Please wait a minute...
Journal of Integrative Agriculture  2022, Vol. 21 Issue (10): 2805-2817    DOI: 10.1016/j.jia.2022.07.032
Special Issue: 麦类遗传育种合辑Triticeae Crops Genetics · Breeding · Germplasm Resources
Crop Science Advanced Online Publication | Current Issue | Archive | Adv Search |
Genetic dissection of the grain filling rate and related traits through linkage analysis and genome-wide association study in bread wheat

YU Hai-xia1*, DUAN Xi-xian1*, SUN Ai-qing1, SUN Xiao-xiao1, ZHANG Jing-juan2, SUN Hua-qing3, SUN Yan-yan1, NING Tang-yuan1, TIAN Ji-chun1, WANG Dong-xue1, LI Hao1, FAN Ke-xin1, WANG Ai-ping2, MA Wu-jun4, CHEN Jian-sheng1

1 State Key Laboratory of Crop Biology/Key Laboratory of Crop Water Physiology and Drought-tolerance Germplasm Improvement, Minstry of Agriculture and Rural Affairs/Group of Wheat Quality Breeding, College of Agronomy, Shandong Agricultural University, Tai’an 271018, P.R.China

2 Dezhou Agricultural Protection and Technological Extension Center, Dezhou 253000, P.R.China

3 Zhongnong Tiantai Seed Co., Ltd., Pingyi 273300, P.R.China

4 School of Veterinary and Life Sciences, Murdoch University, Murdoch, WA 6150, Australia

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  籽粒灌浆速率(GFR)在小麦产量形成过程中起着关键作用,但由于表型调查困难等原因,对其遗传解析研究甚少。本研究测定了1个重组自交系群体和1个自然群体籽粒灌浆性状,基于高密度图谱进行相关性状的连锁分析和全基因组关联分析。在染色体 1B、4B和5A上鉴定到17个稳定的QTLs。 其中IWB19555-IWB56078 连锁区间对性状 GFR1、GFRmax、KL、KW、KT 和TKW具有多效性,表型变异解释率(PVE)为13.38%(KW)- 33.69%(TKW)。检测到198个显著性状关联位点(MTAs)分布在除了3D和4D之外的染色体上。GFR的主要关联位点包括 IWB44469(11.27%)、IWB8156(12.56%)和IWB24812(14.46%)。检测到IWB41019是籽粒大小相关的重要多效性位点。通过GWAS鉴定到的IWB35850与连锁分析获得的QGFRmax2B.3-11位于同一区域,该区域包含两个高置信候选基因。检测到两个重要的粒重相关 QTL与灌浆速率 QTL定位到同一区间。这些发现有助于解析 GFR 的遗传基础,为小麦产量性状 QTL候选基因预测提供理论依据。

Abstract  

Wheat grain yield is generally sink-limited during grain filling.  The grain-filling rate (GFR) plays a vital role but is poorly studied due to the difficulty of phenotype surveys.  This study explored the grain-filling traits in a recombinant inbred population and wheat collection using two highly saturated genetic maps for linkage analysis and genome-wide association study (GWAS).  Seventeen stable additive quantitative trait loci (QTLs) were identified on chromosomes 1B, 4B, and 5A.  The linkage interval between IWB19555 and IWB56078 showed pleiotropic effects on GFR1, GFRmax, kernel length (KL), kernel width (KW), kernel thickness (KT), and thousand kernel weight (TKW), with the phenotypic variation explained (PVE) ranging from 13.38% (KW) to 33.69% (TKW).  198 significant marker-trait associations (MTAs) were distributed across most chromosomes except for 3D and 4D.  The major associated sites for GFR included IWB44469 (11.27%), IWB8156 (12.56%) and IWB24812 (14.46%).  Linkage analysis suggested that IWB35850, identified through GWAS, was located in approximately the same region as QGFRmax2B.3-11, where two high-confidence candidate genes were present.  Two important grain weight (GW)-related QTLs colocalized with grain-filling QTLs.  The findings contribute to understanding the genetic architecture of the GFR and provide a basic approach to predict candidate genes for grain yield trait QTLs.

Keywords:  wheat        grain-filling rate        linkage analysis        genome-wide association study  
Received: 25 February 2021   Accepted: 06 July 2021
Fund: This work was supported by the National Natural Science Foundation of China (31971936) and the Science &Technology Projects of Shandong Province, China (2019YQ028, 2020CXGC010805, 2019B08, 2019YQ014 and ZR2020MC093). 
About author:  YU Hai-xia, E-mail: yuhaixia66@163.com; DUAN Xi-xian, E-mail: 1278901428@qq.com; Correspondence CHEN Jian-sheng, Tel: +86-538-8241959, E-mail: jshch@sdau.edu.cn; MA Wu-jun, E-mail: W.Ma@murdoch.edu.au * These authors contributed equally to this study.

Cite this article: 

YU Hai-xia, DUAN Xi-xian, SUN Ai-qing, SUN Xiao-xiao, ZHANG Jing-juan, SUN Hua-qing, SUN Yan-yan, NING Tang-yuan, TIAN Ji-chun, WANG Dong-xue, LI Hao, FAN Ke-xin, WANG Ai-ping, MA Wu-jun, CHEN Jian-sheng. 2022. Genetic dissection of the grain filling rate and related traits through linkage analysis and genome-wide association study in bread wheat. Journal of Integrative Agriculture, 21(10): 2805-2817.

Ahmed A S, Zhang J, Ma W, Dell B. 2018. Contributions of TaSUTs to grain weight in wheat under drought. Plant Molecular Biology, 98, 4–5.
Alonso M P, Abbate P E, Mirabella N E, Merlos F A, Panelo J S, Pontaroli A C. 2018. Analysis of sink/source relations in bread wheat recombinant inbred lines and commercial cultivars under a high yield potential environment. European Journal of Agronomy, 93, 82–87.
Atwell S, Huang Y S, Vilhjalmsson B J, Willems G, Horton M, Li Y, Meng D Z, Platt A, Tarone A M, Hu T T, Jiang R, Muliyati N W, Zhang X, Amer M A, Baxter I, Brachi B, Chory J, Dean C, Debieu M, Meaux J D, et al. 2010. Genome-wide association study of 107 phenotypes in Arabidopsis thaliana inbred lines. Nature, 465, 627–631.
Baillot N, Girousse C, Allard V, Piquet-Pissaloux A, Gouis J L. 2018. Different grain-filling rates explain grain-weight differences along the wheat ear. PLoS ONE, 13, e0209597.
Breseghello F, Sorrells M E. 2006. Association mapping of kernel size and milling quality in wheat (Triticum aestivum L.) cultivars. Genetics, 172, 1165–1177.
Brinton J, Simmonds J, Minter F, Leverington-Waite M, Snape J, Uauy C. 2017. Increased pericarp cell length underlies a major quantitative trait locus for grain weight inhexaploid wheat. New Phytologist, 215, 1026–1038.
Chen G F, Wu R G, Li D M, Yu H X, Deng Z, Tian J C. 2017. Genomewide association study for seeding emergence and tiller number using SNP markers in an elite winter wheat population. Journal of Genetics, 96, 177–186.
Consortium T. 2014. A chromosome-based draft sequence of the hexaploid bread wheat (Triticum aestivum L.) genome. Science, 345, 1251788.
Dfreynolds M C. 2000. Changes in grain weight as a consequence of de-graining treatments at pre- and post-anthesis in synthetic hexaploid lines of wheat (Triticum durum×T. tauschii). Australian Journal of Plant Physiology, 27, 183–191.
Dobrovolskaya O, Pont C, Sibout R, Martinek P, Badaeva E, Murat F, Chosson A, Watanable N, Prat E, Gauter N, Gautier V, Poncet C, Orlov T L, Krasnikov A A, Berges H, Salina E, Laikova L, Salse J. 2015. Frizzy panicle drives supernumerary spikelets in bread wheat. Plant Physiology,167, 189–199.
Du B B, Wang Q F, Sun G L, Ren X F , Cheng Y, Wang Y X, Gao S, Li C D, Sun D F. 2019. Mapping dynamic QTL dissects the genetic architecture of grain size and grain filling rate at different grain-filling stages in barley. Scientific Reports, 9, 18823.
Duan X X, Yu H X, Ma W J, Sun J Q, Zhao Y, Yang R C, Ning T Y, Li Q F, Liu Q Q, Guo T T, Yan M, Tian J C, Chen J S. 2020. A major and stable QTL controlling wheat thousand grain weight: Identification, characterization, and CAPS marker development. Molecular Breeding, 40, 68.
Edwards D, Batley J, Snowdon R J. 2013. Accessing complex crop genomes with next-generation sequencing. Theoretical and Applied Genetics, 126, 1–11.
Ellis H, Spielmeyer W, Gale R, Rebetzke J, Richards A. 2002. “Perfect” markers for the Rht-B1b and Rht-D1b dwarfing genes in wheat. Theoretical and Applied Genetics, 105, 1038–1042.
Evans L T, Rawson H M. 1970. Photosynthesis and respiration by the flag leaf and components of the ear during grain development in wheat. Australian Journal of Biological Sciences, 23, 245–254.
Fischer R A. 2008. The importance of grain or kernel number in wheat: A reply to sinclair and jamieson. Field Crops Research, 105, 15–21.
Fischer T. 2011. Wheat physiology: A review of recent developments. Crop and Pasture Science, 62, 95–114.
Fleming A J, Mcqueen-Mason S, Mandel T, Kuhlemeiert C. 1997. Induction of leaf primordia by the cell wall protein expansin. Science, 276, 1415–1418.
Gupta P K, Rustgi S, Kumar N. 2006. Genetic and molecular basis of grain size and grain number and its relevance to grain productivity in higher plants. Genome, 49, 565–571.
Hai L, Guo H J, Wagner C, Xiao S H, Friedt W. 2008. Genomic regions for yield and yield parameters in Chinese winter wheat (Triticum aestivum L.) genotypes tested under varying environments correspond to QTL in widely different wheat materials. Plant Science, 175, 226–232.
Hanif M, Gao F, Liu J, Wen W, Zhang Y, Rasheed A, Xia X, He Z, Cao S. 2016. TaTGW6-A1, an ortholog of rice TGW6, is associated with grain weight and yield in breadwheat. Molecular Breeding, 36, 1.
Hao Y, Velu G, Peña R, Singh S, Singh R. 2014. Genetic loci associated with high grain zinc concentration and pleiotropic effect on kernel weight in wheat (Triticum aestivum L.). Molecular Breeding, 34, 1893–1902.
Holland J B. 2007. Genetic architecture of complex traits in plants. Current Opinion in Plant Biology, 10, 156–161.
Huang Y, Kong Z, Wu X, Cheng R, Yu D, Ma Z. 2015. Characterization of three wheat grain weight QTLs that differentially affect kernel dimensions. Theoretical and Applied Genetics, 128, 2437–2445.
Jia H, Wan H, Yang S, Zhang Z, Kong Z, Xue S, Zhang L, Ma Z. 2013. Genetic dissection of yield-related traits in a recombinant inbred line population created using a key breeding parent in China’s wheat breeding. Theoretical and Applied Genetics, 126, 2123–2139.
Kirigwi F M, Ginkel M V, Brown-Guedira G, Gill B S, Fritz A K. 2007. Markers associated with a QTL for grain yield in wheat under drought. Molecular Breeding, 20, 401–413.
Knott D R, Gebeyehou G. 1987. Relationships between the lengths of the vegetative and grain filling periods and agronomic characters in three durum wheat crosses. Crop Science, 27, 857–860.
Krill A M, Kirst M, Kochian L V, Buckler E S, Hoekenga O A. 2010. Association and linkage analysis of aluminum tolerance genes in maize. PLoS ONE, 5, e9958.
Kumar N, Kulwal P L, Balyan H S, Gupta P K. 2007. QTL mapping for yield and yield contributing traits in two mapping populations of bread wheat. Molecuar Breeding, 19, 163–177.
Kumari S, Mir R R, Tyagi S, Balyan H S, Gupta P K. 2019. Validation of QTL for grain weight using MAS-derived pairs of NILs in bread wheat (Triticum aestivum L.). Journal of Plant Biochemistry and Biotechnology, 28, 336–344.
Li F J, Wen W , He Z H , Liu J D, Jin H, Cao S H, Geng H W, Yan J, Zhang P Z, Wan Y X, Xia X C. 2018. Genome-wide linkage mapping of yield-related traits in three Chinese bread wheat populations using high-density SNP markers. Theoretical and Applied Genetics, 131, 1903–1924.
Li M, Li X X, Zhou Z J, Wu P Z, Fang M C, Pan X P, Lin Q P, Luo W B, Wu G J, Li H Q. 2016. Reassessment of the four yield-related genes Gn1a, DEP1, GS3, and IPA1 in rice using a CRISPR/Cas9 System. Frontiers in Plant Science, 7, 377.
Li Q F, Zhang Y, Liu T T, Wang F F, Liu K, Chen J S, Tian J S. 2015. Genetic analysis of kernel weight and kernel size in wheat (Triticum aestivum L.) using unconditional and conditional QTL mapping. Molecular Breeding, 35, 194.
Li W L, Gill B S. 1970. Genomics for Cereal Improvement. Cereal Genomics, Netheriands. pp. 585–634.
Liu K, Sun X X, Ning T Y, Duan X X, Wang Q L, Liu T T, An Y L, Gaun X, Tain J C, Chen J S. 2018. Genetic dissection of wheat panicle traits using linkage analysis and a genome-wide association study. Theoretical and Applied Genetics,131, 1073–1090.
Ma W, Appels R, Bekes F, Larroque O, Morell M K, Gale K R. 2005. Genetic characterisation of dough rheological properties in a wheat doubled haploid population: Additive genetic effects and epistatic interactions. Theoretical and Applied Genetics, 111, 410–422.
Ma Z Q, Zhao D M, Zhang C Q, Zhang Z Z, Xue S L, Lin F, Kong Z X, Tian D G, Luo Q Y. 2007. Molecular genetic analysis of five spike-related traits in wheat using RIL and immortalized F2 populations. Molecular Genetics and Genomics, 277, 31–42.
Mangini G, Blanco A , Nigro D , Signorile M A , Simeone R. 2021. Candidate genes and quantitative trait loci for grain yield and seed size in durum wheat. Plants (Basel), 10, 312.
Mashiringwani N A, Mashingaidze K, Kangai J, Olsen K. 1994. Genetic basis of grain filling rate in wheat (Triticum aestivum L. emend. Thell.). Euphytica, 76, 33–44.
Patil R M, Tamhankar S A, Oak M D, Raut A L, Honrao B K, Rao V S, Misra S C. 2013. Mapping of QTL for agronomic traits and kernel characters in durum wheat (Triticum durum desf.). Euphytica, 190, 117–129.
Rafalski J A. 2010. Association genetics in crop improvement. Current Opinionin Plant Biology, 13, 174–180.
Rajiv S, Fulvia B, Hazel B, Paul H, Andreas M, Klaus P, Thomas W T B, FlavellA J. 2018. Genome-wide association of yield traits in a nested association mapping population of barley reveals new gene diversity for future breeding. Journal of Experimental Botany, 69, 3811–3822.
Sanford D. 1985. Variation in kernel growth characters among soft red winter wheats. Crop Science, 25, 626–630.
Shi W P, Hao C Y, Zhang Y, Cheng J Y, Zhang Z, Liu J, Yi X, Cheng X M, Sun D Z, Xu Y H, Zhang X Y, Cheng S H, Guo P Y, Guo J. 2017. A combined association mapping and linkage analysis of kernel number per spike in common wheat (Triticum aestivum L.). Frontiers in Plant Science, 8, 1412.
Shu X L, Rasmussen S K. 2014. Quantification of amylose, amylopectin, and β-glucan in search for genes controlling the three major quality traits in barley by genome-wide association studies. Frontiers in Plant Science, 5, 197.
Su Z, Jin S, Lu Y, Zhang G, Chao S, Bai G. 2016. Single nucleotide polymorphism tightly linked to a major QTL on chromosome 7A for both kernel length and kernel weight in wheat. Molecular Breeding, 36, 15.
Tollenaar M, Lee E A. 2006.Dissection of physiological processes underlying grain yield in maize by examining genetic improvement and heterosis. Maydica, 51, 399–408.
Wang D L, Zhu J, Li Z K, Paterson A H. 1999. Mapping QTL with epistatic effects and QTL×Environment interactions by mixed linear model approaches. Theoretical and Applied Genetics, 99, 1255–1264.
Wang E T, Wang J J, Zhu X D, Hao W, Wang L Y, Li Q, Zhang L X, He W, Lu B R, Lin H X, Ma H, Zhang G Q, He Z H. 2008. Control of rice grain-filling and yield by a gene with a potential signature of domestication. Nature Genetics, 40, 1370–1374.
Wang J, Liu W, Wang H, Li L, Wu J, Yang X, Li X, Gao A. 2011. QTL mapping of yield-related traits in the wheat germplasm 3228. Euphytica, 177, 277–292.
Wang R X, Hai L, Zhang X Y, You G X, Yan C S, Xiao S H. 2009.QTL mapping for grain filling rate and yield-related traits in RILs of the Chinese winter wheat population Heshangmai × Yu8679. Theoretical and Applied Genetics, 118, 313–325.
Wang R X, Zhang X Y, Wu L, Wang R, Hai L, Yan C S, You G X, Xiao S H. 2008. QTL mapping for grain filling rate and thousand-grain weight in different ecological environments in wheat. Acta Agronomica Sinica, 34, 1750–1756. (in Chinese)
Wang S K, Wu K, Yuan Q B, Liu X Y, Liu Z B, Lin X Y, Zeng R Z, Zhu H T, Dong G J, Qian Q, Zhang G Q, Fu X D. 2012. Control of grain size, shape and quality by OsSPL16 in rice. Nature Genetics, 44, 950–954.
Wiegand C L, Cuellar J A. 1981. Duration of grain filling and kernel weight of wheat as affected by temperature. Crop Science, 21, 95–101.
Williams K, Sorrells M E. 2014. Three-dimensional seed size and shape QTL in hexaploid wheat (Triticum aestivum L.) populations. Crop Science, 54, 98–110.
Wu Q H, Chen Y X, Fu L, Zhou S H, Chen J J, Zhang D, Quan S H, Wang Z Z, Li D, Wang G X, Zhang D Y, Yuan C G, Wang L X, You M S, Han J, Zhao X Y. 2016. QTL mapping of flag leaf traits in common wheat using an integrated high-density SSR and SNP genetic linkage map. Euphytica, 208, 337–351.
Xie Q, Mayes S, Sparke D L. 2015. Carpel size, grain filling, and morphology determine individual grain weight in wheat. Journal of Experimental Botany, 66, 6715–6730.
Xu D G, Wen W, Fu L P, Li F J, Li J H, Xie L, Xia X C, Ni Z F, He Z H, Cao S H. 2019. Genetic dissection of a major QTL for kernel weight spanning the Rht-B1 locus in bread wheat. Theoretical and Applied Genetics, 132, 3191–3200.
Yang J, Zhu J. 2005. Methods for predicting superior genotypes under multiple environments based on QTL effects. Theoretical and Applied Genetics, 110, 1268–1274.
Yang J, Zhu J, Williams RW. 2007.Mapping the genetic architecture of complex traits in experimental populations. Bioinformatics, 23, 1527–1536.
Yano M. 2001. Genetic and molecular dissection of naturally occurring variation. Current Opinionin Plant Biology, 4, 130–135.
Zhang D, Wang B, Zhao J, Zhao X, Zhang L, Liu D, Dong L, Wang D, Mao L, Li A. 2015. Divergence in homoeolog expression of the grain length-associated gene GASR7 during wheat allohexaploidization. The Crop Journal, 3, 1–9.
Zhang J F, Xu Y Q, Dong J M, Peng L N, Feng X, Wang X, Li F, Miao Y, Yao S K, Zhao Q Q, Feng S S, Hu B Z, Li F L. 2018. Genome-wide identification of wheat (Triticum aestivum L.) expansins and expansion expression analysis in cold-tolerant and cold-sensitive wheat cultivars. PLoS ONE, 13, e0195138.
Zhang J J, Dell B, Biddulph B, Drake-Brockman F, Walker E, Khan N, Wong D, Hayden M, Appels R. 2013. Wild-type alleles of Rht-B1 and Rht-D1 as independent determinants of thousand-grain weight and kernel number per spike in wheat. Molecular Breeding, 32, 771–783.
Zhang Y, Li D, Zhang D, Zhao X, Cao X, Dong L, Liu J, Chen K, Zhang H, Gao C. 2018. Analysis of the functions of TaGW2 homoeologs in wheat grain weight and protein content traits. Plant Journal for Cell and Molecular Biology, 94, 857–866.
Zhang Z H, Liu ZH, Cui Z T, Hu Y M, Wang B, Tang J H. 2013. Genetic analysis of grain filling rate using conditional QTL mapping in maize. PLoS ONE, 8, e56344.
Zhu D M, Wang H, Liu D T, Gao D R, Lu G F, Wang J C, Gao Z F, Lu C B. 2019. Characteristics of grain filling and dehydration in wheat. Scientia Agricultura Sinica, 52, 4251–4261. (in Chinese) 


[1] CHU Jin-peng, GUO Xin-hu, ZHENG Fei-na, ZHANG Xiu, DAI Xing-long, HE Ming-rong. Effect of delayed sowing on grain number, grain weight, and protein concentration of wheat grains at specific positions within spikes[J]. >Journal of Integrative Agriculture, 2023, 22(8): 2359-2369.
[2] FAN Ting-lu, LI Shang-zhong, ZHAO Gang, WANG Shu-ying, ZHANG Jian-jun, WANG Lei, DANG Yi, CHENG Wan-li. Response of dryland crops to climate change and drought-resistant and water-suitable planting technology: A case of spring maize[J]. >Journal of Integrative Agriculture, 2023, 22(7): 2067-2079.
[3] ZHANG Chong, WANG Dan-dan, ZHAO Yong-jian, XIAO Yu-lin, CHEN Huan-xuan, LIU He-pu, FENG Li-yuan, YU Chang-hao, JU Xiao-tang. Significant reduction of ammonia emissions while increasing crop yields using the 4R nutrient stewardship in an intensive cropping system[J]. >Journal of Integrative Agriculture, 2023, 22(6): 1883-1895.
[4] DU Xiang-bei, XI Min, WEI Zhi, CHEN Xiao-fei, WU Wen-ge, KONG Ling-cong. Raised bed planting promotes grain number per spike in wheat grown after rice by improving spike differentiation and enhancing photosynthetic capacity[J]. >Journal of Integrative Agriculture, 2023, 22(6): 1631-1644.
[5] WU Xian-xin, ZANG Chao-qun, ZHANG Ya-zhao, XU Yi-wei, WANG Shu, LI Tian-ya, GAO Li.

Characterization of wheat monogenic lines with known Sr genes and wheat cultivars for resistance to three new races of Puccinia graminis f. sp. tritici in China [J]. >Journal of Integrative Agriculture, 2023, 22(6): 1740-1749.

[6] DONG Xiu-chun, QIAN Tai-feng, CHU Jin-peng, ZHANG Xiu, LIU Yun-jing, DAI Xing-long, HE Ming-rong. Late sowing enhances lodging resistance of wheat plants by improving the biosynthesis and accumulation of lignin and cellulose[J]. >Journal of Integrative Agriculture, 2023, 22(5): 1351-1365.
[7] ZHANG Zhen-zhen, CHENG Shuang, FAN Peng, ZHOU Nian-bing, XING Zhi-peng, HU Ya-jie, XU Fang-fu, GUO Bao-wei, WEI Hai-yan, ZHANG Hong-cheng. Effects of sowing date and ecological points on yield and the temperature and radiation resources of semi-winter wheat[J]. >Journal of Integrative Agriculture, 2023, 22(5): 1366-1380.
[8] LI Jiao-jiao, ZHAO Li, LÜ Bo-ya, FU Yu, ZHANG Shu-fa, LIU Shu-hui, YANG Qun-hui, WU Jun, LI Jia-chuang, CHEN Xin-hong. Development and characterization of a novel common wheat–Mexico Rye T1DL·1RS translocation line with stripe rust and powdery mildew resistance[J]. >Journal of Integrative Agriculture, 2023, 22(5): 1291-1307.
[9] ZHAO Xiao-dong, QIN Xiao-rui, LI Ting-liang, CAO Han-bing, XIE Ying-he. Effects of planting patterns plastic film mulching on soil temperature, moisture, functional bacteria and yield of winter wheat in the Loess Plateau of China[J]. >Journal of Integrative Agriculture, 2023, 22(5): 1560-1573.
[10] JIANG Yun, WANG De-li, HAO Ming, ZHANG Jie, LIU Deng-cai.

Development and characterization of wheat–Aegilops kotschyi 1Uk(1A) substitution line with positive dough quality parameters [J]. >Journal of Integrative Agriculture, 2023, 22(4): 999-1008.

[11] Sunusi Amin ABUBAKAR, Abdoul Kader Mounkaila HAMANI, WANG Guang-shuai, LIU Hao, Faisal MEHMOOD, Abubakar Sadiq ABDULLAHI, GAO Yang, DUAN Ai-wang. Growth and nitrogen productivity of drip-irrigated winter wheat under different nitrogen fertigation strategies in the North China Plain[J]. >Journal of Integrative Agriculture, 2023, 22(3): 908-922.
[12] TU Ke-ling, YIN Yu-lin, YANG Li-ming, WANG Jian-hua, SUN Qun. Discrimination of individual seed viability by using the oxygen consumption technique and headspace-gas chromatography-ion mobility spectrometry[J]. >Journal of Integrative Agriculture, 2023, 22(3): 727-737.
[13] TIAN Jin-yu, LI Shao-ping, CHENG Shuang, LIU Qiu-yuan, ZHOU Lei, TAO Yu, XING Zhi-peng, HU Ya-jie, GUO Bao-wei, WEI Hai-yan, ZHANG Hong-cheng. Increasing the appropriate seedling density for higher yield in dry direct-seeded rice sown by a multifunctional seeder after wheat-straw return[J]. >Journal of Integrative Agriculture, 2023, 22(2): 400-416.
[14] HU Wen-jing, FU Lu-ping, GAO De-rong, LI Dong-sheng, LIAO Sen, LU Cheng-bin. Marker-assisted selection to pyramid Fusarium head blight resistance loci Fhb1 and Fhb2 in a high-quality soft wheat cultivar Yangmai 15[J]. >Journal of Integrative Agriculture, 2023, 22(2): 360-370.
[15] Zaid CHACHAR, Siffat Ullah KHAN, ZHANG Xue-huan, LENG Peng-fei, ZONG Na, ZHAO Jun. Characterization of transgenic wheat lines expressing maize ABP7 involved in kernel development[J]. >Journal of Integrative Agriculture, 2023, 22(2): 389-399.
No Suggested Reading articles found!