Please wait a minute...
Journal of Integrative Agriculture  2022, Vol. 21 Issue (5): 1266-1277    DOI: 10.1016/S2095-3119(21)63649-3
Special Issue: 玉米遗传育种合辑Maize Genetics · Breeding · Germplasm Resources
Crop Science Advanced Online Publication | Current Issue | Archive | Adv Search |
Dissecting the genetic basis of maize deep-sowing tolerance by combining association mapping and gene expression analysis
YANG Yue1, 2*, MA Yu-ting1, 2*, LIU Yang-yang2, 3*, Demar LYLE2, LI Dong-dong2, WANG Ping-xi2, XU Jia-liang2, ZHEN Si-han2, LU Jia-wen2, PENG Yun-ling4, CUI Yu2, FU Jun-jie2, DU Wan-li1, ZHANG Hong-wei2, WANG Jian-hua3
1 Agronomy College, Shenyang Agricultural University, Shenyang 110161, P.R.China
2 National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, P.R.China
3 Center for Seed Science and Technology, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, P.R.China 4 Gansu Provincial Key Laboratory for Aridland Crop Science/Agronomy College, Gansu Agricultural University, Lanzhou 730070, P.R.China
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

深播是包括玉米在内的作物躲避干旱的一种重要策略,候选基因的克隆是进行玉米耐深播分子机理研究的基础工作。本研究中,我们利用包含386份玉米自交系的关联分析群体对10厘米和20厘米播种深度条件下的四个性状进行鉴定。利用50万SNP标记进行关联分析发现了273个耐深播性状显著关联的SNP。对两组不同的处理进行RNA测序分析分别发现1944和2098个差异基因,其中包含281个共同的差异基因。通过比较273个SNP和281个差异基因的位置发现了7个可能与耐深播相关的候选基因,其中GRMZM2G119769编码一个SNF1激酶互作的蛋白。由于GRMZM2G119769在其他植物中的同源基因跟器官伸长、生长素和光响应有关。同时,候选基因关联分析表明GRMZM2G119769基因的自然变异与玉米的中胚轴长度有关。另外,基因表达分析表明GRMZM2G119769在耐深播材料中表达量高。这些研究结果都支持GRMZM2G119769是玉米耐深播性状的候选基因。本研究不但评价了玉米资源的耐深播特性,还鉴定出一些可能对未来玉米耐深播研究有参考价值的候选基因。




Abstract  Deep-sowing is an important method for avoiding drought stress in crop species, including maize.  Identifying candidate genes is the groundwork for investigating the molecular mechanism underlying maize deep-sowing tolerance.  This study evaluated four traits (mesocotyl length at 10 and 20 cm planting depths and seedling emergence rate on days 6 and 12) related to deep-sowing tolerance using a large maize population containing 386 inbred lines genotyped with 0.5 million high-quality single nucleotide polymorphisms (SNPs).  The genome-wide association study detected that 273 SNPs were in linkage disequilibrium (LD) with the genetic basis of maize deep-sowing tolerance.  The RNA-sequencing analysis identified 1 944 and 2 098 differentially expressed genes (DEGs) in two comparisons, which shared 281 DEGs.  By comparing the genomic locations of the 273 SNPs with those of the 281 DEGs, we identified seven candidate genes, of which GRMZM2G119769 encoded a sucrose non-fermenting 1 kinase interactor-like protein.  GRMZM2G119769 was selected as the candidate gene because its homologs in other plants were related to organ length, auxin, or light response.  Candidate gene association mapping revealed that natural variations in GRMZM2G119769 were related to phenotypic variations in maize mesocotyl length.  Gene expression of GRMZM2G119769 was higher in deep-sowing tolerant inbred lines.  These results suggest that GRMZM2G119769 is the most likely candidate gene.  This study provides information on the deep-sowing tolerance of maize germplasms and identifies candidate genes, which would be useful for further research on maize deep-sowing tolerance.
Keywords:  maize       mesocotyl length        association mapping        differentially expressed gene        SNF1 kinase interactor-like protein  
Received: 04 September 2020   Accepted: 19 February 2021
Fund: This research was supported by the National Key R&D Program of China (2018YFD0100903), the China Agriculture Research System of MOF and MARA (CARS-02-13) and the Natural Science Fund of Liaoning Province, China (20170540806).
About author:  Correspondence WANG Jian-hua, E-mail: wangjh63@cau.edu.cn; ZHANG Hong-wei, E-mail: zhanghongwei@caas.cn; DU Wan-li, E-mail: dwl2014@syau.edu.cn * These authors contributed equally to this study.

Cite this article: 

YANG Yue, MA Yu-ting, LIU Yang-yang, Demar LYLE, LI Dong-dong, WANG Ping-xi, XU Jia-liang, ZHEN Si-han, LU Jia-wen, PENG Yun-ling, CUI Yu, FU Jun-jie, DU Wan-li, ZHANG Hong-wei, WANG Jian-hua. 2022. Dissecting the genetic basis of maize deep-sowing tolerance by combining association mapping and gene expression analysis. Journal of Integrative Agriculture, 21(5): 1266-1277.

Asano K, Miyao A, Hirochika H, Kitano H, Matsuoka M, Ashikari M. 2010. SSD1, which encodes a plant-specific novel protein, controls plant elongation by regulating cell division in rice. Proceedings of the Japan Academy Series (B) – Physical and Biological Sciences, 86, 265–273.
Bates D, Machler M, Bolker B M, Walker S C. 2015. Fitting linear mixed-effects models using lme4. Journal of Statistical Software, 67, 1–48.
Bradbury P J, Zhang Z, Kroon D E, Casstevens T M, Ramdoss Y, Buckler E S. 2016. TASSEL: Software for association mapping of complex traits in diverse samples. Bioinformatics, 23, 2633–2635.
Choi D, Kim J H, Kende H. 2004. Whole genome analysis of the OsGRF gene family encoding plant-specific putative transcription activators in rice (Oryza sativa L.). Plant and Cell Physiology, 45, 897–904.
Deng M, Li D Q, Luo J Y, Xiao Y J, Liu H J, Pan Q C, Zhang X H, Jin M L, Zhao M C, Yan J B. 2017. The genetic architecture of amino acids dissection by association and linkage analysis in maize. Plant Biotechnology Journal, 15, 1250–1263.
Dungan G, Erickson L, Gault H. 1950. Response of corn to extremely deep planting. Agronomy Journal, 42, 256–257.
Fahad S, Bajwa A A, Nazir U, Anjum S A, Farooq A, Zohaib A, Sadia S, Nasim W, Adkins S, Saud S, Ihsan M Z, Alharby H, Wu C, Wang D P, Huang J L. 2017. Crop production under drought and heat stress: Plant responses and management options. Frontiers in Plant Science, 8, 1147.
Fu J J, Cheng Y B, Linghu J J, Yang X H, Kang L, Zhang Z X, Zhang J, He C, Du X M, Peng Z Y, Wang B, Zhai L H, Dai C M, Xu J B, Wang W D, Li X R, Zheng J, Chen L, Luo L H, Liu J J, et al. 2013. RNA sequencing reveals the complex regulatory network in the maize kernel. Nature Communications, 4, 2832.
Han S, Miedaner T, Utz H F, Schipprack W, Schrag T A, Melchinger A E. 2018. Genomic prediction and GWAS of Gibberella ear rot resistance traits in dent and flint lines of a public maize breeding program. Euphytica, 214, 6.
Hao L Y, Liu X Y, Zhang X J, Sun B C, Liu C, Zhang D F, Tang H J, Li C H, Li Y X, Shi Y S. 2020. Genome-wide identification and comparative analysis of drought related genes in roots of two maize inbred lines with contrasting drought tolerance by RNA sequencing. Journal of Integrative Agriculture, 8, 449–464
Hoshikawa K. 1969. Underground organs of the seedlings and the systematics of Gramineae. Botanical Gazette, 130, 192–203.
Kameoka H, Kyozuka J. 2015. Downregulation of rice DWARF 14 LIKE suppress mesocotyl elongation via a strigolactone independent pathway in the dark. Journal of Genetics and Genomics, 42, 119–124.
Kim H B, Schaller H, Goh C H, Kwon M, Choe S, An C S, Durst F, Feldmann K A, Feyereisen R. 2005. Arabidopsis cyp51 mutant shows postembryonic seedling lethality associated with lack of membrane integrity. Plant Physiology, 138, 2033–2047.
Kovacs L, Damkjaer J, Kereiche S, Ilioaia C, Ruban A V, Boekema E J, Jansson S, Horton P. 2006. Lack of the light-harvesting complex CP24 affects the structure and function of the grana membranes of higher plant chloroplasts. Plant Cell, 18, 3106–3120.
Kuijt S J H, Greco R, Agalou A, Shao J X, ‘t Hoen C C J, Overnas E, Osnato M, Curiale S, Meynard D, van Gulik R, Maraschin S D, Atallah M, de Kam R J, Lamers G E M, Guiderdoni E, Rossini L, Meijer A H, Ouwerkerk P B F. 2014. Interaction between the GROWTH-REGULATING FACTOR and KNOTTED1-LIKE HOMEOBOX families of transcription factors. Plant Physiology, 164, 1952–1966.
Li H, Peng Z Y, Yang X H, Wang W D, Fu J J, Wang J H, Han Y J, Chai Y C, Guo T T, Yang N, Liu J, Warburton M L, Cheng Y B, Hao X M, Zhang P, Zhao J Y, Liu Y J, Wang G Y, Li J S, Yan J B. 2013. Genome-wide association study dissects the genetic architecture of oil biosynthesis in maize kernels. Nature Genetics, 45, 43–50.
Liu F, Xu W, Song Q, Tan L, Liu J, Zhu Z, Fu Y, Su Z, Sun C. 2013. Microarray-assisted fine-mapping of quantitative trait loci for cold tolerance in rice. Molecular Plant, 6, 757–767.
Liu H J, Zhang L, Wang J C, Li C S, Zeng X, Xie S P, Zhang Y Z, Liu S S, Hu S L, Wang J H, Lee M, Lubberstedt T, Zhao G W. 2017. Quantitative trait locus analysis for deep-sowing germination ability in the maize IBM Syn10 DH population. Frontiers in Plant Science, 8, 813.
Livak K J, Schmittgen T D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2–∆∆CT method. Methods, 25, 402–408.
Pérez P, de los Campos G. 2014. Genome-wide regression and prediction with the BGLR statistical package. Genetics, 198, 483–495.
Ren M M, Zhang H W, Wang J H, Wang G Y, Zheng J. 2020. Fine mapping of a major QTL qMES20–10 associated with deep-seeding tolerance in maize and analysis of differentially expressed genes. Acta Agronomica Sinica, 46, 1016–1024. (in Chinese)
Saika H, Okamoto M, Miyoshi K, Kushiro T, Shinoda S, Jikumaru Y, Fujimoto M, Arikawa T, Takahashi H, Ando M, Arimura S, Miyao A, Hirochika H, Kamiya Y, Tsutsumi N, Nambara E, Nakazono M. 2007. Ethylene promotes submergence-induced expression of OsABA8ox1, a gene that encodes ABA 8´-hydroxylase in rice. Plant and Cell Physiology, 48, 287–298.
Sawers R J, Linley P J, Farmer P R, Hanley N P, Costich D E, Terry M J, Brutnell T P. 2002. elongated mesocotyl1, a phytochrome-deficient mutant of maize. Plant Physiology, 130, 155–163.
Schillinger W F, Donaldson E, Allan R E, Jones S S. 1998. Winter wheat seedling emergence from deep sowing depths. Agronomy Journal, 90, 582–586.
Seymour D K, Chae E, Grimm D G, Pizarro C M, Habring-Muller A, Vasseur F, Rakitsch B, Borgwardt K M, Koenig D, Weigel D. 2016. Genetic architecture of nonadditive inheritance in Arabidopsis thaliana hybrids. Proceedings of the National Academy of Sciences of the United States of America, 113, E7317–E7326.
Shen X M, Zhao R, Liu L, Zhu C, Li M F, Du H W, Zhang Z X. 2019. Identification of a candidate gene underlying qKRN5b for kernel row number in Zea mays L. Theoretical and Applied Genetics, 132, 3439–3448.
Song X H, Tian L, Wang S X, Zhou J L, Zhang J, Chen Z, Wu L J, Ku L X, Chen Y H. 2019. Integrating transcriptomic and proteomic analyses of photoperiod-sensitive in near isogenic maize line under long-day conditions. Journal of Integrative Agriculture, 18, 1211–1221
Sun N, Wang J J, Gao Z X, Dong J, He H, Terzaghi W, Wei N, Deng X W, Chen H D. 2016. Arabidopsis SAURs are critical for differential light regulation of the development of various organs. Proceedings of the National Academy of Sciences of the United States of America, 113, 6071–6076.
Sun X H, Zhang Z G, Wu J X, Cui X A, Feng D, Wang K, Xu M, Zhou L, Han X, Gu X F, Lu T G. 2016. The Oryza sativa regulator HDR1 associates with the kinase OsK4 to control photoperiodic flowering. PLoS Genetics, 12, e1005927.
Thelander M, Olsson T, Ronne H. 2004. Snf1-related protein kinase 1 is needed for growth in a normal day–night light cycle. EMBO Journal, 23, 1900–1910.
Troyer A F. 1997. The location of genes governing long first internode of corn. Genetics, 145, 1149–1154.
Turner F, Chen C, Bollich C. 1982. Coleoptile and mesocotyl lengths in semidwarf rice seedlings. Crop Science, 22, 43–46.
Vanderhoef L N, Quail P H, Briggs W R. 1979. Red light-inhibited mesocotyl elongation in maize seedlings: II. Kinetic and spectral studies. Plant Physiology, 63, 1062–1067.
VanRaden P M. 2008. Efficient methods to compute genomic predictions. Journal of Dairy Science, 91, 4414–4423.
Wang X L, Wang H W, Liu S X, Ferjani A, Li J S, Yan J B, Yang X H, Qin F. 2016. Genetic variation in ZmVPP1 contributes to drought tolerance in maize seedlings. Nature Genetics, 48, 1233–1241.
Yan J B, Warburton M, Crouch J. 2011. Association mapping for enhancing maize (Zea mays L.) genetic improvement. Crop Science, 51, 433–449.
Yang N, Liu J, Gao Q, Gui S T, Chen L, Yang L F, Huang J, Deng T Q, Luo J Y, He L J, Wang Y B, Xu P W, Peng Y, Shi Z X, Lan L, Ma Z Y, Yang X, Zhang Q Q, Bai M Z, Li S, et al. 2019. Genome assembly of a tropical maize inbred line provides insights into structural variation and crop improvement. Nature Genetics, 51, 1052–1059.
Yang N, Lu Y L, Yang X H, Huang J, Zhou Y, Ali F, Wen W W, Liu J, Li J S, Yan J B. 2014. Genome wide association studies using a new nonparametric model reveal the genetic architecture of 17 agronomic traits in an enlarged maize association panel. PLoS Genetics, 10, e1004573.
Yang Q, Zhang D F, Xu M L. 2012. A sequential quantitative trait locus fine-mapping strategy using recombinant-derived progeny. Journal of Integrative Plant Biology, 54, 228–237.
Yang X, Gao S, Xu S, Zhang Z, Prasanna B M, Li L, Li J, Yan J. 2011. Characterization of a global germplasm collection and its potential utilization for analysis of complex quantitative traits in maize. Molecular Breeding, 28, 511–526.
Zhang H, Wang X, Pan Q, Li P, Liu Y, Lu X, Zhong W, Li M, Han L, Li J. 2019. QTG-seq accelerates QTL fine mapping through QTL partitioning and whole-genome sequencing of bulked segregant samples. Molecular Plant, 12, 426–437.
Zhang H W, Ma P, Zhao Z N, Zhao G W, Tian B H, Wang J H, Wang G Y. 2012. Mapping QTL controlling maize deep-seeding tolerance-related traits and confirmation of a major QTL for mesocotyl length. Theoretical and Applied Genetics, 124, 223–232.
Zhang Q, Li J J, Zhang W J, Yan S N, Wang R, Zhao J F, Li Y J, Qi Z G, Sun Z X, Zhu Z G. 2012. The putative auxin efflux carrier OsPIN3t is involved in the drought stress response and drought tolerance. Plant Journal, 72, 805–816.
Zhao G W, Wang J H. 2008. Effect of gibberellin and uniconazole on mesocotyl elongation of dark-grown maize under different seeding depths. Plant Production Science, 11, 423–429.
Zhao G W, Wang J H. 2010. Effect of auxin on mesocotyl elongation of dark-grown maize under different seeding depths. Russian Journal of Plant Physiology, 57, 79–86.
Zhao K, Tung C W, Eizenga G C, Wright M H, Ali M L, Price A H, Norton G J, Islam M R, Reynolds A, Mezey J, McClung A M, Bustamante C D, McCouch S R. 2011. Genome-wide association mapping reveals a rich genetic architecture of complex traits in Oryza sativa. Nature Communication, 2, 467.
Zhao Y, Zhao W P, Jiang C H, Wang X N, Xiong H Y, Todorovska E G, Yin Z G, Chen Y F, Wang X, Xie J Y, Pan Y H, Rashid M A R, Zhang H L, Li J J, Li Z C. 2018. Genetic architecture and candidate genes for deep-sowing tolerance in rice revealed by non-syn GWAS. Frontiers in Plant Science, 9, 332.

[1] WANG Xing-long, ZHU Yu-peng, YAN Ye, HOU Jia-min, WANG Hai-jiang, LUO Ning, WEI Dan, MENG Qing-feng, WANG Pu. Irrigation mitigates the heat impacts on photosynthesis during grain filling in maize [J]. >Journal of Integrative Agriculture, 2023, 22(8): 2370-2383.
[2] Tiago SILVA, Ying NIU, Tyler TOWLES, Sebe BROWN, Graham P. HEAD, Wade WALKER, Fangneng HUANG. Selection, effective dominance, and completeness of Cry1A.105/Cry2Ab2 dual-protein resistance in Helicoverpa zea (Boddie) (Lepidoptera: Noctuidae)[J]. >Journal of Integrative Agriculture, 2023, 22(7): 2151-2161.
[3] FAN Ting-lu, LI Shang-zhong, ZHAO Gang, WANG Shu-ying, ZHANG Jian-jun, WANG Lei, DANG Yi, CHENG Wan-li. Response of dryland crops to climate change and drought-resistant and water-suitable planting technology: A case of spring maize[J]. >Journal of Integrative Agriculture, 2023, 22(7): 2067-2079.
[4] ZHANG Chong, WANG Dan-dan, ZHAO Yong-jian, XIAO Yu-lin, CHEN Huan-xuan, LIU He-pu, FENG Li-yuan, YU Chang-hao, JU Xiao-tang. Significant reduction of ammonia emissions while increasing crop yields using the 4R nutrient stewardship in an intensive cropping system[J]. >Journal of Integrative Agriculture, 2023, 22(6): 1883-1895.
[5] ZHANG Miao-miao, DANG Peng-fei, LI Yü-ze, QIN Xiao-liang, Kadambot-H. M. SIDDIQUE. Better tillage selection before ridge–furrow film mulching can facilitate root proliferation, increase nitrogen accumulation, translocation, grain yield of maize in a semiarid area[J]. >Journal of Integrative Agriculture, 2023, 22(6): 1658-1670.
[6] SONG Chao-yu, ZHANG Fan, LI Jian-sheng, XIE Jin-yi, YANG Chen, ZHOU Hang, ZHANG Jun-xiong. Detection of maize tassels for UAV remote sensing image with an improved YOLOX Model[J]. >Journal of Integrative Agriculture, 2023, 22(6): 1671-1683.
[7] WANG Peng, WANG Cheng-dong, WANG Xiao-lin, WU Yuan-hua, ZHANG Yan, SUN Yan-guo, SHI Yi, MI Guo-hua. Increasing nitrogen absorption and assimilation ability under mixed NO3 and NH4+ supply is a driver to promote growth of maize seedlings[J]. >Journal of Integrative Agriculture, 2023, 22(6): 1896-1908.
[8] WANG Jin-bin, XIE Jun-hong, LI Ling-ling, ADINGO Samuel. Review on the fully mulched ridge–furrow system for sustainable maize production on the semi-arid Loess Plateau[J]. >Journal of Integrative Agriculture, 2023, 22(5): 1277-1290.
[9] ZHAO Hai-liang, QIN Yao, XIAO Zi-yi, SUN Qin, GONG Dian-ming, QIU Fa-zhan. Revealing the process of storage protein rebalancing in high quality protein maize by proteomic and transcriptomic[J]. >Journal of Integrative Agriculture, 2023, 22(5): 1308-1323.
[10] ZHANG Bing-chao, HU Han, GUO Zheng-yu, GONG Shuai, SHEN Si, LIAO Shu-hua, WANG Xin, ZHOU Shun-li, ZHANG Zhong-dong. Plastic-film-side seeding, as an alternative to traditional film mulching, improves yield stability and income in maize production in semi-arid regions[J]. >Journal of Integrative Agriculture, 2023, 22(4): 1021-1034.
[11] SHI Wen-xuan, ZHANG Qian, LI Lan-tao, TAN Jin-fang, XIE Ruo-han, WANG Yi-lun. Hole fertilization in the root zone facilitates maize yield and nitrogen utilization by mitigating potential N loss and improving mineral N accumulation[J]. >Journal of Integrative Agriculture, 2023, 22(4): 1184-1198.
[12] GAO Xing, LI Yong-xiang, YANG Ming-tao, LI Chun-hui, SONG Yan-chun, WANG Tian-yu, LI Yu, SHI Yun-su. Changes in grain-filling characteristics of single-cross maize hybrids released in China from 1964 to 2014[J]. >Journal of Integrative Agriculture, 2023, 22(3): 691-700.
[13] Irshad AHMAD, Maksat BATYRBEK, Khushnuma IKRAM, Shakeel AHMAD, Muhammad KAMRAN, Misbah, Raham Sher KHAN, HOU Fu-jiang, HAN Qing-fang.

Nitrogen management improves lodging resistance and production in maize (Zea mays L.) at a high plant density [J]. >Journal of Integrative Agriculture, 2023, 22(2): 417-433.

[14] XU Xiao-hui, LI Wen-lan, YANG Shu-ke, ZHU Xiang-zhen, SUN Hong-wei, LI Fan, LU Xing-bo, CUI Jin-jie. Identification, evolution, expression and protein interaction analysis of genes encoding B-box zinc-finger proteins in maize[J]. >Journal of Integrative Agriculture, 2023, 22(2): 371-388.
[15] CHEN Zhe, REN Wei, YI Xia, LI Qiang, CAI Hong-guang, Farhan ALI, YUAN Li-xing, MI Guo-hua, PAN Qing-chun, CHEN Fan-jun. Local nitrogen application increases maize post-silking nitrogen uptake of responsive genotypes via enhanced deep root growth[J]. >Journal of Integrative Agriculture, 2023, 22(1): 235-250.
No Suggested Reading articles found!