Enhancing host immunity is an effective way to reduce morbidity in chickens. Heterophil to lymphocyte ratio (H/L) is associated with host disease resistance in birds. Chickens with different H/L levels show different disease resistances. However, the utility of the H/L as an indicator of immune function needs to be further analyzed. In this study, a H/L directional breeding chicken line (Jingxing yellow chicken) was constructed, which has been bred for 12 generations. We compared the function of heterophils, and combined statistical analysis to explore the candidate genes and pathways related to H/L. The oxidative burst function of the heterophils isolated from the H/L selection line (G12) was increased (P=0.044) compared to the non-selection line (NS). The 22.44 Mb genomic regions which annotated 300 protein-coding genes were selected in the genome of G9 (n=92) compared to NS (n=92) based on a genome-wide selective sweep. Several selective regions were identified containing genes like interferon induced with helicase C domain 1 (IFIH1) and moesin (MSN) associated with the intracellular receptor signaling pathway, C–C motif chemokine receptor 6 (CCR6), dipeptidyl peptidase 4 (DPP4) and hemolytic complement (HC) associated with the negative regulation of leukocyte chemotaxis and tight junction protein 1 (TJP1) associated with actin cytoskeleton organization. In addition, 45 genome-wide significant indels containing 29 protein-coding genes were also identified as associated with the H/L based on genome-wide association study (GWAS). The expression of protein tyrosine phosphatase non-receptor type 5 (PTPN5) (r=0.75, P=0.033) and oxysterol binding protein like 5 (OSBPL5) (r=0.89, P=0.0027) were positively correlated with H/L. Compared to the high H/L group, the expressions of PTPN5 and OSBPL5 were decreased (P<0.05) in the low H/L group of Beijing you chicken. The A/A allelic frequency of indel 5_13108985 (P=3.85E–06) within OSBPL5 gradually increased from the NS to G5 and G9, and the individuals with A/A exhibited lower H/L than individuals with heterozygote A/ATCT (P=4.28E–04) and homozygous ATCT/ATCT (P=3.40E–05). Above results indicated oxidative burst function of heterophils were enhanced, and 22.44 Mb genomic regions were selected with the directional selection of H/L. In addition, PTPN5 and OSBPL5 genes were identified as H/L-related candidate genes. These findings revealed the complex genetic mechanism of H/L related to immunity and will allow selection for improving chicken immunity based on the H/L
Rhododendron is a well-known genus consisting of commercially valuable ornamental woody plant species. Heat stress is a major environmental factor that affects rhododendron growth. Melatonin was recently reported to alleviate the effects of abiotic stress on plants. However, the role of melatonin in rhododendron plants is unknown. In this study, the effect of melatonin on rhododendron plants exposed to heat stress and the potential underlying mechanism were investigated. Analyses of morphological characteristics and chlorophyll a fluorescence indicated 200 µmol L–1 was the optimal melatonin concentration for protecting rhododendron plants from heat stress. To elucidate how melatonin limits the adverse effects of high temperatures, melatonin contents, photosynthetic indices, Rubisco activity, and adenosine triphosphate (ATP) contents were analyzed at 25, 35, and 40°C, respectively. Compared with the control, exogenous application of melatonin improved the melatonin contents, electron transport rate, photosystem II and I activities, Rubisco activity, and ATP contents under heat stress. The transcriptome analysis revealed many of the heat-induced differentially expressed genes were associated with the photosynthetic pathway; the expression of most of these genes was down-regulated by heat stress more in the melatonin-free plants than in the melatonin-treated plants. We identified RhPGR5A, RhATPB, RhLHCB3, and RhRbsA as key genes. Thus, we speculate that melatonin promotes photosynthetic electron transport, improves Calvin cycle enzyme activities, and increases ATP production. These changes lead to increased photosynthetic efficiency and CO2 assimilation under heat stress conditions via the regulated expression of specific genes, including RhRbsA. Therefore, the application of exogenous melatonin may increase the tolerance of rhododendron to heat stress.
Agropyron cristatum (2n=4x=28, PPPP) is a wild relative of common wheat which contains a large number of desirable genes that can be exploited for wheat improvement. Wheat–A. cristatum 2P alien translocation lines exhibit many desirable traits, such as small flag leaves, a high spikelet number and density, and a compact plant type. An agronomic trait evaluation and a genetic analysis were carried out on translocation lines and backcross populations of these lines carrying different translocation fragments. The results showed that a translocation fragment from 2PT-3 (2PL) reduced the length of the flag leaves, while translocation fragments from 2PT-3 (2PL) and 2PT-5 (2PL (0.60–1.00)) reduced the width of the flag leaves. A translocation fragment from 2PT-13 (2PS (0.18–0.36)) increased the length and area of the flag leaves. Translocation fragments from 2PT-3 (2PL) and 2PT-8 (2PL (0.86–1.00)) increased the density of spikelets. Translocation fragments from 2PT-7 (2PL (0.00–0.09)), 2PT-8 (2PL (0.86–1.00)), 2PT-10 (2PS), and 2PT-13 (2PS (0.18–0.36)) reduced plant height. This study provides a scientific basis for the effective utilization of wheat–A. cristatum translocation lines.
High-moisture extrusion technology should be considered one of the best choices for producing plant-based meat substitutes with the rich fibrous structure offered by real animal meat products. Unfortunately, the extrusion process has been seen as a “black box” with limited information about what occurs inside, causing serious obstacles in developing meat substitutes. This study designed a high-moisture extrusion process and developed 10 new plant-based meat substitutes comparable to the fibrous structure of real animal meat. The study used the Feature-Augmented Principal Component Analysis (FA-PCA) method to visualize and understand the whole extrusion process in three ways systematically and accurately. It established six sets of mathematical models of the high-moisture extrusion process based on 8 000 pieces of data, including five types of parameters. The FA-PCA method improved the R2 values significantly compared with the PCA method. The Way 3 was the best to predict product quality (Z), demonstrating that the gradually molecular conformational changes (Yn´) were critical in controlling the final quality of the plant-based meat substitutes. Moreover, the first visualization platform software for the high-moisture extrusion process has been established to clearly show the “black box” by combining the virtual simulation technology. Through the software, some practice work such as equipment installation, parameter adjustment, equipment disassembly, and data prediction can be easily achieved.
Wheat grain yield is generally sink-limited during grain filling. The grain-filling rate (GFR) plays a vital role but is poorly studied due to the difficulty of phenotype surveys. This study explored the grain-filling traits in a recombinant inbred population and wheat collection using two highly saturated genetic maps for linkage analysis and genome-wide association study (GWAS). Seventeen stable additive quantitative trait loci (QTLs) were identified on chromosomes 1B, 4B, and 5A. The linkage interval between IWB19555 and IWB56078 showed pleiotropic effects on GFR1, GFRmax, kernel length (KL), kernel width (KW), kernel thickness (KT), and thousand kernel weight (TKW), with the phenotypic variation explained (PVE) ranging from 13.38% (KW) to 33.69% (TKW). 198 significant marker-trait associations (MTAs) were distributed across most chromosomes except for 3D and 4D. The major associated sites for GFR included IWB44469 (11.27%), IWB8156 (12.56%) and IWB24812 (14.46%). Linkage analysis suggested that IWB35850, identified through GWAS, was located in approximately the same region as QGFRmax2B.3-11, where two high-confidence candidate genes were present. Two important grain weight (GW)-related QTLs colocalized with grain-filling QTLs. The findings contribute to understanding the genetic architecture of the GFR and provide a basic approach to predict candidate genes for grain yield trait QTLs.