Please wait a minute...
Journal of Integrative Agriculture  2022, Vol. 21 Issue (10): 2805-2817    DOI: 10.1016/j.jia.2022.07.032
Special Issue: 麦类遗传育种合辑Triticeae Crops Genetics · Breeding · Germplasm Resources
Crop Science Advanced Online Publication | Current Issue | Archive | Adv Search |
Genetic dissection of the grain filling rate and related traits through linkage analysis and genome-wide association study in bread wheat

YU Hai-xia1*, DUAN Xi-xian1*, SUN Ai-qing1, SUN Xiao-xiao1, ZHANG Jing-juan2, SUN Hua-qing3, SUN Yan-yan1, NING Tang-yuan1, TIAN Ji-chun1, WANG Dong-xue1, LI Hao1, FAN Ke-xin1, WANG Ai-ping2, MA Wu-jun4, CHEN Jian-sheng1

1 State Key Laboratory of Crop Biology/Key Laboratory of Crop Water Physiology and Drought-tolerance Germplasm Improvement, Minstry of Agriculture and Rural Affairs/Group of Wheat Quality Breeding, College of Agronomy, Shandong Agricultural University, Tai’an 271018, P.R.China

2 Dezhou Agricultural Protection and Technological Extension Center, Dezhou 253000, P.R.China

3 Zhongnong Tiantai Seed Co., Ltd., Pingyi 273300, P.R.China

4 School of Veterinary and Life Sciences, Murdoch University, Murdoch, WA 6150, Australia

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  籽粒灌浆速率(GFR)在小麦产量形成过程中起着关键作用,但由于表型调查困难等原因,对其遗传解析研究甚少。本研究测定了1个重组自交系群体和1个自然群体籽粒灌浆性状,基于高密度图谱进行相关性状的连锁分析和全基因组关联分析。在染色体 1B、4B和5A上鉴定到17个稳定的QTLs。 其中IWB19555-IWB56078 连锁区间对性状 GFR1、GFRmax、KL、KW、KT 和TKW具有多效性,表型变异解释率(PVE)为13.38%(KW)- 33.69%(TKW)。检测到198个显著性状关联位点(MTAs)分布在除了3D和4D之外的染色体上。GFR的主要关联位点包括 IWB44469(11.27%)、IWB8156(12.56%)和IWB24812(14.46%)。检测到IWB41019是籽粒大小相关的重要多效性位点。通过GWAS鉴定到的IWB35850与连锁分析获得的QGFRmax2B.3-11位于同一区域,该区域包含两个高置信候选基因。检测到两个重要的粒重相关 QTL与灌浆速率 QTL定位到同一区间。这些发现有助于解析 GFR 的遗传基础,为小麦产量性状 QTL候选基因预测提供理论依据。

Abstract  

Wheat grain yield is generally sink-limited during grain filling.  The grain-filling rate (GFR) plays a vital role but is poorly studied due to the difficulty of phenotype surveys.  This study explored the grain-filling traits in a recombinant inbred population and wheat collection using two highly saturated genetic maps for linkage analysis and genome-wide association study (GWAS).  Seventeen stable additive quantitative trait loci (QTLs) were identified on chromosomes 1B, 4B, and 5A.  The linkage interval between IWB19555 and IWB56078 showed pleiotropic effects on GFR1, GFRmax, kernel length (KL), kernel width (KW), kernel thickness (KT), and thousand kernel weight (TKW), with the phenotypic variation explained (PVE) ranging from 13.38% (KW) to 33.69% (TKW).  198 significant marker-trait associations (MTAs) were distributed across most chromosomes except for 3D and 4D.  The major associated sites for GFR included IWB44469 (11.27%), IWB8156 (12.56%) and IWB24812 (14.46%).  Linkage analysis suggested that IWB35850, identified through GWAS, was located in approximately the same region as QGFRmax2B.3-11, where two high-confidence candidate genes were present.  Two important grain weight (GW)-related QTLs colocalized with grain-filling QTLs.  The findings contribute to understanding the genetic architecture of the GFR and provide a basic approach to predict candidate genes for grain yield trait QTLs.

Keywords:  wheat        grain-filling rate        linkage analysis        genome-wide association study  
Received: 25 February 2021   Accepted: 06 July 2021
Fund: This work was supported by the National Natural Science Foundation of China (31971936) and the Science &Technology Projects of Shandong Province, China (2019YQ028, 2020CXGC010805, 2019B08, 2019YQ014 and ZR2020MC093). 
About author:  YU Hai-xia, E-mail: yuhaixia66@163.com; DUAN Xi-xian, E-mail: 1278901428@qq.com; Correspondence CHEN Jian-sheng, Tel: +86-538-8241959, E-mail: jshch@sdau.edu.cn; MA Wu-jun, E-mail: W.Ma@murdoch.edu.au * These authors contributed equally to this study.

Cite this article: 

YU Hai-xia, DUAN Xi-xian, SUN Ai-qing, SUN Xiao-xiao, ZHANG Jing-juan, SUN Hua-qing, SUN Yan-yan, NING Tang-yuan, TIAN Ji-chun, WANG Dong-xue, LI Hao, FAN Ke-xin, WANG Ai-ping, MA Wu-jun, CHEN Jian-sheng. 2022. Genetic dissection of the grain filling rate and related traits through linkage analysis and genome-wide association study in bread wheat. Journal of Integrative Agriculture, 21(10): 2805-2817.

Ahmed A S, Zhang J, Ma W, Dell B. 2018. Contributions of TaSUTs to grain weight in wheat under drought. Plant Molecular Biology, 98, 4–5.
Alonso M P, Abbate P E, Mirabella N E, Merlos F A, Panelo J S, Pontaroli A C. 2018. Analysis of sink/source relations in bread wheat recombinant inbred lines and commercial cultivars under a high yield potential environment. European Journal of Agronomy, 93, 82–87.
Atwell S, Huang Y S, Vilhjalmsson B J, Willems G, Horton M, Li Y, Meng D Z, Platt A, Tarone A M, Hu T T, Jiang R, Muliyati N W, Zhang X, Amer M A, Baxter I, Brachi B, Chory J, Dean C, Debieu M, Meaux J D, et al. 2010. Genome-wide association study of 107 phenotypes in Arabidopsis thaliana inbred lines. Nature, 465, 627–631.
Baillot N, Girousse C, Allard V, Piquet-Pissaloux A, Gouis J L. 2018. Different grain-filling rates explain grain-weight differences along the wheat ear. PLoS ONE, 13, e0209597.
Breseghello F, Sorrells M E. 2006. Association mapping of kernel size and milling quality in wheat (Triticum aestivum L.) cultivars. Genetics, 172, 1165–1177.
Brinton J, Simmonds J, Minter F, Leverington-Waite M, Snape J, Uauy C. 2017. Increased pericarp cell length underlies a major quantitative trait locus for grain weight inhexaploid wheat. New Phytologist, 215, 1026–1038.
Chen G F, Wu R G, Li D M, Yu H X, Deng Z, Tian J C. 2017. Genomewide association study for seeding emergence and tiller number using SNP markers in an elite winter wheat population. Journal of Genetics, 96, 177–186.
Consortium T. 2014. A chromosome-based draft sequence of the hexaploid bread wheat (Triticum aestivum L.) genome. Science, 345, 1251788.
Dfreynolds M C. 2000. Changes in grain weight as a consequence of de-graining treatments at pre- and post-anthesis in synthetic hexaploid lines of wheat (Triticum durum×T. tauschii). Australian Journal of Plant Physiology, 27, 183–191.
Dobrovolskaya O, Pont C, Sibout R, Martinek P, Badaeva E, Murat F, Chosson A, Watanable N, Prat E, Gauter N, Gautier V, Poncet C, Orlov T L, Krasnikov A A, Berges H, Salina E, Laikova L, Salse J. 2015. Frizzy panicle drives supernumerary spikelets in bread wheat. Plant Physiology,167, 189–199.
Du B B, Wang Q F, Sun G L, Ren X F , Cheng Y, Wang Y X, Gao S, Li C D, Sun D F. 2019. Mapping dynamic QTL dissects the genetic architecture of grain size and grain filling rate at different grain-filling stages in barley. Scientific Reports, 9, 18823.
Duan X X, Yu H X, Ma W J, Sun J Q, Zhao Y, Yang R C, Ning T Y, Li Q F, Liu Q Q, Guo T T, Yan M, Tian J C, Chen J S. 2020. A major and stable QTL controlling wheat thousand grain weight: Identification, characterization, and CAPS marker development. Molecular Breeding, 40, 68.
Edwards D, Batley J, Snowdon R J. 2013. Accessing complex crop genomes with next-generation sequencing. Theoretical and Applied Genetics, 126, 1–11.
Ellis H, Spielmeyer W, Gale R, Rebetzke J, Richards A. 2002. “Perfect” markers for the Rht-B1b and Rht-D1b dwarfing genes in wheat. Theoretical and Applied Genetics, 105, 1038–1042.
Evans L T, Rawson H M. 1970. Photosynthesis and respiration by the flag leaf and components of the ear during grain development in wheat. Australian Journal of Biological Sciences, 23, 245–254.
Fischer R A. 2008. The importance of grain or kernel number in wheat: A reply to sinclair and jamieson. Field Crops Research, 105, 15–21.
Fischer T. 2011. Wheat physiology: A review of recent developments. Crop and Pasture Science, 62, 95–114.
Fleming A J, Mcqueen-Mason S, Mandel T, Kuhlemeiert C. 1997. Induction of leaf primordia by the cell wall protein expansin. Science, 276, 1415–1418.
Gupta P K, Rustgi S, Kumar N. 2006. Genetic and molecular basis of grain size and grain number and its relevance to grain productivity in higher plants. Genome, 49, 565–571.
Hai L, Guo H J, Wagner C, Xiao S H, Friedt W. 2008. Genomic regions for yield and yield parameters in Chinese winter wheat (Triticum aestivum L.) genotypes tested under varying environments correspond to QTL in widely different wheat materials. Plant Science, 175, 226–232.
Hanif M, Gao F, Liu J, Wen W, Zhang Y, Rasheed A, Xia X, He Z, Cao S. 2016. TaTGW6-A1, an ortholog of rice TGW6, is associated with grain weight and yield in breadwheat. Molecular Breeding, 36, 1.
Hao Y, Velu G, Peña R, Singh S, Singh R. 2014. Genetic loci associated with high grain zinc concentration and pleiotropic effect on kernel weight in wheat (Triticum aestivum L.). Molecular Breeding, 34, 1893–1902.
Holland J B. 2007. Genetic architecture of complex traits in plants. Current Opinion in Plant Biology, 10, 156–161.
Huang Y, Kong Z, Wu X, Cheng R, Yu D, Ma Z. 2015. Characterization of three wheat grain weight QTLs that differentially affect kernel dimensions. Theoretical and Applied Genetics, 128, 2437–2445.
Jia H, Wan H, Yang S, Zhang Z, Kong Z, Xue S, Zhang L, Ma Z. 2013. Genetic dissection of yield-related traits in a recombinant inbred line population created using a key breeding parent in China’s wheat breeding. Theoretical and Applied Genetics, 126, 2123–2139.
Kirigwi F M, Ginkel M V, Brown-Guedira G, Gill B S, Fritz A K. 2007. Markers associated with a QTL for grain yield in wheat under drought. Molecular Breeding, 20, 401–413.
Knott D R, Gebeyehou G. 1987. Relationships between the lengths of the vegetative and grain filling periods and agronomic characters in three durum wheat crosses. Crop Science, 27, 857–860.
Krill A M, Kirst M, Kochian L V, Buckler E S, Hoekenga O A. 2010. Association and linkage analysis of aluminum tolerance genes in maize. PLoS ONE, 5, e9958.
Kumar N, Kulwal P L, Balyan H S, Gupta P K. 2007. QTL mapping for yield and yield contributing traits in two mapping populations of bread wheat. Molecuar Breeding, 19, 163–177.
Kumari S, Mir R R, Tyagi S, Balyan H S, Gupta P K. 2019. Validation of QTL for grain weight using MAS-derived pairs of NILs in bread wheat (Triticum aestivum L.). Journal of Plant Biochemistry and Biotechnology, 28, 336–344.
Li F J, Wen W , He Z H , Liu J D, Jin H, Cao S H, Geng H W, Yan J, Zhang P Z, Wan Y X, Xia X C. 2018. Genome-wide linkage mapping of yield-related traits in three Chinese bread wheat populations using high-density SNP markers. Theoretical and Applied Genetics, 131, 1903–1924.
Li M, Li X X, Zhou Z J, Wu P Z, Fang M C, Pan X P, Lin Q P, Luo W B, Wu G J, Li H Q. 2016. Reassessment of the four yield-related genes Gn1a, DEP1, GS3, and IPA1 in rice using a CRISPR/Cas9 System. Frontiers in Plant Science, 7, 377.
Li Q F, Zhang Y, Liu T T, Wang F F, Liu K, Chen J S, Tian J S. 2015. Genetic analysis of kernel weight and kernel size in wheat (Triticum aestivum L.) using unconditional and conditional QTL mapping. Molecular Breeding, 35, 194.
Li W L, Gill B S. 1970. Genomics for Cereal Improvement. Cereal Genomics, Netheriands. pp. 585–634.
Liu K, Sun X X, Ning T Y, Duan X X, Wang Q L, Liu T T, An Y L, Gaun X, Tain J C, Chen J S. 2018. Genetic dissection of wheat panicle traits using linkage analysis and a genome-wide association study. Theoretical and Applied Genetics,131, 1073–1090.
Ma W, Appels R, Bekes F, Larroque O, Morell M K, Gale K R. 2005. Genetic characterisation of dough rheological properties in a wheat doubled haploid population: Additive genetic effects and epistatic interactions. Theoretical and Applied Genetics, 111, 410–422.
Ma Z Q, Zhao D M, Zhang C Q, Zhang Z Z, Xue S L, Lin F, Kong Z X, Tian D G, Luo Q Y. 2007. Molecular genetic analysis of five spike-related traits in wheat using RIL and immortalized F2 populations. Molecular Genetics and Genomics, 277, 31–42.
Mangini G, Blanco A , Nigro D , Signorile M A , Simeone R. 2021. Candidate genes and quantitative trait loci for grain yield and seed size in durum wheat. Plants (Basel), 10, 312.
Mashiringwani N A, Mashingaidze K, Kangai J, Olsen K. 1994. Genetic basis of grain filling rate in wheat (Triticum aestivum L. emend. Thell.). Euphytica, 76, 33–44.
Patil R M, Tamhankar S A, Oak M D, Raut A L, Honrao B K, Rao V S, Misra S C. 2013. Mapping of QTL for agronomic traits and kernel characters in durum wheat (Triticum durum desf.). Euphytica, 190, 117–129.
Rafalski J A. 2010. Association genetics in crop improvement. Current Opinionin Plant Biology, 13, 174–180.
Rajiv S, Fulvia B, Hazel B, Paul H, Andreas M, Klaus P, Thomas W T B, FlavellA J. 2018. Genome-wide association of yield traits in a nested association mapping population of barley reveals new gene diversity for future breeding. Journal of Experimental Botany, 69, 3811–3822.
Sanford D. 1985. Variation in kernel growth characters among soft red winter wheats. Crop Science, 25, 626–630.
Shi W P, Hao C Y, Zhang Y, Cheng J Y, Zhang Z, Liu J, Yi X, Cheng X M, Sun D Z, Xu Y H, Zhang X Y, Cheng S H, Guo P Y, Guo J. 2017. A combined association mapping and linkage analysis of kernel number per spike in common wheat (Triticum aestivum L.). Frontiers in Plant Science, 8, 1412.
Shu X L, Rasmussen S K. 2014. Quantification of amylose, amylopectin, and β-glucan in search for genes controlling the three major quality traits in barley by genome-wide association studies. Frontiers in Plant Science, 5, 197.
Su Z, Jin S, Lu Y, Zhang G, Chao S, Bai G. 2016. Single nucleotide polymorphism tightly linked to a major QTL on chromosome 7A for both kernel length and kernel weight in wheat. Molecular Breeding, 36, 15.
Tollenaar M, Lee E A. 2006.Dissection of physiological processes underlying grain yield in maize by examining genetic improvement and heterosis. Maydica, 51, 399–408.
Wang D L, Zhu J, Li Z K, Paterson A H. 1999. Mapping QTL with epistatic effects and QTL×Environment interactions by mixed linear model approaches. Theoretical and Applied Genetics, 99, 1255–1264.
Wang E T, Wang J J, Zhu X D, Hao W, Wang L Y, Li Q, Zhang L X, He W, Lu B R, Lin H X, Ma H, Zhang G Q, He Z H. 2008. Control of rice grain-filling and yield by a gene with a potential signature of domestication. Nature Genetics, 40, 1370–1374.
Wang J, Liu W, Wang H, Li L, Wu J, Yang X, Li X, Gao A. 2011. QTL mapping of yield-related traits in the wheat germplasm 3228. Euphytica, 177, 277–292.
Wang R X, Hai L, Zhang X Y, You G X, Yan C S, Xiao S H. 2009.QTL mapping for grain filling rate and yield-related traits in RILs of the Chinese winter wheat population Heshangmai × Yu8679. Theoretical and Applied Genetics, 118, 313–325.
Wang R X, Zhang X Y, Wu L, Wang R, Hai L, Yan C S, You G X, Xiao S H. 2008. QTL mapping for grain filling rate and thousand-grain weight in different ecological environments in wheat. Acta Agronomica Sinica, 34, 1750–1756. (in Chinese)
Wang S K, Wu K, Yuan Q B, Liu X Y, Liu Z B, Lin X Y, Zeng R Z, Zhu H T, Dong G J, Qian Q, Zhang G Q, Fu X D. 2012. Control of grain size, shape and quality by OsSPL16 in rice. Nature Genetics, 44, 950–954.
Wiegand C L, Cuellar J A. 1981. Duration of grain filling and kernel weight of wheat as affected by temperature. Crop Science, 21, 95–101.
Williams K, Sorrells M E. 2014. Three-dimensional seed size and shape QTL in hexaploid wheat (Triticum aestivum L.) populations. Crop Science, 54, 98–110.
Wu Q H, Chen Y X, Fu L, Zhou S H, Chen J J, Zhang D, Quan S H, Wang Z Z, Li D, Wang G X, Zhang D Y, Yuan C G, Wang L X, You M S, Han J, Zhao X Y. 2016. QTL mapping of flag leaf traits in common wheat using an integrated high-density SSR and SNP genetic linkage map. Euphytica, 208, 337–351.
Xie Q, Mayes S, Sparke D L. 2015. Carpel size, grain filling, and morphology determine individual grain weight in wheat. Journal of Experimental Botany, 66, 6715–6730.
Xu D G, Wen W, Fu L P, Li F J, Li J H, Xie L, Xia X C, Ni Z F, He Z H, Cao S H. 2019. Genetic dissection of a major QTL for kernel weight spanning the Rht-B1 locus in bread wheat. Theoretical and Applied Genetics, 132, 3191–3200.
Yang J, Zhu J. 2005. Methods for predicting superior genotypes under multiple environments based on QTL effects. Theoretical and Applied Genetics, 110, 1268–1274.
Yang J, Zhu J, Williams RW. 2007.Mapping the genetic architecture of complex traits in experimental populations. Bioinformatics, 23, 1527–1536.
Yano M. 2001. Genetic and molecular dissection of naturally occurring variation. Current Opinionin Plant Biology, 4, 130–135.
Zhang D, Wang B, Zhao J, Zhao X, Zhang L, Liu D, Dong L, Wang D, Mao L, Li A. 2015. Divergence in homoeolog expression of the grain length-associated gene GASR7 during wheat allohexaploidization. The Crop Journal, 3, 1–9.
Zhang J F, Xu Y Q, Dong J M, Peng L N, Feng X, Wang X, Li F, Miao Y, Yao S K, Zhao Q Q, Feng S S, Hu B Z, Li F L. 2018. Genome-wide identification of wheat (Triticum aestivum L.) expansins and expansion expression analysis in cold-tolerant and cold-sensitive wheat cultivars. PLoS ONE, 13, e0195138.
Zhang J J, Dell B, Biddulph B, Drake-Brockman F, Walker E, Khan N, Wong D, Hayden M, Appels R. 2013. Wild-type alleles of Rht-B1 and Rht-D1 as independent determinants of thousand-grain weight and kernel number per spike in wheat. Molecular Breeding, 32, 771–783.
Zhang Y, Li D, Zhang D, Zhao X, Cao X, Dong L, Liu J, Chen K, Zhang H, Gao C. 2018. Analysis of the functions of TaGW2 homoeologs in wheat grain weight and protein content traits. Plant Journal for Cell and Molecular Biology, 94, 857–866.
Zhang Z H, Liu ZH, Cui Z T, Hu Y M, Wang B, Tang J H. 2013. Genetic analysis of grain filling rate using conditional QTL mapping in maize. PLoS ONE, 8, e56344.
Zhu D M, Wang H, Liu D T, Gao D R, Lu G F, Wang J C, Gao Z F, Lu C B. 2019. Characteristics of grain filling and dehydration in wheat. Scientia Agricultura Sinica, 52, 4251–4261. (in Chinese) 


[1] Xiaogang He, Zirong Li, Sicheng Guo, Xingfei Zheng, Chunhai Liu, Zijie Liu, Yongxin Li, Zheming Yuan, Lanzhi Li. Epistasis-aware genome-wide association studies provide insights into the efficient breeding of high-yield and high-quality rice[J]. >Journal of Integrative Agriculture, 2024, 23(8): 2541-2556.
[2] Zihui Liu, Xiangjun Lai, Yijin Chen, Peng Zhao, Xiaoming Wang, Wanquan Ji, Shengbao Xu. Selection and application of four QTLs for grain protein content in modern wheat cultivars[J]. >Journal of Integrative Agriculture, 2024, 23(8): 2557-2570.
[3] Gensheng Zhang, Mudi Sun, Xinyao Ma, Wei Liu, Zhimin Du, Zhensheng Kang, Jie Zhao. Yr5-virulent races of Puccinia striiformis f. sp. tritici possess relative parasitic fitness higher than current main predominant races and potential risk[J]. >Journal of Integrative Agriculture, 2024, 23(8): 2674-2685.
[4] Wenjie Yang, Jie Yu, Yanhang Li, Bingli Jia, Longgang Jiang, Aijing Yuan, Yue Ma, Ming Huang, Hanbing Cao, Jinshan Liu, Weihong Qiu, Zhaohui Wang. Optimized NPK fertilizer recommendations based on topsoil available nutrient criteria for wheat in drylands of China[J]. >Journal of Integrative Agriculture, 2024, 23(7): 2421-2433.
[5] Bingli Jiang, Wei Gao, Yating Jiang, Shengnan Yan, Jiajia Cao, Litian Zhang, Yue Zhang, Jie Lu, Chuanxi Ma, Cheng Chang, Haiping Zhang. Identification of P-type plasma membrane H+-ATPases in common wheat and characterization of TaHA7 associated with seed dormancy and germination[J]. >Journal of Integrative Agriculture, 2024, 23(7): 2164-2177.
[6] Yibo Hu, Feng Qin, Zhen Wu, Xiaoqin Wang, Xiaolong Ren, Zhikuan Jia, Zhenlin Wang, Xiaoguang Chen, Tie Cai. Heterogeneous population distribution enhances resistance to wheat lodging by optimizing the light environment[J]. >Journal of Integrative Agriculture, 2024, 23(7): 2211-2226.
[7] Yongchao Hao, Fanmei Kong, Lili Wang, Yu Zhao, Mengyao Li, Naixiu Che, Shuang Li, Min Wang, Ming Hao, Xiaocun Zhang, Yan Zhao.

Genome-wide association study of grain micronutrient concentrations in bread wheat [J]. >Journal of Integrative Agriculture, 2024, 23(5): 1468-1480.

[8] Zhikai Cheng, Xiaobo Gu, Yadan Du, Zhihui Zhou, Wenlong Li, Xiaobo Zheng, Wenjing Cai, Tian Chang.

Spectral purification improves monitoring accuracy of the comprehensive growth evaluation index for film-mulched winter wheat [J]. >Journal of Integrative Agriculture, 2024, 23(5): 1523-1540.

[9] YANG Wei-bing, ZHANG Sheng-quan, HOU Qi-ling, GAO Jian-gang, WANG Han-Xia, CHEN Xian-Chao, LIAO Xiang-zheng, ZHANG Feng-ting, ZHAO Chang-ping, QIN Zhi-lie.

Transcriptomic and metabolomic analysis provides insights into lignin biosynthesis and accumulation and differences in lodging resistance in hybrid wheat [J]. >Journal of Integrative Agriculture, 2024, 23(4): 1105-1117.

[10] Xuan Li, Shaowen Wang, Yifan Chen, Danwen Zhang, Shanshan Yang, Jingwen Wang, Jiahua Zhang, Yun Bai, Sha Zhang.

Improved simulation of winter wheat yield in North China Plain by using PRYM-Wheat integrated dry matter distribution coefficient [J]. >Journal of Integrative Agriculture, 2024, 23(4): 1381-1392.

[11] Yingxia Dou, Hubing Zhao, Huimin Yang, Tao Wang, Guanfei Liu, Zhaohui Wang, Sukhdev Malhi.

The first factor affecting dryland winter wheat grain yield under various mulching measures: Spike number [J]. >Journal of Integrative Agriculture, 2024, 23(3): 836-848.

[12] Yonghui Fan, Boya Qin, Jinhao Yang, Liangliang Ma, Guoji Cui, Wei He, Yu Tang, Wenjing Zhang, Shangyu Ma, Chuanxi Ma, Zhenglai Huang.

Night warming increases wheat yield by improving pre-anthesis plant growth and post-anthesis grain starch biosynthesis [J]. >Journal of Integrative Agriculture, 2024, 23(2): 536-550.

[13] Wenqiang Wang, Xizhen Guan, Yong Gan, Guojun Liu, Chunhao Zou, Weikang Wang, Jifa Zhang, Huifei Zhang, Qunqun Hao, Fei Ni, Jiajie Wu, Lynn Epstein, Daolin Fu.

Creating large EMS populations for functional genomics and breeding in wheat [J]. >Journal of Integrative Agriculture, 2024, 23(2): 484-493.

[14] Changqin Yang, Xiaojing Wang, Jianan Li, Guowei Zhang, Hongmei Shu, Wei Hu, Huanyong Han, Ruixian Liu, Zichun Guo.

Straw return increases crop production by improving soil organic carbon sequestration and soil aggregation in a long-term wheat–cotton cropping system [J]. >Journal of Integrative Agriculture, 2024, 23(2): 669-679.

[15] Wei Chen, Jingjuan Zhang, Xiping Deng.

Winter wheat yield improvement by genetic gain across different provinces in China [J]. >Journal of Integrative Agriculture, 2024, 23(2): 468-483.

No Suggested Reading articles found!