Propylea japonica (Coleoptera: Coccinellidae) is a natural enemy insect with a wide range of predation in Chinese mainland and is commonly used in pest management. However, its genetic pattern (i.e., genetic variation, genetic structure, and historical population dynamics) is still unclear, impeding the development of biological control of insect pests. Population genetic research has the potential to optimize strategies at different stages of the biological control processes. This study used 23 nuclear microsatellite sites and mitochondrial COI genes to investigate the population genetics of Propylea japonica based on 462 specimens collected from 30 sampling sites in China. The microsatellite dataset showed a moderate level of genetic diversity, but the mitochondrial genes showed a high level of genetic diversity. Populations from the Yellow River basin were more genetically diverse than those in the Yangtze River basin. Propylea japonica has not yet formed a significant genealogical structure in China, but there was a population structure signal to some extent, which may be caused by frequent gene flow between populations. The species has experienced population expansion after a bottleneck, potentially thanks to the tri-trophic plant–insect–natural enemy relationship. Knowledge of population genetics is of importance in using predators to control pests. Our study complements existing knowledge of an important natural predator in agroecosystems through estimating its genetic diversity and population differentiation and speculating about historical dynamics.
Soil salinization is a critical environmental issue restricting agricultural production. Deep return of straw to the soil as an interlayer (at 40 cm depth) has been a popular practice to alleviate salt stress. However, the legacy effects of straw added as an interlayer at different rates on soil organic carbon (SOC) and total nitrogen (TN) in saline soils still remain inconclusive. Therefore, a four-year (2015–2018) field experiment was conducted with four levels (i.e., 0, 6, 12 and 18 Mg ha–1) of straw returned as an interlayer. Compared with no straw interlayer (CK), straw addition increased SOC concentration by 14–32 and 11–57% in the 20–40 and 40–60 cm soil layers, respectively. The increases in soil TN concentration (8–22 and 6–34% in the 20–40 and 40–60 cm soil layers, respectively) were lower than that for SOC concentration, which led to increased soil C:N ratio in the 20–60 cm soil depth. Increases in SOC and TN concentrations in the 20–60 cm soil layer with straw addition led to a decrease in stratification ratios (0–20 cm:20–60 cm), which promoted uniform distributions of SOC and TN in the soil profile. Increases in SOC and TN concentrations were associated with soil salinity and moisture regulation and improved sunflower yield. Generally, compared with other treatments, the application of 12 Mg ha–1 straw had higher SOC, TN and C:N ratio, and lower soil stratification ratio in the 2015–2017 period. The results highlighted that legacy effects of straw application as an interlayer were maintained for at least four years, and demonstrated that deep soil straw application had a great potential for improving subsoil fertility in salt-affected soils.
Exploring the effects of sowing date and ecological points on the yield of semi-winter wheat is of great significance. This study aims to reveal the effects of sowing date and ecological points on the climate resources associated with wheat yield in the Rice–Wheat Rotation System. With six sowing dates, the experiments were carried out in Donghai and Jianhu counties, Jiangsu Province, China using two semi-winter wheat varieties as the objects of this study. The basic seedlings of the first sowing date (S1) were planted at 300×104 plants ha−1, which was increased by 10% for each of the delayed sowing dates (S2–S6). The results showed that the delay of sowing date decreased the number of days, the effective accumulated temperature and the cumulative solar radiation in the whole growth period. The yields of S1 were higher than those of S2 to S6 by 0.22–0.31, 0.5–0.78, 0.86–0.98, 1.14–1.38, and 1.36–1.59 t ha–1, respectively. For a given sowing date, the growth days increased as the ecological point was moved north, while both mean daily temperature and effective accumulative temperature decreased, but the cumulative radiation increased. As a result, the yields at Donghai County were 0.01–0.39 t ha–1 lower than those of Jianhu County for the six sowing dates. The effective accumulative temperature and cumulative radiation both had significant positive correlations with yield. The average temperature was significantly negatively correlated with the yield. The decrease in grain yield was mainly due to the declines in grains per spike and 1 000-grain weight caused by the increase in the daily temperature and the decrease in the effective accumulative temperature.
Denitrification-induced nitrogen (N) losses from croplands may be greatly increased by intensive fertilization. However, the accurate quantification of these losses is still challenging due to insufficient available in situ measurements of soil dinitrogen (N2) emissions. We carried out two one-week experiments in a maize–wheat cropping system with calcareous soil using the 15N gas-flux (15NGF) method to measure in situ N2 fluxes following urea application. Applications of 15N-labeled urea (99 atom%, 130–150 kg N ha−1) were followed by irrigation on the 1st, 3rd, and 5th days after fertilization (DAF 1, 3, and 5, respectively). The detection limits of the soil N2 fluxes were 163–1 565, 81–485, and 54–281 μg N m−2 h−1 for the two-, four-, and six-hour static chamber enclosures, respectively. The N2 fluxes measured in 120 cases varied between 159 and 2 943 (811 on average) μg N m−2 h−1, which were higher than the detection limits, with the exception of only two cases. The N2 fluxes at DAF 3 were significantly higher (by nearly 80% (P<0.01)) than those at DAF 1 and 5 in the maize experiment, while there were no significant differences among the irrigation times in the wheat experiment. The N2 fluxes and the ratios of nitrous oxide (N2O) to the N2O plus N2 fluxes following urea application to maize were approximately 65% and 11 times larger, respectively (P<0.01), than those following urea application to wheat. Such differences could be mainly attributed to the higher soil water contents, temperatures, and availability of soil N substrates in the maize experiment than in the wheat experiment. This study suggests that the 15NGF method is sensitive enough to measure in situ N2 fluxes from intensively fertilized croplands with calcareous soils.
No tillage (NT) and straw return (S) collectively affect soil organic carbon (SOC). However, changes in the organic carbon pool have been under-investigated. Here, we assessed the quantity and quality of SOC after 11 years of tillage and straw return on the North China Plain. Concentrations of SOC and its labile fractions (particulate organic carbon (POC), potassium permanganate-oxidizable organic carbon (POXC), microbial biomass carbon (MBC) and dissolved organic carbon (DOC)), components of DOC by fluorescence spectroscopy combined with parallel factor analysis (PARAFAC) and the chemical composition of SOC by 13C NMR spectroscopy were explored. Treatments comprised conventional tillage (CT) and NT under no straw return (S0), return of wheat straw only (S1) or return of both wheat straw and maize residue (S2). Straw return significantly increased the concentrations and stocks of SOC at 0-20 cm depth but no tillage stratified them with enrichment at 0-10 cm and a decrease at 10-20 cm in comparison to CT, especially under S2. Labile C fractions showed similar patterns of variation to that of SOC, with POC and POXC more sensitive to straw return and the former more sensitive to tillage. Six fluorescence components of DOC were identified comprising mostly humic-like substances with smaller amounts of fulvic acid-like substances and tryptophan. Straw return significantly decreased the fluorescence index (FI) and autochthonous index (BIX) and increased the humification index (HIX). No tillage generally increased HIX in topsoil but decreased it and increased the FI and BIX below the topsoil. The chemical composition of SOC was: O-alkyl C>alkyl-C>aromatic-C>carbonyl-C. Overall, NT under S2 effectively increased SOC and its labile C forms and DOC humification in topsoil and microbially-derived DOC below the topsoil. Return of both wheat and maize straw was a particularly strong factor for promoting soil organic carbon in the plough layer, and the stratification of SOC under no tillage may confer long-term influence on carbon sequestration.