Journals
  Publication Years
  Keywords
Search within results Open Search
Please wait a minute...
For Selected: Toggle Thumbnails
Population genetic variation and historical dynamics of the natural enemy insect Propylea japonica (Coleoptera: Coccinellidae) in China
WANG Meng-qi, ZHANG Hong-rui, XI Yu-qiang, WANG Gao-ping, ZHAO Man, ZHANG Li-juan, GUO Xian-ru
2023, 22 (8): 2456-2469.   DOI: 10.1016/j.jia.2022.08.025
Abstract349)      PDF in ScienceDirect      

Propylea japonica (Coleoptera: Coccinellidae) is a natural enemy insect with a wide range of predation in Chinese mainland and is commonly used in pest management.  However, its genetic pattern (i.e., genetic variation, genetic structure, and historical population dynamics) is still unclear, impeding the development of biological control of insect pests.  Population genetic research has the potential to optimize strategies at different stages of the biological control processes.  This study used 23 nuclear microsatellite sites and mitochondrial COI genes to investigate the population genetics of Propylea japonica based on 462 specimens collected from 30 sampling sites in China.  The microsatellite dataset showed a moderate level of genetic diversity, but the mitochondrial genes showed a high level of genetic diversity.  Populations from the Yellow River basin were more genetically diverse than those in the Yangtze River basin.  Propylea japonica has not yet formed a significant genealogical structure in China, but there was a population structure signal to some extent, which may be caused by frequent gene flow between populations.  The species has experienced population expansion after a bottleneck, potentially thanks to the tri-trophic plant–insect–natural enemy relationship.  Knowledge of population genetics is of importance in using predators to control pests.  Our study complements existing knowledge of an important natural predator in agroecosystems through estimating its genetic diversity and population differentiation and speculating about historical dynamics.

Reference | Related Articles | Metrics
Understanding changes in volatile compounds and fatty acids of Jincheng orange peel oil at different growth stages using GC–MS
XIE Jiao, CAO Qi, WANG Wen-jun, ZHANG Hong-yan, DENG Bing
2023, 22 (7): 2282-2294.   DOI: 10.1016/j.jia.2023.05.015
Abstract123)      PDF in ScienceDirect      
Jincheng orange (Citrus sinensis Osbeck) is widely grown in Chongqing, China, and is commonly consumed because of its characteristic aroma contributed by the presence of diverse volatile compounds.  The changes in aroma during the development and maturation of fruit are indicators for ripening and harvest time.  However, the influence of growth stages on the volatile compounds in Jincheng orange remains unclear.  In addition, volatiles originate from fatty acids, most of which are the precursors of volatile substances.  On this basis, gas chromatography–mass spectrometry (GC–MS) was performed to elaborate the changes in volatile constituents and fatty acids as precursors.  This study tested proximately 60 volatiles and 8 fatty acids at 9 growth and development stages (AF1–AF9).  Of those compounds, more than 92.00% of total volatiles and 87.50% of fatty acids were terpenoid and saturated fatty acids, respectively.  As shown in the PCA plot, the AF5, AF6, and AF9 stages were confirmed as completely segregated and appeared different.  In addition, most of the volatiles and fatty acids first increased at the beginning of the development stage, then decreased from the AF6 development stage, and finally increased at the AF9 maturity stage.  Moreover, the highest contents of terpenoid, alcohols, aldehydes, ketones, and saturated fatty acids in Jincheng orange peel oil were d-limonene, linalool, octanal, cyclohexanone, and stearic acid during development stages, respectively.  Our results found that the growth stages significantly affected the volatile constituents and precursors in Jincheng orange peel oil.
Reference | Related Articles | Metrics
Maize straw application as an interlayer improves organic carbon and total nitrogen concentrations in the soil profile: A four-year experiment in a saline soil
CHANG Fang-di, WANG Xi-quan, SONG Jia-shen, ZHANG Hong-yuan, YU Ru, WANG Jing, LIU Jian, WANG Shang, JI Hong-jie, LI Yu-yi
2023, 22 (6): 1870-1882.   DOI: 10.1016/j.jia.2023.02.025
Abstract219)      PDF in ScienceDirect      

Soil salinization is a critical environmental issue restricting agricultural production.  Deep return of straw to the soil as an interlayer (at 40 cm depth) has been a popular practice to alleviate salt stress.  However, the legacy effects of straw added as an interlayer at different rates on soil organic carbon (SOC) and total nitrogen (TN) in saline soils still remain inconclusive.  Therefore, a four-year (2015–2018) field experiment was conducted with four levels (i.e., 0, 6, 12 and 18 Mg ha–1) of straw returned as an interlayer.  Compared with no straw interlayer (CK), straw addition increased SOC concentration by 14–32 and 11–57% in the 20–40 and 40–60 cm soil layers, respectively.  The increases in soil TN concentration (8–22 and 6–34% in the 20–40 and 40–60 cm soil layers, respectively) were lower than that for SOC concentration, which led to increased soil C:N ratio in the 20–60 cm soil depth.  Increases in SOC and TN concentrations in the 20–60 cm soil layer with straw addition led to a decrease in stratification ratios (0–20 cm:20–60 cm), which promoted uniform distributions of SOC and TN in the soil profile.  Increases in SOC and TN concentrations were associated with soil salinity and moisture regulation and improved sunflower yield.  Generally, compared with other treatments, the application of 12 Mg ha–1 straw had higher SOC, TN and C:N ratio, and lower soil stratification ratio in the 2015–2017 period.  The results highlighted that legacy effects of straw application as an interlayer were maintained for at least four years, and demonstrated that deep soil straw application had a great potential for improving subsoil fertility in salt-affected soils.

Reference | Related Articles | Metrics
Effects of sowing date and ecological points on yield and the temperature and radiation resources of semi-winter wheat
ZHANG Zhen-zhen, CHENG Shuang, FAN Peng, ZHOU Nian-bing, XING Zhi-peng, HU Ya-jie, XU Fang-fu, GUO Bao-wei, WEI Hai-yan, ZHANG Hong-cheng
2023, 22 (5): 1366-1380.   DOI: 10.1016/j.jia.2022.08.029
Abstract225)      PDF in ScienceDirect      

Exploring the effects of sowing date and ecological points on the yield of semi-winter wheat is of great significance.  This study aims to reveal the effects of sowing date and ecological points on the climate resources associated with wheat yield in the Rice–Wheat Rotation System.  With six sowing dates, the experiments were carried out in Donghai and Jianhu counties, Jiangsu Province, China using two semi-winter wheat varieties as the objects of this study.  The basic seedlings of the first sowing date (S1) were planted at 300×104 plants ha−1, which was increased by 10% for each of the delayed sowing dates (S2–S6).  The results showed that the delay of sowing date decreased the number of days, the effective accumulated temperature and the cumulative solar radiation in the whole growth period.  The yields of S1 were higher than those of S2 to S6 by 0.22–0.31, 0.5–0.78, 0.86–0.98, 1.14–1.38, and 1.36–1.59 t ha–1, respectively.  For a given sowing date, the growth days increased as the ecological point was moved north, while both mean daily temperature and effective accumulative temperature decreased, but the cumulative radiation increased.  As a result, the yields at Donghai County were 0.01–0.39 t ha–1 lower than those of Jianhu County for the six sowing dates.  The effective accumulative temperature and cumulative radiation both had significant positive correlations with yield.  The average temperature was significantly negatively correlated with the yield.  The decrease in grain yield was mainly due to the declines in grains per spike and 1 000-grain weight caused by the increase in the daily temperature and the decrease in the effective accumulative temperature.

Reference | Related Articles | Metrics
Increasing the appropriate seedling density for higher yield in dry direct-seeded rice sown by a multifunctional seeder after wheat-straw return
TIAN Jin-yu, LI Shao-ping, CHENG Shuang, LIU Qiu-yuan, ZHOU Lei, TAO Yu, XING Zhi-peng, HU Ya-jie, GUO Bao-wei, WEI Hai-yan, ZHANG Hong-cheng
2023, 22 (2): 400-416.   DOI: 10.1016/j.jia.2022.08.064
Abstract282)      PDF in ScienceDirect      
Dry direct-seeded rice (DDR) sown using a multifunctional seeder that performs synchronous rotary tillage and sowing has received increased attention because it is highly efficient, relatively cheap, and environmentally friendly.  However, this method of rice production may produce lower yields in a rice–wheat rotation system because of its poor seedling establishment.  To address this problem, we performed field experiments to determine the rice yield at five seedling density levels (B1, B2, B3, B4, and B5=100, 190, 280, 370, and 460 seedlings m−2, respectively) and clarify the physiological basis of yield formation.  We selected a representative high-quality rice variety and a multifunctional seeder that used in a typical rice–wheat rotation area in 2016 and 2018.  The proportion of main stem panicle increased with increasing seedling density.  There was a parabolic relationship between yield and seedling density, and the maximum yield (9.34−9.47 t ha−1) was obtained under B3.  The maximum yield was associated with a higher total spikelet number m−2 and greater biomass accumulation from heading to maturity.  The higher total spikelet number m−2 under B3 was attributed to an increase in panicle number m−2 compared with B1 and B2.  Although the panicle numbers also increased under B4 and B5, these increases were insufficient to compensate for the reduced spikelet numbers per panicle.  Lower biomass, smaller leaf area, and lower N uptake per plant from the stem elongation stage to the heading stage were partially responsible for the smaller panicle size at higher seedling density levels such as B5.  The higher biomass accumulation under B3 was ascribed to the increases in the photosynthetic rate of the top three leaves m−2 of land, crop growth rate, net assimilation rate, and leaf area index.  Furthermore, the B3 rice population was marked by a higher grain–leaf ratio, as well as a lower export ratio and transport ratio of biomass per stem-sheath.  A quadratic function predicted that 260−290 seedlings m−2 is the optimum seedling density for achieving maximum yield.  Together, these results suggested that appropriately increasing the seedling density, and thereby increasing the proportion of panicles formed by the main stem, is an effective approach for obtaining a higher yield in DDR sown using a multifunctional seeder in a rice–wheat rotation system.

Reference | Related Articles | Metrics
Quantifying in situ N2 fluxes from an intensively managed calcareous soil using the 15N gas-flux method
LIU Yan, WANG Rui, PAN Zhan-lei, ZHENG Xun-hua, WEI Huan-huan, ZHANG Hong-rui, MEI Bao-ling, QUAN Zhi, FANG Yun-ting, JU Xiao-tang
2022, 21 (9): 2750-2766.   DOI: 10.1016/j.jia.2022.07.016
Abstract215)      PDF in ScienceDirect      

Denitrification-induced nitrogen (N) losses from croplands may be greatly increased by intensive fertilization.  However, the accurate quantification of these losses is still challenging due to insufficient available in situ measurements of soil dinitrogen (N2) emissions.  We carried out two one-week experiments in a maize–wheat cropping system with calcareous soil using the 15N gas-flux (15NGF) method to measure in situ N2 fluxes following urea application.  Applications of 15N-labeled urea (99 atom%, 130–150 kg N ha−1) were followed by irrigation on the 1st, 3rd, and 5th days after fertilization (DAF 1, 3, and 5, respectively).  The detection limits of the soil N2 fluxes were 163–1 565, 81–485, and 54–281 μg N m−2 h−1 for the two-, four-, and six-hour static chamber enclosures, respectively.  The N2 fluxes measured in 120 cases varied between 159 and 2 943 (811 on average) μg N m−2 h−1, which were higher than the detection limits, with the exception of only two cases.  The N2 fluxes at DAF 3 were significantly higher (by nearly 80% (P<0.01)) than those at DAF 1 and 5 in the maize experiment, while there were no significant differences among the irrigation times in the wheat experiment.  The N2 fluxes and the ratios of nitrous oxide (N2O) to the N2O plus N2 fluxes following urea application to maize were approximately 65% and 11 times larger, respectively (P<0.01), than those following urea application to wheat.  Such differences could be mainly attributed to the higher soil water contents, temperatures, and availability of soil N substrates in the maize experiment than in the wheat experiment.  This study suggests that the 15NGF method is sensitive enough to measure in situ N2 fluxes from intensively fertilized croplands with calcareous soils.

Reference | Related Articles | Metrics
Dissecting the genetic basis of maize deep-sowing tolerance by combining association mapping and gene expression analysis
YANG Yue, MA Yu-ting, LIU Yang-yang, Demar LYLE, LI Dong-dong, WANG Ping-xi, XU Jia-liang, ZHEN Si-han, LU Jia-wen, PENG Yun-ling, CUI Yu, FU Jun-jie, DU Wan-li, ZHANG Hong-wei, WANG Jian-hua
2022, 21 (5): 1266-1277.   DOI: 10.1016/S2095-3119(21)63649-3
Abstract150)      PDF in ScienceDirect      
Deep-sowing is an important method for avoiding drought stress in crop species, including maize.  Identifying candidate genes is the groundwork for investigating the molecular mechanism underlying maize deep-sowing tolerance.  This study evaluated four traits (mesocotyl length at 10 and 20 cm planting depths and seedling emergence rate on days 6 and 12) related to deep-sowing tolerance using a large maize population containing 386 inbred lines genotyped with 0.5 million high-quality single nucleotide polymorphisms (SNPs).  The genome-wide association study detected that 273 SNPs were in linkage disequilibrium (LD) with the genetic basis of maize deep-sowing tolerance.  The RNA-sequencing analysis identified 1 944 and 2 098 differentially expressed genes (DEGs) in two comparisons, which shared 281 DEGs.  By comparing the genomic locations of the 273 SNPs with those of the 281 DEGs, we identified seven candidate genes, of which GRMZM2G119769 encoded a sucrose non-fermenting 1 kinase interactor-like protein.  GRMZM2G119769 was selected as the candidate gene because its homologs in other plants were related to organ length, auxin, or light response.  Candidate gene association mapping revealed that natural variations in GRMZM2G119769 were related to phenotypic variations in maize mesocotyl length.  Gene expression of GRMZM2G119769 was higher in deep-sowing tolerant inbred lines.  These results suggest that GRMZM2G119769 is the most likely candidate gene.  This study provides information on the deep-sowing tolerance of maize germplasms and identifies candidate genes, which would be useful for further research on maize deep-sowing tolerance.
Reference | Related Articles | Metrics
Manual thinning increases fruit size and sugar content of Citrus reticulata Blanco and affects hormone synthesis and sugar transporter activity
LIU Cong, LI De-xiong, HUANG Xian-biao, Zhang Fu-qiong, Xie Zong-zhou, Zhang Hong-yan, Liu Ji-hong
2022, 21 (3): 725-735.   DOI: 10.1016/S2095-3119(20)63502-X
Abstract205)      PDF in ScienceDirect      
Manual fruit thinning (MFT) in fruit trees has been previously shown to increase fruit size and enhance fruit quality, but the effect of MFT on Ponkan (Citrus reticulata Blanco) and the underlying mechanisms remain poorly understood.  In this study, efforts were made to elucidate how MFT influences the fruit quality of Ponkan.  The results showed that MFT substantially increased fruit size and elevated fruit total soluble solids in comparison with the fruit from the unthinned trees (used as control).  Expression analyses demonstrated that mRNA abundance of three important sugar transporter genes, including CrSUT1, CrSTP1 and CrTMT1, was evidently elevated in the flesh of thinned fruit when compared with those of the control.  In addition, MFT prominently up-regulated the transcript levels of various auxin and gibberellin (GA) biosynthesis and signaling genes, including CrYUC6, CrAUX/IAA, CrGA20ox1 and CrGA3ox1.  Concurrently, the contents of endogenous IAA and GA3, measured at 90 d after fruit thinning, were notably elevated in the fruit from trees with the thinning treatment relative to the control, although no difference was detected in the two groups before the thinning manipulation.  Taken together, these results indicate that manual fruit thinning could greatly improve fruit quality, which may be attributed to promoting fruit expansion due to the increased auxin levels and expediting sugar accumulation through the up-regulation of sugar transporter genes.
Reference | Related Articles | Metrics
Fractionation of soil organic carbon in a calcareous soil after long-term tillage and straw residue management
LI Teng-teng, ZHANG Jiang-zhou, ZHANG Hong-yan, Chrisite PHRISITE, ZHANG Jun-ling
2022, 21 (12): 3611-3625.   DOI: 10.1016/j.jia.2022.08.072
Abstract162)      PDF in ScienceDirect      

No tillage (NT) and straw return (S) collectively affect soil organic carbon (SOC).  However, changes in the organic carbon pool have been under-investigated.  Here, we assessed the quantity and quality of SOC after 11 years of tillage and straw return on the North China Plain.  Concentrations of SOC and its labile fractions (particulate organic carbon (POC), potassium permanganate-oxidizable organic carbon (POXC), microbial biomass carbon (MBC) and dissolved organic carbon (DOC)), components of DOC by fluorescence spectroscopy combined with parallel factor analysis (PARAFAC) and the chemical composition of SOC by 13C NMR spectroscopy were explored.  Treatments comprised conventional tillage (CT) and NT under no straw return (S0), return of wheat straw only (S1) or return of both wheat straw and maize residue (S2).  Straw return significantly increased the concentrations and stocks of SOC at 0-20 cm depth but no tillage stratified them with enrichment at 0-10 cm and a decrease at 10-20 cm in comparison to CT, especially under S2.  Labile C fractions showed similar patterns of variation to that of SOC, with POC and POXC more sensitive to straw return and the former more sensitive to tillage.  Six fluorescence components of DOC were identified comprising mostly humic-like substances with smaller amounts of fulvic acid-like substances and tryptophan. Straw return significantly decreased the fluorescence index (FI) and autochthonous index (BIX) and increased the humification index (HIX).  No tillage generally increased HIX in topsoil but decreased it and increased the FI and BIX below the topsoil.  The chemical composition of SOC was: O-alkyl C>alkyl-C>aromatic-C>carbonyl-C.  Overall, NT under S2 effectively increased SOC and its labile C forms and DOC humification in topsoil and microbially-derived DOC below the topsoil.  Return of both wheat and maize straw was a particularly strong factor for promoting soil organic carbon in the plough layer, and the stratification of SOC under no tillage may confer long-term influence on carbon sequestration.

Reference | Related Articles | Metrics
Comparison of grain yield and quality of different types of japonica rice cultivars in the northern Jiangsu plain, China
BIAN Jin-long, REN Gao-lei, XU Fang-fu, ZHANG Hong-cheng, WEI Hai-yan
2021, 20 (8): 2065-2076.   DOI: 10.1016/S2095-3119(20)63348-2
Abstract169)      PDF in ScienceDirect      
In recent years, an increasing number of different types of japonica rice cultivars have been released in the southern rice region of China.  The grain yield and quality of these new cultivars showed significant differences in large scale planting.  However, the causes of the differences remain little known.  Therefore, three typical types of japonica rice cultivars were used in this study to investigate their grain yield and quality.  A scanning calorimeter (DSC), X-ray powder diffractometer (XRD), rapid viscosity analyzer (RVA) and taste analyzer were used to evaluate the cooking and eating properties.  The results showed that the yield of non-soft hybrid japonica rice cultivars was significantly higher than that of non-soft inbred japonica rice cultivars and soft inbred japonica rice cultivars.  Soft inbred japonica rice cultivars had a low amylose content and moderate protein content, which are the main reasons for the superior cooking and eating quality.  In addition, the relative crystallinity of soft inbred japonica rice cultivars was significantly higher than that of non-soft inbred and non-soft hybrid japonica rice cultivars, which is considered the major factor resulting in higher transition temperature and gelatinization enthalpy (ΔHgel).  Non-soft hybrid japonica rice cultivars had a higher number of large starch granules than soft inbred and non-soft inbred japonica rice cultivars.  The setback value (SB) and breakdown value (BD), indirectly reflecting the cooking and eating quality of the three types of japonica rice cultivars, also confirmed that soft inbred japonica rice cultivars with a low SB value and a high BD value had better palatability than the other two types.  This study provides guidance for future plantation of different types of japonica rice cultivars in large rice-producing areas.
Reference | Related Articles | Metrics
Effects of temperature and solar radiation on yield of good eating-quality rice in the lower reaches of the Huai River Basin, China
ZHOU Nian-bing, ZHANG jun, FANG Shu-liang, WEI Hai-yan, ZHANG Hong-cheng
2021, 20 (7): 1762-1774.   DOI: 10.1016/S2095-3119(20)63561-4
Abstract142)      PDF in ScienceDirect      
We studied the effects of temperature and solar radiation on rice yield with the aim of understanding the temperature and solar radiation requirements for high yield rice production in the lower reaches of the Huai River, China.  Field experiments were conducted with two medium-maturing japonica rice (MMJR) varieties and four late-maturing japonica rice (LMJR) varieties in 2017 and 2018.  Seeds were sown on May 10 (T1), May 17 (T2), May 24 (T3), May 31 (T4), June 7 (T5), June 14 (T6), and June 21 (T7).  The whole growth duration (WGD) of rice was shortened when sowing date was delayed, especially for the duration from sowing to heading (S–H).  The effective accumulated temperature (EAT), mean daily temperature (Tmean), cumulative solar radiation (CSR), and mean daily solar radiation (Rmean) over the WGD decreased when sowing date was delayed.  Compared with T1, yields in T2, T3, T4, T5, T6, and T7 decreased by 0.12–0.35, 0.45–0.89, 0.74–1.56, 1.41–2.24, 2.16–2.90, and 2.69–3.64 t ha−1, respectively.  There was a significant positive correlation between rice yield and EAT in different growth stages.  Temperature was the main factor that affected the yield of good eating-quality rice in the lower reaches of the Huai River.  We found that a relatively high yield can be obtained when the optimal Tmean for medium-maturing japonica rice (MMJR) and late-maturing japonica rice (LMJR) was 25.8–27.0°C and 26.6–27.1°C in the stages from sowing to heading (S–H), and 20.3–23.3°C and 20.3–22.1°C in the stages from heading to maturity (H–M), respectively.  The optimal sowing dates for MMJR and LMJR in the lower reaches of the Huai River were May 15–31 and May 15–18, respectively.
Reference | Related Articles | Metrics
TaSnRK2.4 is a vital regulator in control of thousand-kernel weight and response to abiotic stress in wheat
MIAO Li-li, LI Yu-ying, ZHANG Hong-juan, ZHANG Hong-ji, LIU Xiu-lin, WANG Jing-yi, CHANG Xiao-ping, MAO Xin-guo, JING Rui-lian
2021, 20 (1): 46-54.   DOI: 10.1016/S2095-3119(19)62830-3
Abstract173)      PDF in ScienceDirect      
Sucrose non-fermenting 1-related protein kinase 2 (SnRK2) is a plant-specific serine/threonine kinase involved in response to adverse environmental stimuli.  Previous studies showed that TaSnRK2.4 was involved in response to abiotic stresses and conferred enhanced tolerance to multiple stresses in Arabidopsis.  Further experiments were performed to decipher the underlying mechanisms and discover new functions.  The genomic sequences of TaSnRK2.4s locating on chromosome 3A, 3B and 3D were obtained.  Sequencing identified one and 13 variations of TaSnRK2.4-3A and TaSnRK2.4-3B, respectively, but no variation was detected in TaSnRK2.4-3D.  The markers 2.4AM1, 2.4BM1 and 2.4BM2 were developed based on three variations.  Association analysis showed that both TaSnRK2.4-3A and TaSnRK2.4-3B were significantly associated with thousand-kernel weight (TKW), and that SNP3A-T and SNP3B-C were favorable alleles for higher TKW.  Yeast two-hybrid and split luciferase assays showed that TaSnRK2.4 physically interacted with abiotic stress responsive protein TaLTP3, suggesting that TaSnRK2.4 enhanced abiotic stress tolerance by activating TaLTP3.  Our studies suggested that TaSnRK2.4 have potential in improving TKW and response to abiotic stress.
 
Reference | Related Articles | Metrics
Alginate oligosaccharides preparation, biological activities and their application in livestock and poultry 
LIU Ming, LIU Lei, ZHANG Hong-fu, YI Bao, Nadia EVERAERT
2021, 20 (1): 24-34.   DOI: 10.1016/S2095-3119(20)63195-1
Abstract149)      PDF in ScienceDirect      
Alginate oligosaccharides (AOS), belonging to the class of functional marine oligosaccharides, are low-molecular polymers linked by β-1,4-mannuronic acid (M) and α-1,4-guluronic acid (G), which could be classically obtained by enzymatic hydrolysis of alginate. With low viscosity and good water solubility, as well as anti-oxidant, immune regulation, anti-bacterial and anti-inflammatory activities, AOS have been widely used in medical science and functional food, green agriculture and other fields. As new bio-feed additives, AOS have broad potential applications in animal husbandry. In this review, the sources of alginate, chemical structure and preparation methods of AOS, and their biological activities and application in livestock and poultry are summarized. We expect this review could contribute to lay a foundation of application and further research for AOS in livestock and poultry.
Reference | Related Articles | Metrics
Two farnesyl pyrophosphate synthases, GhFPS1–2, in Gossypium hirsutum are involved in the biosynthesis of farnesol to attract parasitoid wasps
ZHANG Hong, HUANG Xin-zheng, JING Wei-xia, LIU Dan-feng, Khalid Hussain DHILOO, HAO Zhi-min, ZHANG Yong-jun
2020, 19 (9): 2274-2285.   DOI: 10.1016/S2095-3119(20)63203-8
Abstract168)      PDF in ScienceDirect      
Sesquiterpenoids play an import role in the direct or indirect defense of plants.  Farnesyl pyrophosphate synthases (FPSs) catalyze the biosynthesis of farnesyl pyrophosphate, which is a key precursor of farnesol and (E)-β-farnesene.  In the current study, two FPS genes in Gossypium hirsutum, GhFPS1 and GhFPS2, were heterologously cloned and functionally characterized in a greenhouse setting.  The open reading frames for full-length GhFPS1 and GhFPS2 were each 1 029 nucleotides, and encoded two proteins of 342 amino acids with molecular weights of 39.4 kDa.  The deduced amino acid sequences of GhFPS1–2 showed high identity to FPSs of other plants.  Quantitative real-time PCR analysis revealed that GhFPS1 and GhFPS2 were highly expressed in G. hirsutum leaves, and were upregulated in methyl jasmonate (MeJA)-, methyl salicylate (MeSA)- and aphid infestation-treated cotton plants.  The recombinant proteins of either GhFPS1 or GhFPS2 plus calf intestinal alkaline phosphatase could convert geranyl diphosphate (GPP) or isopentenyl diphosphate (IPP) to one major product, farnesol.  Moreover, in electrophysiological response and Y-tube olfactometer assays, farnesol showed obvious attractiveness to female Aphidius gifuensis, which is an important parasitic wasp of aphids.  Our findings suggest that two GhFPSs are involved in farnesol biosynthesis and they play a crucial role in indirect defense of cotton against aphid infestation.
Related Articles | Metrics
Effects of INA on postharvest blue and green molds and anthracnose decay in citrus fruit
JING Jia-yi, ZHANG Hong-yan, XUE Yao-bi, ZENG Kai-fang
2020, 19 (5): 1396-1406.   DOI: 10.1016/S2095-3119(20)63169-0
Abstract111)      PDF in ScienceDirect      
As a synthetic functional analog of salicylic acid, 2,6-dichloroisonicotinic acid (INA) is effective in inducing the host disease resistance of a plant against a pathogen.  The effects of INA on controlling postharvest blue and green molds and anthracnose decay and defense-related enzymes on citrus fruits were investigated, and the ascorbic acid of naturally infected citrus flavedo was also measured.  Results showed that 1.0 mmol L–1 INA treatments significantly reduced blue and green molds and anthracnose decay development on both wound-inoculated fruit and naturally-infected fruit compared with the control fruit.  The treatment effectively enhanced the β-1,3-glucanase (GLU), chitinase (CHI), phenylalanine ammonia-lyase (PAL) and peroxidase (POD) activities and the polyphenol oxidase (PPO) in flavedo.  The results presented here suggest that INA might be used as a chemical fungicide substitution to control postharvest diseases in citrus fruits.
Reference | Related Articles | Metrics
Effect of wide-narrow row arrangement in mechanical pot-seedling transplanting and plant density on yield formation and grain quality of japonica rice
HU Qun, JIANG Wei-qin, QIU Shi, XING Zhi-peng, HU Ya-jie, GUO Bao-wei, LIU Guo-dong, GAO Hui, ZHANG Hong-cheng, WEI Hai-yan
2020, 19 (5): 1197-1214.   DOI: 10.1016/S2095-3119(19)62800-5
Abstract105)      PDF in ScienceDirect      
Mechanical pot-seedling transplanting is an innovatively developed transplanting method that has the potential to replace mechanical carpet-seedling transplanting.  However, the initial pot-seedling transplanting machine lacked optimized density spacing and limited yield potential for japonica rice.  Therefore, ascertaining the optimized density by wide-narrow rows and the appropriate transplanting method for yield formation and grain quality of japonica rice is of great importance for high-quality rice production.  Field experiments were conducted using two japonica rice cultivars Nanjing 9108 and Nanjing 5055 under three transplanting methods in 2016 and 2017: mechanical pot-seedling transplanting with wide-narrow row (K, average row spacing of 30 cm); equidistant row (D, 33 cm×12 cm); and mechanical carpet-seedling transplanting (T, 30 cm×12.4 cm).  In addition, five different density treatments were set in K (K1–K5, from 18.62×104 to 28.49×104 hills ha–1).  The results showed that the highest yield was produced by a planting density of 26.88×104 hills ha–1 in mechanical pot-seedling transplanting with wide-narrow row with a greater number of total spikelets that resulted from significantly more panicles per area and slightly more grain number per panicle, as compared with equidistant row, and yield among density in wide-narrow row showed a parabolic trend.  Compared with mechanical carpet-seedling transplanting, the treatment of the highest yield increased yield significantly, which was mainly attributed to the larger sink size with improved filled-grain percentage and grain weight, higher harvest index, and increased total dry matter accumulation, especially the larger amount accumulated from heading stage to maturity stage.  With the density in wide-narrow row decreasing, processing quality, appearance quality, and nutrition quality were all improved, whereas amylose content and the taste value were decreased.  Compared with mechanical carpet-seedling transplanting, mechanical pot-seedling transplanting improved processing quality and nutrition quality, but decreased amylose content and deteriorated appearance quality.  These results suggested that mechanical pot-seedling transplanting with wide-narrow row coupling produced a suitable planting density of 26.88×104 hills ha–1 and may be an alternative approach to improving grain yield and quality for japonica rice.
Reference | Related Articles | Metrics
Comparative analysis on grain quality and yield of different panicle weight indica-japonica hybrid rice (Oryza sativa L.) cultivars
BIAN Jin-long, REN Gao-lei, HAN Chao, XU Fang-fu, QIU Shi, TANG Jia-hua, ZHANG Hong-cheng, WEI Hai-yan, GAO Hui
2020, 19 (4): 999-1009.   DOI: 10.1016/S2095-3119(19)62798-X
Abstract113)      PDF in ScienceDirect      
Indica-japonica hybrid rice (Oryza sativa L.) cultivars showed high yield potential and poor tasting quality when compared with common japonica rice cultivars.  Large panicle is a prominent factor of high yield for indica-japonica hybrid rice cultivars, and the panicle weight varies greatly among different indica-japonica hybrid rice cultivars.  It is important to research on yield and grain quality of different panicle weight indica-japonica hybrid rice cultivars.  In this study, two different panicle types indica-japonica hybrid cultivars were used to research on the relation of yield and grain quality.  The yields of two heavy panicle weights indica-japonica hybrid cultivars were significantly higher than that of two medium panicle weight rice cultivars.  The cooking and eating quality and starch properties of different panicle type cultivars were evaluated.  Yongyou 6715 (medium panicle) and Yongyou 1852 (heavy panicle) got the relatively higher cooking and eating quality.  Rice cultivars with medium panicle weight had more large starch granules and higher relative crystallinity than cultivars with heavy panicle weight.  Transition temperature and retrogradation enthalpy (ΔHret) of medium panicle type cultivars were significantly higher than that of heavy panicle type cultivars.  There was no significant difference in amylose content among different panicle type cultivars.  Protein content of heavy panicle type cultivar was higher than that of medium panicle type cultivar, and protein content is the main factor affect cooking and eating quality in this study.  The cultivar Yongyou 6715 got the highest taste value with the lowest protein content.  Thus, it is suggested that the emphasis on improving rice cooking and eating quality of indica-japonica hybrid rice cultivars is how to reduce the protein content in rice grain.  According to the results of this study, medium panicle type with high grain weight is the desired panicle type for high quality indica-japonica hybrid rice breeding.
 
Reference | Related Articles | Metrics
Molecular detection of the powdery mildew resistance genes in winter wheats DH51302 and Shimai 26
QU Yun-feng, WU Pei-pei, HU Jing-huang, CHEN Yong-xing, SHI Zhan-liang, QIU Dan, LI Ya-hui, ZHANG Hong-jun, ZHOU Yang, YANG Li, LIU Hong-wei, ZHU Tong-quan, LIU Zhi-yong, ZHANG Yan-ming, LI Hong-jie
2020, 19 (4): 931-940.   DOI: 10.1016/S2095-3119(19)62644-4
Abstract122)      PDF in ScienceDirect      
Resistance to powdery mildew is an important trait of interest in many wheat breeding programs.  The information on genes conferring resistance to powdery mildew in wheat cultivars is useful in parental selection.  Winter wheat breeding line DH51302 derived from Liangxing 99 and cultivar Shimai 26 derived from Jimai 22 showed identical infection patterns against 13 isolates of Blumeria graminis f. sp. tritici (Bgt) that causes wheat powdery mildew.  DH51302 and Shimai 26 were crossed to a powdery mildew susceptible cultivar Zhongzuo 9504 and the F2:3 families were used in molecular localization of the resistance genes.  Fourteen polymorphic markers, which were linked to Pm52 from Liangxing 99, were used to establish the genetic linkage maps for the resistance genes PmDH51302 and PmSM26 in DH51302 and Shimai 26, respectively.  These genes were placed in the same genetic interval where Pm52 resides.  Analysis of gene-linked molecular markers indicated that PmDH51302 and PmSM26 differed from other powdery mildew resistance genes on chromosome arm 2BL, such as Pm6, Pm33, Pm51, MlZec1, MlAB10, and Pm64.  Based on the results of reaction patterns to different Bgt isolates and molecular marker localization, together with the pedigree information, DH51302 and Shimai 26 carried the same gene, Pm52, which confers their resistance to powdery mildew.
 
Reference | Related Articles | Metrics
Genetic progress in stem lodging resistance of the dominant wheat cultivars adapted to Yellow-Huai River Valleys Winter Wheat Zone in China since 1964
ZHANG Hong-jun, LI Teng, LIU Hong-wei, MAI Chun-yan, YU Guang-jun, LI Hui-li, YU Li-qiang, MENG Ling-zhi, JIAN Da-wei, YANG Li, LI Hong-jie, ZHOU Yang
2020, 19 (2): 438-448.   DOI: 10.1016/S2095-3119(19)62627-4
Abstract144)           
Analysis of genetic progress for lodging-related traits provides important information for further improvement of lodging resistance.  Forty winter wheat cultivars widely grown in the Yellow-Huai River Valleys Winter Wheat Zone (YHWZ) of China during the period of 1964–2015 were evaluated for several lodging-related traits in three cropping seasons.  Plant height, height at center of gravity, length of the basal second internode, and lodging index decreased significantly in this period, and the average annual genetic gains for these traits were –0.50 cm or –0.62%, –0.27 cm or –0.60%, –0.06 cm or –0.63%, and –0.01 or –0.94%, respectively.  Different from other traits, stem strength showed a significant increasing trend with the breeding period, and the annual genetic gains were 0.03 N or 0.05%.  Correlation analysis showed that lodging index was positively correlated with plant height, height at center of gravity, and length of the basal second internode, but negatively correlated with stem strength.  Meanwhile, significantly positive correlations were observed between plant height, height at center of gravity, and length of the basal first and second internodes.  By comparison with the wild types, dwarfing genes had significant effects on all lodging-related traits studied except for length of the basal first internode and stem strength.  Principle component analysis demonstrated that plant height and stem strength were the most important factors influencing lodging resistance.  Clustering analysis based on the first two principle components further indicated the targets of wheat lodging-resistant breeding have changed from reducing plant height to strengthening stem strength over the breeding periods.  This study indicates that the increase of stem strength is vital to improve lodging resistance in this region under the high-yielding condition when plant height is in an optimal range.
 
Reference | Related Articles | Metrics
Comprehensive characterization of yam tuber nutrition and medicinal quality of Dioscorea opposita and D. alata from different geographic groups in China
SHAN Nan, WANG Pu-tao, ZHU Qiang-long, SUN Jing-yu, ZHANG Hong-yu, LIU Xing-yue, CAO Tian-xu, CHEN Xin, HUANG Ying-jin, ZHOU Qing-hong
2020, 19 (11): 2839-2848.   DOI: 10.1016/S2095-3119(20)63270-1
Abstract179)      PDF in ScienceDirect      
China is an important domestication center of yams, and two main yam species of Dioscorea opposita and D. alata are commonly cultivated in China.  However, the differences of nutritional and medicinal characteristics between the two species and their subgroups remain unclear, which would greatly affect the resource conservation and commercial utilization of yams.  In this study, typical yam resources including the species of D. opposita (wild and cultivated Ruichang yam from southern China, and Tiegun yam from northern China) and two landraces of D. alata (Longyan yam and Anyuan yam from southern China) were selected as materials.  Nutritional traits and medicinal characteristics were determined and analyzed respectively.  The results showed that there was no significant differences in the content of most nutrients between D. opposita and D. alata, but most cultivated Ruichang yam of D. opposita showed higher levels of starch, soluble sugar, sucrose, and ascorbate in tuber than that in yam from D. alata.  Moreover, an UPLC-MS method was developed for identification and determination of medicinal characteristics in the two species.  The results showed that allantoin can be detected in all selected samples.  Cultivated Ruichang yam of D. opposita possessed the highest allantoin content among the tested materials, and was significantly different with that in Tiegun yam and D. alata. Dioscin was not detected in D. alata. Overall, there was little difference in nutritional composition between D. opposita and D. alata, but the medicinal quality of D. opposita was better than that of D. alata.  Due to the outstanding comprehensive quality, the local variety of cultivated Ruichang yam can be further developed and utilized.
Reference | Related Articles | Metrics
Yield characteristics of japonica/indica hybrids rice in the middle and lower reaches of the Yangtze River in China
XU Dong, ZHU Ying, CHEN Zhi-feng, HAN Chao, HU Lei, QIU Shi, WU Pei, LIU Guo-dong, WEI Hai-yan, ZHANG Hong-cheng
2020, 19 (10): 2394-2406.   DOI: 10.1016/S2095-3119(19)62872-8
Abstract103)      PDF in ScienceDirect      
Although a lot of researches have been done on yield characteristics of japonica/indica hybrid rice, there is little information on differences of yield characteristics between different types of hybrid.  To determine common characteristics of japonica/indica hybrid rice (JIHR) and identify the differences between different types of JIHR, the present study assessed yield characteristics, such as panicle trait, leaf area index (LAI), above-ground biomass accumulation, and nitrogen absorption and utilization, among three types of cultivar of JIHR.  In our field experiments, three types of JIHR, e.g., Yongyou, Chunyou and Jiayouzhongke, were divided, and each of them has two cultivars, which were used as materials, meanwhile, using conventional japonica rice (CJR) Wuyingjing 31 and Sujing 9 were as controls.  The results showed that the mean yield of those JIHR was above 12 t ha–1 in 2017 and 2018, and was 31.9 and 32.2%, respectively higher than that of CJR in the two years.  Spikelet number per panicle of JIHR resulted in high yield.  Higher yield of JIHR was likely contributed to greater panicle number and more spikelets per panicle.  Higher yielding JIHR showed stronger tillering capacity, larger LAI and above-ground biomass accumulation from jointing to heading stages, which likely contributed to the higher number of spikelets per panicle.  The long duration from heading to maturity stages allowed more nitrogen accumulation of higher yielding JIHR.
Reference | Related Articles | Metrics
Transcriptome and metabolome profiling of unheading in F1 hybrid rice
WANG Jie, WEI Shao-bo, WANG Chun-chao, Najeeb Ullah KHAN, ZHANG Zhan-ying, WANG Wen-sheng, ZHAO Xiu-qin, ZHANG Hong-liang, LI Zi-chao, GAO Yong-ming
2020, 19 (10): 2367-2382.   DOI: 10.1016/S2095-3119(19)62838-8
Abstract140)      PDF in ScienceDirect      
Heading date is a crucial agronomic trait.  However, rice usually delays heading due to the photoperiod, temperature, hormones or age.  The present research was conducted to analyze the mechanism controlling heading date in F1 hybrid rice.  We constructed two test-crossing populations using two introgression lines (ILs), P20 and P21 coming from SH527/FH838 as the male parent, respectively, and male sterile line Jin23A as the female parent.  Meanwhile, the F1 hybrids of H20, obtained by mating P20 with Jin23A and having no heading, and H21, from the crossing between P21 and Jin23A having normal heading, were both observed under long days.  Here, we analyzed the photoperiodic response of F1 hybrids by transcriptome and metabolome profiling.  The greater differences displayed in the transcriptome and the metabolome were caused by photoperiod (exogenous) instead of genes (endogenous).  The coping mechanism resulted from long days (LD) in H20, leading to differences in the circadian rhythm and glutathione metabolism relative to other samples.  The circadian oscillator and GSH/GSSG cycle typically regulate ROS homeostasis, and both of them are responsible for modulating ROS in H20 under LD condition.  Both circadian rhythm genes and the reported genes related to heading date function via the DHD1/OsMFT1-Ehd1-RFT1-OsMADS14/OsMADS18 pathway and the glutathione metabolism pathway by regulating oxidative reduction processes.  Both pathways are involved in the heading process and they interacted through the oxidative reduction process which was induced by photoperiod regulation, and all of them collectively modulated the heading process.  The results of this study will be helpful for unraveling the mechanism of F1 hybrid responses to unheading under LD condition.
Reference | Related Articles | Metrics
Straw layer burial to alleviate salt stress in silty loam soils: Impacts of straw forms
ZHANG Hong-yuan, LU Chuang, PANG Huan-cheng, LIU Na, ZHANG Xiao-li, LI Yu-yi
2020, 19 (1): 265-276.   DOI: 10.1016/S2095-3119(19)62737-1
Abstract131)      PDF in ScienceDirect      
Salt stress can be alleviated by straw layer burial in the soil, but little is known of the appropriate form of the straw layer for optimal regulation of soil water and salinity because of the uncontrollability of field tests.  Here, the following four straw forms with compaction thickness of 5 cm buried 40–45 deep were studied: no straw layer (CK), segmented straw (SL, 5 cm in length), straw pellet (SK), and straw powder (SF).  The three straw forms (SL, SK and SF) significantly delayed the infiltration of irrigation water down the column profile by 71.20–134.3 h relative to CK and the migration velocity of the wetting front under SF was the slowest.  It took longer for the wetting front to transcend SK than SL but shorter for it to reach the bottom of soil column after water crossed the straw layer.  Compared with CK, the average volumetric water content in the 0–40 cm soil layer increased by 6.45% under SL, 1.77% under SK and 5.39% under SF.  The desalination rates at the 0–40 and 0–100 cm soil layers increased by 5.85 and 3.76% under SL, 6.64 and 1.47% under SK and 5.97 and 4.82% under SF.  However, there was no significant difference among straw forms in the 0–40 cm soil layer.  Furthermore, the salt leaching efficiency (SLE, g mm–1 h–1) above the 40 cm layer under SL was 0.0097, being significantly higher than that under SF (0.0071) by 37.23%.  Salt storage under SL, SK and SF in the 40–45 cm layer accounted for 4.50, 16.92 and 7.43% of total storage in the 1-m column profile.  Cumulative evaporation under SL and SF decreased significantly by 41.20 and 49.00%, with both treatments having the most significant inhibition of salt accumulation (resalinization rate being 36.06 and 47.15% lower than CK) in the 0–40 cm soil layer.  In conclusion, the different forms of straw layers have desalting effects under high irrigation level (446 mm).  In particular, SL and SF performed better than SK in promoting deep salt leaching and inhibiting salt accumulation on the soil surface.  However, SL was simpler to implement and its SLE was higher.  Therefore, the segmented 5 cm straw can be recommended as an optimum physical form for establishing a straw layer for managing saline soils for crop production.
Reference | Related Articles | Metrics
Developing sustainable summer maize production for smallholder farmers in the North China Plain: An agronomic diagnosis method
CHEN Guang-feng, CAO Hong-zhu, CHEN Dong-dong, ZHANG Ling-bo, ZHAO Wei-li, ZHANG Yu, MA Wen-qi, JIANG Rong-feng, ZHANG Hong-yan, ZHANG Fu-suo
2019, 18 (8): 1667-1679.   DOI: 10.1016/S2095-3119(18)62151-3
Abstract138)      PDF in ScienceDirect      
With an increasing population and changing diet structure, summer maize is increasingly becoming an important energy crop in China.  However, traditional farmer practices for maize production are inefficient and unsustainable.  To ensure food security and sustainable development of summer maize production in China, an improved, more sustainable farmer management system is needed.  Establishing this system requires a comprehensive understanding of the limitations of current farming practice and the ways it could be improved.  In our study, 235 plots from three villages in the North China Plain (NCP) were monitored.  Maize production on farms was evaluated; our results showed that the maize yield and nitrogen partial factor productivity (PFPN) were variable on smallholder farms at 6.6–13.7 t ha–1 and 15.4–88.7 kg kg–1, respectively.  Traditional farming practices also have a large environmental impact (nitrogen surplus: –64.2–323.78 kg ha–1).  Key yield components were identified by agronomic diagnosis.  Grain yield depend heavily on grain numbers per hectare rather than on the 1 000-grain weight.  A set of improved management practices (IP) for maize production was designed by employing a boundary line (BL) approach and tested on farms.  Results showed that the IP could increase yield by 18.4% and PFPN by 31.1%, compared with traditional farmer practices (FP), and reduce the nitrogen (N) surplus by 57.9 kg ha–1.  However, in terms of IP effect, there was a large heterogeneity among different smallholder farmers’ fields, meaning that, precise technologies were needed in different sites especially for N fertilizer management.  Our results are valuable for policymakers and smallholder farmers for meeting the objectives of green development in agricultural production.
Reference | Related Articles | Metrics
Science and Technology Backyard: A novel approach to empower smallholder farmers for sustainable intensification of agriculture in China
JIAO Xiao-qiang, ZHANG Hong-yan, MA Wen-qi, WANG Chong, LI Xiao-lin, ZHANG Fu-suo
2019, 18 (8): 1657-1666.   DOI: 10.1016/S2095-3119(19)62592-X
Abstract162)      PDF in ScienceDirect      
Sustainable feeding of the growing population in China without ecological destabilization is a grand challenge.  In this populous country where agriculture is dominated by smallholder farming, developing innovative technology and translating scientific knowledge into action for smallholder farmers is a crucial step in addressing this challenge.  Here, we present a novel approach for technology innovation and dissemination to achieve sustainable intensification in the fields of smallholder farmers.  The Science and Technology Backyard (STB) is a hub in a rural area that links knowledge with practices to promote technology innovation and exchange.  In this study, the framework and functions of STB are introduced, and the key implications for sustainable intensification across millions of smallholder farmers are explicitly stated: (i) develop innovative technology based on stated demands of farmers; (ii) disseminate technology by innovative social service models though combined top-down approaches with bottom-up measures to enable smallholders in rural areas.  This paper provides a perspective on transformation of small-scale agriculture toward sustainable intensification in China and useful knowledge applicable to other developing countries.
Reference | Related Articles | Metrics
Closing the nitrogen use efficiency gap and reducing the environmental impact of wheat-maize cropping on smallholder farms in the Guanzhong Plain, Northwest China
LÜ Feng-lian, HOU Miao-miao, ZHANG Hong-tao, Asif Khan, Muhammad Ayaz, QIANGJIU Ciren, HU Chang-lu, YANG Xue-yun, SUN Ben-hua, ZHANG Shu-lan
2019, 18 (1): 169-178.   DOI: 10.1016/S2095-3119(18)61948-3
Abstract300)      PDF in ScienceDirect      
A high crop yield with the minimum possible cost to the environment is generally desirable.  However, the complicated relationships among crop production, nitrogen (N) use efficiency and environmental impacts must be clearly assessed.  We conducted a series of on-farm N application rate experiments to establish the linkage between crop yield and N2O emissions in the Guanzhong Plain in Northwest China.  We also examined crop yield, partial factor productivity of applied N (PFPN) and reactive N (Nr) losses through a survey of 1 529 and 1 497 smallholder farms that grow wheat and maize, respectively, in the region.  The optimum N rates were 175 and 214 kg ha−1 for winter wheat and summer maize, respectively, thereby achieving the yields of 6 799 and 7 518 kg ha−1, correspondingly, with low N2O emissions based on on-farm N rate experiments.  Among the smallholder farms, the average N application rates were 215 and 294 kg ha−1 season−1, thus producing 6 490 and 6 220 kg ha−1 of wheat and maize, respectively.  The corresponding PFPN values for the two crops were 36.8 and 21.2 kg N kg−1, and the total N2O emissions were 1.50 and 3.88 kg ha−1, respectively.  High N balance, large Nr losses and elevated N2O emissions could be explained by the overdoses of N application and low grain yields under the current farming practice.  The crop yields, N application rates, PFPN and total N2O for wheat and maize were 18 and 24% higher, 42 and 37% less, 75 and 116% higher, and 42 and 47% less, correspondingly, in the high-yield and high-PFPN group than in the average smallholder farms.  In conclusion, closing the PFPN gap between the current average and the value for the high-yield and high-PFPN group would increase crop production and reduce Nr losses or the total N2O emissions for the investigated cropping system in Northwest China.
Reference | Related Articles | Metrics
Effects of planting methods on yield and quality of different types of japonica rice in northern Jiangsu plain, China
BIAN Jin-long, XU Fang-fu, HAN Chao, QIU Shi, GE Jia-lin, XU Jing, ZHANG Hong-cheng, WEI Hai-yan
2018, 17 (12): 2624-2635.   DOI: 10.1016/S2095-3119(18)62141-0
Abstract395)      PDF in ScienceDirect      
Mechanical transplanting with carpet seedlings (MC) and mechanical direct seeding (MD) are newly developed planting methods, which increase in popularity and planted area each year. Knowing the difference for yield and rice quality under different planting methods is of great importance for the development of high quality and yield cultivation techniques under mechanical conditions. Therefore, three kinds of japonica rice including hybrid japonica rice, inbreed japonica rice, and soft rice were adopted as materials. And the differences in the quality of processing, appearance, cooking and eating quality, nutrition, and the rapid viscosity analyzer (RVA) profile were studied to reveal the effects of planting methods on yield and quality of different types of japonica rice. Results showed that the milled rice and head rice rates under MC was significantly higher than those under MD, and the processing quality of inbreed japonica rice was the most stable. Compared with MC, length/width ratio of rice under MD was significantly increased, and chalkiness rate, size, and degree were significantly decreased. The protein content under MD was lower than that under MC. MC showed higher peak viscosity and breakdown value than MD. The taste value was the greatest for soft rice, followed by inbreed japonica rice, and then by japonica hybrid rice, with no significant differences resulting from planting methods. Compared with MC, MD significantly improved the appearance quality, though processing quality and nutritional quality were decreased. And there was no significant difference in cooking and eating quality between MC and MD. Under different planting methods, the appearance quality of inbreed japonica rice changed the most and the processing quality was the most stable. The nutritional, cooking and eating quality of soft rice changed the least. Therefore, according to the different planting methods and market needs, selecting the appropriate rice varieties can reduce the risks in rice production and achieve good rice quality.
Reference | Related Articles | Metrics
Combined effect of shading time and nitrogen level on grain filling and grain quality in japonica super rice
WEI Hai-yan, ZHU Ying, QIU Shi, HAN Chao, HU Lei, XU Dong, ZHOU Nian-bing, XING Zhi-peng, HU Ya-jie, CUI Pei-yuan, DAI Qi-gen, ZHANG Hong-cheng
2018, 17 (11): 2405-2417.   DOI: 10.1016/S2095-3119(18)62025-8
Abstract369)      PDF (1180KB)(728)      
There is limited information about the combined effect of shading time and nitrogen (N) on grain filling and quality of rice.  Therefore, two japonica super rice cultivars, Nanjing 44 and Ningjing 3, were used to study the effect of shading time and N level on the characteristics of rice panicle and grain filling as well as the corresponding yield and quality.  At a low N level (150 kg N ha–1, 150N), grain yield decreased (by 21.07–26.07%) under the treatment of 20 days of shading before heading (BH) compared with the no shading (NS) treatment.  These decreases occurred because of shortened panicle length, decreased number of primary and secondary branches, as well as the grain number and weight per panicle.  At 150N, in the treatment of 20 days of shading after heading (AH), grain yield also decreased (by 9.46–10.60%) due to the lower grain weight per panicle.  The interaction of shading and N level had a significant effect on the number of primary and secondary branches.  A high level of N (300 kg N ha–1, 300N) could offset the negative effect of shading on the number of secondary branches and grain weight per panicle, and consequently increased the grain yield in both shading treatments.  In superior grains, compared with 150N NS, the time to reach 99% of the grain weight (T99) was shortened by 1.6 to 1.7 days, and the grain weight was decreased by 4.18–5.91% in 150N BH.  In 150N AH, the grain weight was 13.39–13.92% lower than that in 150N NS due to the slow mean and the maximum grain-filling rate (GRmean and GRmax).  In inferior grains, grain weight and GRmean had a tendency of 150N NS>150N BH>150N AH.  Under shaded conditions, 300N decreased the grain weight due to lower GRmean both in superior and inferior grains.  Compared with 150N NS, the milling and appearance qualities as well as eating and cooking quality were all decreased in 150N BH and 150N AH.  Shading with the high level of 300N improved the milling quality and decreased the number of chalky rice kernels, but the eating and cooking quality was reduced with increased chalky area and overall chalkiness.  Therefore, in the case of short term shading, appropriate N fertilizer could be used to improve the yield and milling quality of rice, but limited application of N fertilizer is recommended to achieve good eating and cooking quality of rice.
 
Reference | Related Articles | Metrics
Effects of slow or controlled release fertilizer types and fertilization modes on yield and quality of rice
WEI Hai-yan, CHEN Zhi-feng, XING Zhi-peng, ZHOU Lei, LIU Qiu-yuan, ZHANG Zhen-zhen, JIANG Yan, HU Ya-jie, ZHU Jin-yan, CUI Pei-yuan, DAI Qi-gen, ZHANG Hong-cheng
2018, 17 (10): 2222-2234.   DOI: 10.1016/S2095-3119(18)62052-0
Abstract469)      PDF in ScienceDirect      
There is limited information about the influence of slow or controlled release fertilizer (S/CRF) on rice yield and quality.  In this study, japonica rice cultivar Nanjing 9108 was used to study the effects of three different S/CRFs (polymer-coated urea (PCU), sulfur-coated urea (SCU), and urea formaldehyde (UF)) and two fertilization modes (both S/CRF and common urea (CU) as basal fertilizer, S/CRF as basal and CU as tillering fertilizer) on rice yield and quality.  CU only was applied separately as control (CK).  Results showed that, rice grain yield, chalky kernel rate, chalky area, overall chalkiness, and the content of gliadin, glutenin, and protein, all showed the trends of UF>PCU>SCU within the same fertilization mode, and showed the trends of S/CRF as basal and CU as tillering fertilizer>both S/CRF and CU as basal fertilizer within the same type of S/CRF.  In contrast, the contents of amylose, amylopectin, and starch, as well as taste value, and peak and hot viscosity showed trends of SCU>PCU>UF, and the trends of both S/CRF and CU as basal fertilizer>S/CRF as basal and CU as tillering fertilizer.  Among S/CRF treatments and fertilization modes, taste values of cooked rice were positively correlated with amylose, amylopectin, and starch contents, as well as gel consistency, peak viscosity, hot viscosity, and cool viscosity, while negatively correlated with globulin, gliadin, glutenin, and protein contents.  The types of S/CRF and fertilization modes are important for improving rice yield and quality.  Compared to CK, higher yield and similar quality of rice was achieved with UF as basal and CU as tillering fertilizer, and similar yield with improved appearance and eating and cooking quality of rice was achieved with either both UF and CU as basal fertilizer, or PCU as basal and CU as tillering fertilizer.
 
Reference | Related Articles | Metrics
Advances in salinity tolerance of soybean: Genetic diversity, heredity, and gene identification contribute to improving salinity tolerance
CHEN Hua-tao, LIU Xiao-qing, ZHANG Hong-mei, YUAN Xing-xing, GU He-ping, CUI Xiao-yan, CHEN Xin
2018, 17 (10): 2215-2221.   DOI: 10.1016/S2095-3119(17)61864-1
Abstract380)      PDF (725KB)(460)      
Salt stress is one of the major abiotic stresses affecting soybean growth.  Genetic improvement for salt tolerance is an effective way to protect soybean yield under salt stress conditions.  Successful improvement of salt tolerance in soybean relies on identifying genetic variation that confers tolerance in soybean germplasm and subsequently incorporating these genetic resources into cultivars.  In this review, we summarize the progress in genetic diversity and genetics of salt tolerance in soybean, which includes identifying genetic diversity for salt tolerant germplasm; mapping QTLs conferring salt tolerance; map-based cloning; and conducting genome-wide association study (GWAS) analysis in soybean.  Future research avenues are also discussed, including high throughput phenotyping technology, the CRISPR/Cas9 Genome-Editing System, and genomic selection technology for molecular breeding of salt tolerance.
 
Reference | Related Articles | Metrics