Please wait a minute...
Journal of Integrative Agriculture  2020, Vol. 19 Issue (12): 3035-3044    DOI: 10.1016/S2095-3119(20)63237-3
Special Issue: 昆虫合辑Plant Protection—Entomolgy 昆虫生防和生态合辑Insect Biocontrol and Ecology
Plant Protection Advanced Online Publication | Current Issue | Archive | Adv Search |
Attraction of bruchid beetles Callosobruchus chinensis (L.) (Coleoptera: Bruchidae) to host plant volatiles
WANG Hong-min1*, BAI Peng-hua2, 3*, ZHANG Jing2, ZHANG Xue-min2, HUI Qin2, ZHENG Hai-xia2, ZHANG Xian-hong2 
1 College of Agricultural Economics and Management, Shanxi Agricultural University, Taigu 030801, P.R.China
2 College of Plant Protection, Shanxi Agricultural University, Taigu 030801, P.R.China
3 Institute of Plant Protection, Tianjin Academy of Agricultural Sciences, Tianjin 300384, P.R.China
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
Abstract  
Host-plant volatiles play an important role as cues for herbivores in search of resources, mates and oviposition sites in complex environments.  Plant volatile-based attractants can be developed for pest monitoring and control.  Previously, we indicated that mated female adults of Callosobruchus chinensis showed choice preference behavior toward 2-hexenal and benzaldehyde.  Our objective here was to investigate the synergistic effect of host-derived attractive volatiles in attracting C. chinensis under laboratory and field conditions in Shanxi Province, China.  We hypothesized that the ratio and concentration of volatiles derived from Vigna radiata play critical roles for C. chinensis in locating this host.  Therefore, we collected and identified the volatiles of mungbean by using headspace collection and GC-MS.  The effectiveness of different ratios and concentrations of two compounds (2-hexenal and benzaldehyde) that elicit C. chinensis searching behavior were examined in Y-tube olfactometer assays.  The combination of 300 μg μL–1 2-hexenal and 180 μg μL–1 benzaldehyde loadings exhibited a synergistic effect on attracting C. chinensis (82.35%).  Compared to control traps, the adults were significantly attracted to traps baited with blends, and more attraction to females than males was found for blend traps in the field experiments.  Our results suggest that blends of this specific concentration and ratio of benzaldehyde and 2-hexenal can be used in traps as attractants for C. chinensis monitoring and control in the field.
Keywords:  Callosobruchus chinensis        plant volatiles        synergistic effect        olfactometer        attractant  
Received: 26 March 2020   Accepted:
Fund: This research was funded by the Shanxi Provincial Key Research and Development Project, China (201803D221004-8), the earmarked fund for China Agriculture Research System (CARS-08-G10), the Research and Demonstration of Key Green Technology for High Quality of Coarse Cereals in Northwest Shanxi (201703D211002-8) and the Shanxi Province Science Foundation for Youths (201801D221305).
Corresponding Authors:  Correspondence ZHANG Xian-hong, E-mail: zxh6288@126.com    
About author:  * These authors contributed equally to this study.

Cite this article: 

WANG Hong-min, BAI Peng-hua, ZHANG Jing, ZHANG Xue-min, HUI Qin, ZHENG Hai-xia, ZHANG Xian-hong. 2020. Attraction of bruchid beetles Callosobruchus chinensis (L.) (Coleoptera: Bruchidae) to host plant volatiles. Journal of Integrative Agriculture, 19(12): 3035-3044.

Adhikary P, Mukherjee A, Barik A. 2015. Attraction of Callosobruchus maculatus (F.) (Coleoptera: Bruchidae) to four varieties of Lathyrus sativus L. seed volatiles. Bulletin Entomoogical Research, 2, 187–201.
Anderson P, Hansson B S, Lofqvist J. 1995. Plant-odour-specificreceptor neurons on the antennae of female and male Spodoptera littoralis. Physiological Entomology, 20, 189–198.
Ardanuy A, Albajes R, Turlings T C. 2016. Innate and learned prey-searching behavior in a generalist predator. Journal of Chemical Ecology, 6, 497–507.
Babu A, Hern A, Dorn S. 2003. Sources of semiochemicals mediating host finding in Callosobruchus chinensis (Coleoptera: Bruchidae). Bulletin Entomoogical Research, 93, 187–192.
Boue S M, Shih B Y, Carter-Wientjes C H, Cleveland T E. 2003. Identification of volatile compounds in soybean at various developmental stages using solid phase micro extraction. Journal of Agricultural and Food Chemistry, 51, 4873–4876.
Branco S, Mateus E P, Silva M, Mendes D, Rocha S M, Mendel Z, Schütz S, Paiva M R. 2019. Electrophysiological and behavioural responses of the Eucalyptus weevil, Gonipterus platensis, to host plant volatiles. Journal of Pest Science, 1, 221–235.
Bruce T J A, Pickett J A. 2011. Perception of plant volatile blends by herbivorous insects-finding the right mix. Phytochemistry, 72, 1605–1611.
Bruce T J A, Wadhams L J, Woodcock C M. 2005. Insect host location: A volatile situation. Trends in Plant Science, 10, 269–274.
Cai X M, Bian L, Xu X X, Luo Z X, Li Z Q, Chen Z M. 2017. Field background odour should be taken into account when formulating a pest attractant based on plant volatiles. Scientific Reports, 7, 41818.
Cha D H, Linn C E, Teal P E A, Aijun Z, Roelofs W L, Loeb G M. 2011. Eavesdropping on plant volatiles by a specialist moth: Significance of ratio and concentration. PLoS ONE, 2, e17033.
Chakraborty S, Mondal P, Senapati S K. 2015. Studies on biology of the pest beetle, Callosobruchus chinensis (L.) infesting green gram. Current Biotica, 9, 93–97.
Gallinger J, Jarausch B, Jarausch W, Gross J. 2019. Host plant preferences and detection of host plant volatiles of the migrating psyllid species Cacopsylla pruni, the vector of European Stone Fruit Yellows. Journal of Pest Science, 93, 461–475.
Gebreziher H G, Nakamuta K. 2016. A mixture of herbivore-induced plant volatiles from multiple host plant species enhances the attraction of a predatory bug under field-cage conditions. Arthropod-Plant Interactions, 6, 507–515.
Germinara G S, Pistillo M, Griffo R, Garonna A P, Palma A D. 2019. Electroantennographic responses of Aromia bungii (Faldermann, 1835) (Coleoptera, Cerambycidae) to a range of volatile compounds. Insects, 9, 274.
Gregg P C, Socorro A P, Henderson G S. 2010. Development of a synthetic plant volatile-based attracticide for female noctuid moths. II. Bioassays of synthetic plant volatiles as attractants for the adults of the cotton bollworm, Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae). Australian Journal of Entomology, 1, 21–30.
Guo H, Wang C Z. 2019. The ethological significance and olfactory detection of herbivore-induced plant volatiles in interactions of plants, herbivorous insects, and parasitoids. Arthropod-Plant Interactions, 2, 161–179.
Holopainen J. 2004. Multiple functions of inducible plant volatiles. Trends in Plant Science, 9, 529–533.
Juma G, Clément G, Ahuya P, Hassanali A, Derridj S, Gaertner C, Linard R, Le Ru B, Frerot B, Calatayud P. 2016. Influence of host-plant surface chemicals on the oviposition of the cereal stemborer Busseola Fusca. Journal of Chemical Ecology, 5, 394–403.
Karmakar A, Mitra P, Koner A, Das S, Barik A. 2020. Fruit volatiles of creeping cucumber (Solena amplexicaulis) attract a generalist insect herbivore. Journal of Chemical Ecology, 46, 275–287.
Khinchi S K, Sharma M M, Khinchi M K, Bairwa D K, Acharya D, Naga B L, Naga R P. 2017. Studies on efficacy of certain vegetable oils against pulse beetle, Callosobruchus Chinensis Linn. on chickpea, Cicer arietinum (L.). International Journal of Chemical Studies, 3, 255–259.
Knudsen G K, Bengtsson M, Kobro S, Jaastad G, Witzgall P. 2008. Discrepancy in laboratory and field attraction of apple fruit moth Argyresthia conjugella to host plant volatiles. Physiological Entomology, 33, 1–6.
Knudsen G K, Tasin M. 2015. Spotting the invaders: A monitoring system based on plant volatiles to forecast apple fruit moth attacks in apple orchards. Basic & Applied Ecology, 16, 354–364.
Kogan M. 1998. Integrated pest management: Historical perspectives and contemporary developments. Annual Review of Entomology, 43, 243–270.
Landolt P J, Phillips T W. 1997. Host plant influences on sex pheromone behavior of phytophagous insects. Annual Review of Entomology, 42, 371–391.
Light D M, Knight A L, Henrick C A, Rajapaska D, Lingren B, Dickens J C, Reynolds K M, Buttery R G, Merrill G, Roitman J, Campbell B C. 2001. A pear-derived kairomone with pheromonal potency that attracts male and female codling moth, Cydia pomonella (L.). Naturwissenschaften, 88, 333–338.
Lohonyai Z, Vuts J, Karpati Z, Koczor S, Domingue M J, Fail J, Birkett M A, Tóth M, Imrei Z. 2019. Benzaldehyde: An alfalfa-related compound for the spring attraction of the pest weevil Sitona humeralis (Coleoptera: Curculionidae). Pest Management Science, 12, 3153–3159.
Lu Y H, Liu K, Zheng X, Lu Z X. 2017. Electrophysiological responses of the rice striped stem borer Chilo suppressalis to volatiles of the trap plant vetiver grass (Vetiveria zizanioides L.). Journal of Integrative Agriculture, 11, 2525–2533.
Mackay C A, Sweeney J D, Hillier N K. 2015. Olfactory receptor neuron responses of a longhorned beetle, Tetropium fuscum (Fabr.) (Coleoptera: Cerambycidae), to pheromone, host, and non-host volatiles.  Journal of Insect Physiology, 83, 65–73.
Mahmud H. 2018. Effect of pulse beetle, Callosobruchus Chinensis L. on oviposition and damage in some important genotypes of pulse crops in Bangladesh. Biomedical Journal of Scientific and Technical Research, 2, 1–5.
Magalhães D M, Borges M, Laumann R A, Woodcock C M, Withall D M, Pickett J A, Birkett M A, Blassioli-Moraes M C. 2018. Identification of volatile compounds involved in host location by Anthonomus grandis (Coleoptera: Curculionidae). Frontiers in Ecology and Evolution, 6, 98.
Malaikozhundan B, Vinodhini J. 2017. Biological control of the pulse beetle, Callosobruchus maculatus in stored grains using the entomopathogenic bacteria, Bacillus thuringiensis. Microbial Pathogenesis, 114, 139–146.
McCormick A C, Unsicker S B, Gershenzon J. 2012. The specificity of herbivore-induced plant volatiles in attracting herbivore enemies. Trends in Plant Science, 17, 303–310.
Milonas P G, Anastasaki E, Partsinevelos G K. 2019. Oviposition-induced volatiles affect electrophysiological and behavioral responses of egg parasitoids. Insects, 12, 437.
Nakamuta K, Leal W S, Nakashima T, Tokoro M, Ono M, Nakanishi M. 1997. Increase of trap catches by a combination of male sex pheromones and floral attractant in longhorn beetle, Anaglyptus subfasciatus. Journal of Chemical Ecology, 6, 1635–1640.
Natale D, Mattiacci L, Hern A, Dorn S, Pasqualini E. 2003. Response of female Cydia molesta (Lepidoptera: Tortricidae) to plant derived volatiles. Bulletin Entomoogical Research, 93, 335–342.
O’Neill B F, Zangerl A R, Delucia E H, Berenbaum M R. 2010. Olfactory preferences of Popillia japonica, Vanessa cardui, and Aphis glycines for Glycine max grown under elevated CO2. Environmental Entomology, 4, 1291–1301.
Oseiowusu J, Vuts J, Caulfield J C, Woodcock C M, Withall D M, Hooper A M, Birkett M A. 2020. Identification of semiochemicals from cowpea, Vigna unguiculata, for low-input management of the legume pod borer. Maruca vitrata. Journal of Chemical Ecology, 1, 1–11.
Pinero J C, Dorn S. 2007. Synergism between aromatic compounds and green leaf volatiles derived from the host plant underlies female attraction in the oriental fruit moth. Entomologia Experimentalis et Applicata, 2, 185–194.
Raguso R A, Light D M, Pickersky E. 1996. Electroantennogram responses of Hyles lineata (Onagraceae) and other moth-pollinated flowers. Journal of Chemical Ecology, 22, 1735–1766.
Raina A K. 1970. Callosobruchus spp. infesting stored pulses (grain legumes) in India and a comparative study of their biology. Indian Journal of Entomology, 4, 303–370.
Reddy G V P, Guerrero A. 2004. Interactions of insect pheromones and plant semiochemicals. Trends in Plant Science, 9, 253–261.
Riffell J A, Lie H, Christensen T A, Hildebrand J G. 2009. Characterization and coding of behaviorally significant odor mixtures. Current Biology, 19, 335–340.
Roberts J M, Kundun J, Rowley C, Hall D, Douglas P, Pope T W. 2019. Electrophysiological and behavioral responses of adult vine weevil, Otiorhynchus sulcatus (Coleoptera: Curculionidae), to host plant odors. Journal of Chemical Ecology, 10, 858–868.
Scala A, Allmann S, Mirabella R, Haring M A, Schuurink R C. 2013. Green leaf volatiles: A plant’s multifunctional weapon against herbivores and pathogens. International Journal of Molecular Sciences, 14, 17781–17811.
Schiestl F P. 2010. The evolution of floral scent and insect chemical communication. Ecology Letters, 13, 643–656.
Sun X, Zhao Z F, Zeng F F, Zhang A J, Lu Z X, Wang M Q. 2016. Functional characterization of a pheromone-binding protein from rice leaffolder Cnaphalocrocis medinalis in detecting pheromones and host plant volatiles. Bulletin of Entomological Research, 6, 781–789.
Sun X L, Li X W, Xin Z J, Han J J, Ran W, Lei S. 2016. Development of synthetic volatile attractant for male Ectropis obliqua moths. Journal of Integrative Agriculture, 7, 1532–1539.
Sun X L, Wang G C, Cai X M, Jin S, Gao Y, Chen Z M. 2010. The tea weevil, Myllocerinus aurolineatus, is attracted to volatiles induced by conspecifics. Journal of Chemical Ecology, 36, 388–395.
Sweeney J D, Silk P J, Gutowski J M, Wu J, Lemay M A, Mayo P, Magee D I. 2010. Effect of chirality, release rate, and host volatiles on response of Tetropium fuscum (F.), Tetropium cinnamopterum Kirby, and Tetropium castaneum (L.) to the aggregation pheromone, fuscumol. Journal of Chemical Ecology, 36, 1309–1321.
Takemoto H, Takabayashi J. 2015. Parasitic wasps Aphidius ervi are more attracted to a blend of host-induced plant volatiles than to the independent compounds. Journal of Chemical Ecology, 41, 801–807.
Tang L D, Zhao H Y, Fu B L, Han Y, Liu K, Wu J H. 2016. Colored sticky traps to selectively survey thrips in Cowpea Ecosystem. Neotropical Entomology, 45, 96–101.
Tasin M, Backman A C, Anfora G, Carlin S, Ioriatti C, Witzgall P. 2010. Attraction of female grapevine moth to common and specific olfactory cues from 2 host plants. Chemical Senses, 1, 57–64.
Turlings T C J, Erb M. 2018. Tritrophic interactions mediated by herbivore-induced plant volatiles: Mechanisms, ecological relevance, and application potential. Annual Review of Entomology, 1, 433–452.
Visser J H. 1986. Host odor perception in phytophagous insects. Annual Review of Entomology, 31, 121–144.
Visser J H, Avé D A. 1978. General green leaf volatiles in the olfactory orientation of the Colorado beetle, Leptinotarsa decemlineata. Entomologia Experimentalis et Applicata, 24, 738–749.
Wang H M, Yang M M, Zhang Y W, Zhang X H. 2017. Electroantennogram and behavioral responses of Callosobruchus chinensis (Coleoptera: Bruchuidae) adults to volatiles from mungbean (Vigna radiata) pods. Acta Entomologica Sinica, 60, 148–154. (in Chinese)
Wang H M, Zheng H X, Zhang Y W, Zhang X H. 2018. Morphology and distribution of antennal, maxillary palp and labial palp sensilla of the adult bruchid beetles, Callosobruchus Chinensis (L.) (Coleoptera: Bruchidae). Entomological Research, 6, 466–479.
Webster B, Bruce T, Pickett J, Hardie J. 2010. Volatiles functioning as host cues in a blend become nonhost cues when presented alone to the black bean aphid. Animal Behaviour, 79, 451–457.
Webster B, Cardé R. 2016. Use of habitat odour by host-seeking insects. Biological Reviews, 92, 1241–1249.
Xiu C L, Pan H S, Liu B, Luo Z X, Williams L, Yang Y H, Lu Y H. 2019a. Perception of and behavioral responses to host plant volatiles for three Adelphocoris species. Journal of Chemical Ecology, 45, 779–788.
Xiu C L, Xu B, Pan H S, Zhang W, Yang Y H, Lu Y H. 2019b. Volatiles from Sophora japonica flowers attract Harmonia axyridis adults (Coleoptera: Coccinellidae). Journal of Integrative Agriculture, 18, 873–883.
Xu H, Turlings T C J. 2018. Plant volatiles as mate-finding cues for insects. Trends in Plant Science, 2, 100–111.
Yanagi S, Saeki Y, Tuda M. 2013. Adaptive egg size plasticity for larval competition and its limits in the seed beetle Callosobruchus chinensis. Entomologia Experimentalis et Applicata, 148, 182–187.
Zhang Z Q, Lei B, Sun X L, Luo Z X, Xin Z Q, Luo F J, Chen Z M. 2015. Electrophysiological and behavioural responses of the tea geometrid Ectropis obliqua (Lepidoptera: Geometridae) to volatiles from a non-host plant, rosemary, Rosmarinus officinalis (Lamiaceae). Pest Management Science, 1, 96–104.
 
[1] HAN Shan-jie, WANG Meng-xin, WANG Yan-su, WANG Yun-gang, CUI Lin, HAN Bao-yu. Exploiting push-pull strategy to combat the tea green leafhopper based on volatiles of Lavandula angustifolia and Flemingia macrophylla[J]. >Journal of Integrative Agriculture, 2020, 19(1): 193-203.
[2] XIU Chun-li, XU Bin, PAN Hong-sheng, ZHANG Wei, YANG Yi-zhong, LU Yan-hui. Volatiles from Sophora japonica flowers attract Harmonia axyridis adults (Coleoptera: Coccinellidae)[J]. >Journal of Integrative Agriculture, 2019, 18(4): 873-883.
No Suggested Reading articles found!