundance of xyloglucan endotransglucosylase/hydrolases in rice. Classification and expression analysis. Plant Physiology, 2004, 134(3): 1088-1099.
pmid: 14988479 |
[25] |
SALADIÉ M, ROSE J K, COSGROVE D J, CATALÁ C. Characterization of a new xyloglucan endotransglucosylase/hydrolase (XTH) from ripening tomato fruit and implications for the diverse modes of enzymic action. The Plant Journal, 2006, 47(2): 282-295. doi: 10.1111/j.1365-313x.2006.02784.x.
doi: 10.1111/j.1365-313x.2006.02784.x |
[26] | HAN Y, BAN Q Y, HOU Y L, MENG K, SUO J T, RAO J P. Isolation and characterization of two persimmon xyloglucan endotransglycosylase/ hydrolase (XTH) genes that have divergent functions in cell wall modification and fruit postharvest softening. Frontiers in Plant Science, 2016, 7: 624. |
[27] |
CAMPBELL P, BRAAM J. In vitro activities of four xyloglucan endotransglycosylases from Arabidopsis. Plant Journal, 1999, 18(4): 371-382. doi: 10.1046/j.1365-313x.1999.00459.x.
doi: 10.1046/j.1365-313x.1999.00459.x |
[28] |
STROHMEIER M, HRMOVA M, FISCHER M, HARVEY A J, FINCHER G B, PLEISS J. Molecular modeling of family GH16 glycoside hydrolases: Potential roles for xyloglucan transglucosylases/ hydrolases in cell wall modification in the Poaceae. Protein Science, 2004, 13(12): 3200-3213. doi: 10.1110/ps.04828404.
doi: 10.1110/ps.04828404 |
[29] |
BEHAR H, GRAHAM S W, BRUMER H. Comprehensive cross- genome survey and phylogeny of glycoside hydrolase family 16 members reveals the evolutionary origin of EG16 and XTH proteins in plant lineages. Plant Journal, 2018, 95(6): 1114-1128. doi: 10.1111/tpj.14004.
doi: 10.1111/tpj.14004 |
[30] |
MICHAILIDIS G, ARGIRIOU A, DARZENTAS N, TSAFTARIS A. Analysis of xyloglucan endotransglycosylase/hydrolase (XTH) genes from allotetraploid (Gossypium hirsutum) cotton and its diploid progenitors expressed during fiber elongation. Journal of Plant Physiology, 2009, 166(4): 403-416. doi: 10.1016/j.jplph.2008.06.013.
doi: 10.1016/j.jplph.2008.06.013 pmid: 18789555 |
[31] |
MUÑOZ-BERTOMEU J, MIEDES E, LORENCES E P. Expression of xyloglucan endotransglucosylase/hydrolase (XTH) genes and XET activity in ethylene treated apple and tomato fruits. Journal of Plant Physiology, 2013, 170(13): 1194-1201.
doi: 10.1016/j.jplph.2013.03.015 |
[32] |
FINN R D, COGGILL P, EBERHARDT R Y, EDDY S R, MISTRY J, MITCHELL A L, POTTER S C, PUNTA M, QURESHI M, SANGRADOR-VEGAS A, SALAZAR G A, TATE J, BATEMAN A. The Pfam protein families database: Towards a more sustainable future. Nucleic Acids Research, 2015, 44(D1): D279-D285. doi: 10.1093/nar/gkv1344.
doi: 10.1093/nar/gkv1344 |
[33] |
GOODSTEIN D M, SHU S Q, HOWSON R, NEUPANE R, HAYES R D, FAZO J, MITROS T, DIRKS W, HELLSTEN U, PUTNAM N, ROKHSAR D S. Phytozome: A comparative platform for green plant genomics. Nucleic Acids Resesearch, 2012, 40(D1): D1178-D1186. doi: 10.1093/nar/gkr944.
doi: 10.1093/nar/gkr944 |
[34] |
MARCHLER-BAUER A, BO Y, HAN L Y, HE J E, LANCZYCKI C J, LU S N, CHITSAZ F, DERBYSHIRE M K, GEER R C, GONZALES N R, GWADZ M, HURWITZ D I, LU F, MARCHLER G H, SONG J S, THANKI N, WANG Z X, YAMASHITA R A, ZHANG D C, ZHENG C J, GEER L Y, BRYANT S H. CDD/SPARCLE: Functional classification of proteins via subfamily domain architectures. Nucleic Acids Research, 2016, 45(D1): D200-D203. doi: 10.1093/nar/gkw1129.
doi: 10.1093/nar/gkw1129 |
[35] |
WILKINS M R, GASTEIGER E, BAIROCH A, SANCHEZ J C, WILLIAMS K L, APPEL R D, HOCHSTRASSER D F. Protein identification and analysis tools in the ExPASy server. Methods in Molecular Biology, 1999, 112: 531-552. doi: 10.1385/1-59259-584-7:531.
doi: 10.1385/1-59259-584-7:531 pmid: 10027275 |
[36] |
CHOU K C, SHEN H B. Cell-PLoc: A package of web servers for predicting subcellular localization of proteins in various organisms. Nature Protocols, 2008, 3(2): 153-162. doi: 10.1038/nprot.2007.494.
doi: 10.1038/nprot.2007.494 |
[37] |
BAILEY T L, JOHNSON J, GRANT C E, NOBLE W S. The MEME Suite. Nucleic Acids Research, 2015, 43(W1): W39-W49.
doi: 10.1093/nar/gkv416 |
[38] |
CHEN C J, CHEN H, ZHANG Y, THOMAS H R, FRANK M H, HE Y H, XIA R. TBtools: An integrative toolkit developed for interactive analyses of big biological data. Molecular Plant, 2020, 13(8): 1194-1202. doi: 10.1016/j.molp.2020.06.009.
doi: S1674-2052(20)30187-8 pmid: 32585190 |
[39] |
LAMESCH P, BERARDINI T Z, LI D H, SWARBRECK D, WILKS C, SASIDHARAN R, MULLER R, DREHER K, ALEXANDER D L, GARCIA-HERNANDEZ M, KARTHIKEYAN A S, LEE C H, NELSON W D, PLOETZ L, SINGH S, WENSEL A, HUALA E. The Arabidopsis Information Resource (TAIR): Improved gene annotation and new tools. Nucleic Acids Research, 2011, 40(D1): D1202-D1210. doi: 10.1093/nar/gkr1090.
doi: 10.1093/nar/gkr1090 |
[40] |
JOHANSSON P, BRUMER H, BAUMANN M J, KALLAS A M, HENRIKSSON H, DENMAN S E, TEERI T T, JONES T A. Crystal structures of a poplar xyloglucan endotransglycosylase reveal details of transglycosylation acceptor binding. The Plant Cell, 2004, 16(4): 874-886. doi:10.1105/tpc.020065.
doi: 10.1105/tpc.020065 |
[41] |
TAMURA K, STECHER G, KUMAR S. MEGA11: Molecular evolutionary genetics analysis version 11. Molecular Biology and Evolution, 2021, 38(7): 3022-3027. doi: 10.1093/molbev/msab120.
doi: 10.1093/molbev/msab120 pmid: 33892491 |
[42] |
ROBERT X, GOUET P. Deciphering key features in protein structures with the new ENDscript server. Nucleic Acids Research, 2014, 42(W1): W320-W324. doi: 10.1093/nar/gku316.
doi: 10.1093/nar/gku316 |
[43] |
VOORRIPS R E. MapChart: software for the graphical presentation of linkage maps and QTLs. Journal of Heredity, 2002, 93(1): 77-78. doi: 10.1093/jhered/93.1.77.
doi: 10.1093/jhered/93.1.77 pmid: 12011185 |
[44] |
TONG Z G, GAO Z H, WANG F, ZHOU J, ZHANG Z. Selection of reliable reference genes for gene expression studies in peach using real-time PCR. BMC Molecular Biology, 2009, 10: 71. doi: 10.1186/1471-2199-10-71.
doi: 10.1186/1471-2199-10-71 pmid: 19619301 |
[45] |
LIVAK K J, SCHMITTGEN T D.Analysis of relative gene expression data using real-time quantitative PCR and the 2(T)(-Delta Delta C) method. Methods, 2001, 25(4): 402-408.
doi: 10.1006/meth.2001.1262 |
[46] | 王昊, 尹莲, 刘洁霞, 贾丽丽, 丁旭, 沈迪, 冯凯, 徐志胜, 熊爱生. 类胡萝卜素裂解双加氧酶基因AgCCD4调控芹菜不同组织的着色. 中国农业科学, 2021, 54(15): 3279-3294. |
WANG H, YIN L, LIU J X, JIA L L, DING X, SHEN D, FENG K, XU Z S, XIONG A S. The carotenoid cleavage dioxygenases gene AgCCD4 regulates the pigmentation of celery tissues with different colors. Scientia Agricultura Sinica, 2021, 54(15): 3279-3294. (in Chinese) | |
[47] | 徐小迪, 李博强, 秦国政, 陈彤, 张占全, 田世平. 果实采后品质维持的分子基础与调控技术研究进展. 园艺学报, 2020, 47(8): 1595-1609. |
XU X D, LI B Q, QIN G Z, CHEN T, ZHANG Z Q, TIAN S P. Molecular basis and regulation strategies for quality maintenance of postharvest fruit. Acta Horticulturae Sinica, 2020, 47(8): 1595-1609. (in Chinese) | |
[48] |
IQBAL N, KHAN N A, FERRANTE A, TRIVELLINI A, FRANCINI A, KHAN M I R. Ethylene role in plant growth, development and senescence: interaction with other phytohormones. Frontiers in Plant Science, 2017, 8: 475. doi: 10.3389/fpls.2017.00475.
doi: 10.3389/fpls.2017.00475 pmid: 28421102 |
[49] |
ZHAI Z F, FENG C, WANG Y Y, SUN Y T, PENG X, XIAO Y Q, ZHANG X, ZHOU X, JIAO J L, WANG W L. Genome-wide identification of the xyloglucan endotransglucosylase/hydrolase (XTH) and polygalacturonase (PG) genes and characterization of their role in fruit softening of sweet cherry. International Journal of Molecular Sciences, 2021, 22(22): 12331. doi: 10.3390/ijms222212331.
doi: 10.3390/ijms222212331 |
[50] |
CHENG Z H, ZHANG X M, YAO W J, GAO Y, ZHAO K, GUO Q, ZHOU B R, JIANG T B. Genome-wide identification and expression analysis of the xyloglucan endotransglucosylase/hydrolase gene family in poplar. BMC Genomics, 2021, 22(1): 804. doi: 10.1186/s12864-021-08134-8.
doi: 10.1186/s12864-021-08134-8 pmid: 34749656 |
[51] | 杨勇, 马瑞娟, 张斌斌, 宋志忠, 张春华, 郭绍雷, 俞明亮. 不同溶质桃果实的软化与乙烯合成相关基因的差异表达. 园艺学报, 2015, 42(10): 1869-1878. |
YANG Y, MA R J, ZHANG B B, SONG Z Z, ZHANG C H, GUO S L, YU M L. Differential expression analysis in fruit softening and ethylene biosynthetic pathways in peaches of different flesh textures. Acta Horticulturae Sinica, 2015, 42(10): 1869-1878. (in Chinese) | |
[52] |
CHEEVARUNGNAPAKUL K, KHAKSAR G, PANPETCH P, BOONJING P, SIRIKANTARAMAS S. Identification and functional characterization of genes involved in the biosynthesis of caffeoylquinic acids in sunflower (Helianthus annuus L.). Frontiers in Plant Science, 2019, 10: 968. doi: 10.3389/fpls.2019.00968.
doi: 10.3389/fpls.2019.00968 |
[1] | 渠清, 刘宁, 邹金鹏, 张雅璇, 贾慧, 孙蔓莉, 曹志艳, 董金皋. 拟轮枝镰孢与玉米籽粒互作的差异基因筛选及代谢通路分析[J]. 中国农业科学, 2023, 56(6): 1086-1101. |
[2] | 曹珂, 陈昌文, 杨选文, 别航灵, 王力荣. 桃果实单果重及可溶性固形物含量的全基因组选择分析[J]. 中国农业科学, 2023, 56(5): 951-963. |
[3] | 彭佳伟, 张叶, 寇单单, 杨丽, 刘晓飞, 张学英, 陈海江, 田义. ‘仓方早生’桃及其早熟芽变不同发育时期果实的转录组分析[J]. 中国农业科学, 2023, 56(5): 964-980. |
[4] | 邹婷, 刘丽莉, 向建华, 周定港, 吴金锋, 李莓, 李宝, 张大为, 严明理. 芸薹属植物MYBL2基因的克隆及其在A、B、C基因组中的PCR鉴别[J]. 中国农业科学, 2023, 56(3): 416-429. |
[5] | 刘针杉, 涂红霞, 周荆婷, 马艳, 柴久凤, 王旨意, 杨鹏飞, 杨小芹, Kumail Abbas, 王浩, 王燕, 王小蓉. 中国樱桃正反交F1代果实主要性状的遗传分析[J]. 中国农业科学, 2023, 56(2): 345-356. |
[6] | 刘苏宁, 别航灵, 王君秀, 陈雪嘉, 王新卫, 王力荣, 曹珂. 山桃杂交群体抗蚜优系的背景选择与标记优劣比较[J]. 中国农业科学, 2023, 56(15): 2995-3005. |
[7] | 王朝晖, 李勇, 曹珂, 朱更瑞, 方伟超, 陈昌文, 王新卫, 吴金龙, 王力荣. 189份桃种质肉质性状形成相关位点基因型鉴定及组合分析[J]. 中国农业科学, 2023, 56(12): 2367-2379. |
[8] | 张克坤,陈可钦,李婉平,乔浩蓉,张俊霞,刘凤之,房玉林,王海波. 灌水量对限根栽培‘阳光玫瑰’葡萄果实发育与香气物质积累的影响[J]. 中国农业科学, 2023, 56(1): 129-143. |
[9] | 古丽旦,刘洋,李方向,成卫宁. 小麦吸浆虫小热激蛋白基因Hsp21.9的克隆及在滞育过程与温度胁迫下的表达特性[J]. 中国农业科学, 2023, 56(1): 79-89. |
[10] | 闫乐乐,卜璐璐,牛良,曾文芳,鲁振华,崔国朝,苗玉乐,潘磊,王志强. 广泛靶向代谢组学解析桃蚜危害对桃树次生代谢产物的影响[J]. 中国农业科学, 2022, 55(6): 1149-1158. |
[11] | 张晋龙,赵志博,刘巍,黄丽丽. 猕猴桃细菌性溃疡病菌T3SS关键效应蛋白基因致病功能[J]. 中国农业科学, 2022, 55(3): 503-513. |
[12] | 束婧婷,单艳菊,姬改革,章明,屠云洁,刘一帆,巨晓军,盛中伟,唐燕飞,李华,邹剑敏. 广西麻鸡m6A甲基转移酶基因表达与肌纤维类型及成肌分化的关系[J]. 中国农业科学, 2022, 55(3): 589-601. |
[13] | 郝艳,李晓颍,叶茂,刘亚婷,王天宇,王海静,张立彬,肖啸,武军凯. ‘21世纪’桃与‘久脆’桃及其杂交后代果实挥发性成分特征分析[J]. 中国农业科学, 2022, 55(22): 4487-4499. |
[14] | 康忱,赵雪芳,李亚栋,田哲娟,王鹏,吴志明. 黄瓜CC-NBS-LRR家族基因鉴定及在霜霉病和白粉病胁迫下的表达分析[J]. 中国农业科学, 2022, 55(19): 3751-3766. |
[15] | 温玉霞,张坚,王琴,王靖,裴悦宏,田绍锐,樊光进,马小舟,孙现超. 本氏烟NbMBF1c的克隆、表达及在TMV侵染过程中的功能[J]. 中国农业科学, 2022, 55(18): 3543-3555. |
|