Please wait a minute...
Journal of Integrative Agriculture  2018, Vol. 17 Issue (10): 2215-2221    DOI: 10.1016/S2095-3119(17)61864-1
Crop Science Advanced Online Publication | Current Issue | Archive | Adv Search |
Advances in salinity tolerance of soybean: Genetic diversity, heredity, and gene identification contribute to improving salinity tolerance
CHEN Hua-tao, LIU Xiao-qing, ZHANG Hong-mei, YUAN Xing-xing, GU He-ping, CUI Xiao-yan, CHEN Xin
Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, P.R.China
Download:  PDF (725KB) ( )  
Export:  BibTeX | EndNote (RIS)      
Salt stress is one of the major abiotic stresses affecting soybean growth.  Genetic improvement for salt tolerance is an effective way to protect soybean yield under salt stress conditions.  Successful improvement of salt tolerance in soybean relies on identifying genetic variation that confers tolerance in soybean germplasm and subsequently incorporating these genetic resources into cultivars.  In this review, we summarize the progress in genetic diversity and genetics of salt tolerance in soybean, which includes identifying genetic diversity for salt tolerant germplasm; mapping QTLs conferring salt tolerance; map-based cloning; and conducting genome-wide association study (GWAS) analysis in soybean.  Future research avenues are also discussed, including high throughput phenotyping technology, the CRISPR/Cas9 Genome-Editing System, and genomic selection technology for molecular breeding of salt tolerance.
Keywords:  soybean        genetic variation        heredity        gene identification        salinity improvement  
Received: 27 September 2017   Accepted:
Fund: This work was supported by the National Natural Science Foundation of China (31401407).
Corresponding Authors:  Correspondence CHEN Hua-tao, Tel: +86-25-84390803, E-mail:; CHEN Xin, Tel: +86-25-84391362, E-mail:   

Cite this article: 

CHEN Hua-tao, LIU Xiao-qing, ZHANG Hong-mei, YUAN Xing-xing, GU He-ping, CUI Xiao-yan, CHEN Xin. 2018. Advances in salinity tolerance of soybean: Genetic diversity, heredity, and gene identification contribute to improving salinity tolerance. Journal of Integrative Agriculture, 17(10): 2215-2221.

Abel G H. 1969. Inheritance of the capacity for chloride inclusion and chloride exclusion by soybeans. Crop Science, 9, 697–698.
Abel G H, MacKenzie A J. 1964. Salt tolerance of soybean varieties (Glycine max L. Merill) during germination and later growth. Crop Science, 4, 157–161.
Ashraf M. 1994. Breeding for salinity tolerance in plants. Critical Reviews in Plant Sciences, 13, 17–42.
Chen H T, Chen X, Yu D Y. 2011. Inheritance analysis and mapping quantitative trait loci (QTLs) associated with salt tolerance during seedling growth in soybean. Chinese Journal of Oil Crop Sciences, 33, 231-234. (in Chinese)
Chen H T, Cui S Y, Fu S X, Gai J Y, Yu D Y. 2008. Identification of quantitative trait loci associated with salt tolerance during seedling growth in soybean (Glycine max L.). Australian Journal of Agricultural Research, 59, 1086–1091.
Chen P, Yan K, Shao H, Zhao S. 2013. Physiological mechanisms for high salt tolerance in wild soybean (Glycine soja) from Yellow River Delta, China: Photosynthesis, osmotic regulation, ion flux and antioxidant capacity. PLoS ONE, 8, e83227.
Do T D, Chen H , Hien V T, Hamwieh A, Yamada T, Sato T, Yan Y, Cong H, Shono M, Suenaga K, Xu D. 2016. Ncl synchronously regulates Na+, K+, and Cl− in soybean and greatly increases the grain yield in saline field conditions. Scientific Reports, 6, 19147.
Fredj M B, Zhani K, Hannachi C, Mehwachi T. 2013. Effect of NaCl priming on seed germination of four coriander cultivars (Coriandrum sativum). EurAsian Journal of BioSciences, 7, 11–29.
Guan R, Chen J, Jiang J, Liu G, Liu Y, Tian L, Yu L, Chang R, Qiu L. 2014a. Mapping and validation of a dominant salt tolerance gene in the cultivated soybean (Glycine max) variety Tiefeng 8. The Crop Journal, 2, 358–365.
Guan R, Qu Y, Guo Y, Yu L, Liu Y, Jiang J, Chen J, Ren Y, Liu G, Tian L, Jin L, Liu Z, Hong H, Chang R, Gilliham M, Qiu L. 2014b. Salinity tolerance in soybean is modulated by natural variation in GmSALT3. The Plant Journal, 80, 937–950.
Ha B K, Vuong T D, Velusamy V, Nguyen H T, Shannon G, Lee J D. 2013. Genetic mapping of quantitative trait loci conditioning salt tolerance in wild soybean (Glycine soja) PI 483463. Euphytica, 193, 79–88.
Hamwieh A, Do D D, Cong H, Benitez E R, Takahashi R, Xu D H. 2011. Identification and validation of a major QTL for salt tolerance in soybean. Euphytica, 79, 451–459.
Hamwieh A, Xu D H. 2008. Conserved salt tolerance quantitative trait locus (QTL) in wild and cultivated soybeans. Breeding Science, 58, 355–359.
Hao D, Chao M, Yin Z, Yu D. 2012. Genome-wide association analysis detecting significant single nucleotide polymorphisms for chlorophyll and chlorophyll fluorescence parameters in soybean (Glycine max) landraces. Euphytica, 186, 919–931.
Hwang E Y, Song Q, Jia G, Specht J E, Hyten D L, Costa J, Cregan P B. 2014. A genome-wide association study of seed protein and oil content in soybean. BMC Genomics, 15, 1.
Kan G, Ning L, Li Y, Hu Z, Zhang W, He X, Yu D. 2016. Identification of novel loci for salt stress at the seed germination stage in soybean. Breeding Science, 66, 530–541.
Kumawat G, Gupta S, Ratnaparkhe M B, Maranna S, Satpute G K. 2016. QTL omics in soybean: A way forward for translational genomics and breeding. Frontiers in Plant Science, 7, 1852.
Lee G J, Carter Jr T E, Villagarcia M R, Li Z, Zhou X, Gibbs M O, Boerma H R. 2004. A major QTL conditioning salt tolerance in S-100 soybean and descendent cultivars. Theoretical and Applied Genetics, 109, 1610–1619.
Lee J D, Shannon J G, Vuong T D, Nguyen H T. 2009. Inheritance of salt tolerance in wild soybean (Glycine soja Sieb. and Zucc.) accession PI483463. Journal of Heredity, 100, 798–801.
Liu X, Xie C, Si H, Yang J. 2017. CRISPR/Cas9-mediated genome editing in plants. Methods, 121–122, 94–102.
Luo Q, Yu B, Liu Y. 2005. Differential sensitivity to chloride and sodium ions in seedlings of Glycine max and G. soja under NaCl stress. Journal of Plant Physiology, 162, 1003–1012.
Ma Y, Reif J C, Jiang Y, Wen Z, Wang D, Liu Z, Guo Y, Wei S, Wang S, Yang C, Wang H, Yang C, Lu W, Xu R, Zhou R, Wang R, Sun Z, Chen H, Zhang W, Wu J, et al. 2016. Potential of marker selection to increase prediction accuracy of genomic selection in soybean (Glycine max L.). Molecular Breeding, 36, 113.
Mamidi S, Chikara S, Goos R J, Hyten D L, Moghaddam S M, Cregan P B, McClean P E. 2011. Genome-wide association analysis identifies candidate genes associated with iron deficiency chlorosis in soybean. Plant Genome, 4, 154–164.
Munns R, Tester M. 2008. Mechanisms of salinity tolerance. Annual Review of Plant Biology, 59, 651–681.
Papiernik S K, Grieve C M, Lesch S M, Yates S R. 2005. Effects of salinity, imazethapyr, and chlorimuron application on soybean growth and yield. Communications in Soil Science and Plant Analysis, 36, 951–967.
Parker M B, Gascho G J, Gains T P. 1983. Chloride toxicity of soybeans grown on Atlantic Coast flatwoods soils. Agronomy Journal, 75, 439–443.
Pathan M S, Lee J D, Shannon J G, Nguyen H T. 2007. Recent advances in breeding for drought and salt stress tolerance in soybean. In: Jenks M A, Hasegawa P M, Jain S M, eds., Advances in Molecular-Breeding Toward Drought and Salt Tolerant Crops. Springer, Dordrecht. pp. 739–773.
Patil G, Do T, Vuong T D, Valliyodan B, Lee J D, Chaudhary J, Shannon J G, Nguyen H T. 2016. Genomic-assisted haplotype analysis and the development of high-throughput SNP markers for salinity tolerance in soybean. Scientific Reports, 6, 19199.
Phang T H, Shao G H, Lam H M. 2008. Salt tolerance in soybean. Journal of Integrative Plant Biology, 50, 1196–1212.
Qi X, Li M W, Xie M, Liu X, Ni M, Shao G, Song C, Yim A K Y, Tao Y, Wong F L, Isobe S, Wong C F, Wong K S, Xu C, Li C, Wang Y, Guan R, Sun F, Fan G, Xiao Z, et al. 2014. Identification of a novel salt tolerance gene in wild soybean by whole-genome sequencing. Nature Communications, 5, 4340.
Shao G H, Chang R Z, Chen Y W, Yan S R. 1994. Study on inheritance of salt tolerance in soybean. Acta Agronomica Sinica, 20, 721–726. (in Chinese)
Wang Z F, Wang J F, Bao Y M, Wu Y Y, Zhang H S. 2011 Quantitative trait loci controlling rice seed germination under salt stress. Euphytica, 178, 297–307.
Wen Z X, Boyse J F, Song Q, Cregan P B, Wang D. 2015. Genomic consequences of selection and genome-wide association mapping in soybean. BMC Genomics, 16, 671.
Wen Z X, Tan R, Yuan J, Bales C, Du W, Zhang S, Chilvers M I, Schmidt C, Song Q, Cregan P B, Wang D. 2014. Genome-wide association mapping of quantitative resistance to sudden death syndrome in soybean. BMC Genomics, 15, 1.
Xu D H, Do T D, Chen H T, Hien V T T, Hamwieh A. 2016. Genetic analysis of salt tolerance in soybean. [2016-08-13].
Yang J, Blanchar R W. 1993. Differentiating chloride susceptibility in soybean cultivars. Agronomy Journal, 85, 880–885.
Zeng A, Chen P, Korth K, Hancock F, Pereira A, Brye K, Wu C, Shi A. 2017. Genome-wide association study (GWAS) of salt tolerance in worldwide soybean germplasm lines. Molecular Breeding, 37, 30.
Zhang J, Song Q, Cregan P B, Nelson R L, Wang X, Wu J, Jiang G. 2015. Genome-wide association study for flowering time, maturity dates and plant height in early maturing soybean (Glycine max) germplasm. BMC Genomics, 16, 217.
Zhang W J, Niu Y, Bu S H, Li M, Feng J Y, Zhang J, Yang S X, Odinga M M, Wei S P, Liu X F, Zhang Y M. 2014. Epistatic association mapping for alkaline and salinity tolerance traits in the soybean germination stage. PLoS ONE, 9, e84750.
[1] YANG Hong-jun, YE Wen-wu, YU Ze, SHEN Wei-liang, LI Su-zhen, WANG Xing, CHEN Jia-jia, WANG Yuan-chao, ZHENG Xiao-bo. Host niche, genotype, and field location shape the diversity and composition of the soybean microbiome[J]. >Journal of Integrative Agriculture, 2023, 22(8): 2412-2425.
[2] XU Lei, ZHAO Tong-hua, Xing Xing, XU Guo-qing, XU Biao, ZHAO Ji-qiu.

Model fitting of the seasonal population dynamics of the soybean aphid, Aphis glycines Matsumura, in the field [J]. >Journal of Integrative Agriculture, 2023, 22(6): 1797-1808.

[3] GAO Hua-wei, YANG Meng-yuan, YAN Long, HU Xian-zhong, HONG Hui-long, ZHANG Xiang, SUN Ru-jian, WANG Hao-rang, WANG Xiao-bo, LIU Li-ke, ZHANG Shu-zhen, QIU Li-juan. Identification of tolerance to high density and lodging in short petiolate germplasm M657 and the effect of density on yield-related phenotypes of soybean[J]. >Journal of Integrative Agriculture, 2023, 22(2): 434-446.
[4] QU Zheng, LI Yue-han, XU Wei-hui, CHEN Wen-jing, HU Yun-long, WANG Zhi-gang. Different genotypes regulate the microbial community structure in the soybean rhizosphere[J]. >Journal of Integrative Agriculture, 2023, 22(2): 585-597.
[5] GAO Hua-wei, SUN Ru-jian, YANG Meng-yuan, YAN Long, HU Xian-zhong, FU Guang-hui, HONG Hui-long, GUO Bing-fu, ZHANG Xiang, LIU Li-ke, ZHANG Shu-zhen, QIU Li-juan. Characterization of the petiole length in soybean compact architecture mutant M657 and the breeding of new lines[J]. >Journal of Integrative Agriculture, 2022, 21(9): 2508-2520.
[6] ZHANG Hua, WU Hai-yan, TIAN Rui, KONG You-bin, CHU Jia-hao, XING Xin-zhu, DU Hui, JIN Yuan, LI Xi-huan, ZHANG Cai-ying. Genome-wide association and linkage mapping strategies reveal genetic loci and candidate genes of phosphorus utilization in soybean[J]. >Journal of Integrative Agriculture, 2022, 21(9): 2521-2537.
[7] ZOU Jia-nan, ZHANG Zhan-guo, KANG Qing-lin, YU Si-yang, WANG Jie-qi, CHEN Lin, LIU Yan-ru, MA Chao, ZHU Rong-sheng, ZHU Yong-xu, DONG Xiao-hui, JIANG Hong-wei, WU Xiao-xia, WANG Nan-nan, HU Zhen-bang, QI Zhao-ming, LIU Chun-yan, CHEN Qing-shan, XIN Da-wei, WANG Jin-hui. Characterization of chromosome segment substitution lines reveals candidate genes associated with the nodule number in soybean[J]. >Journal of Integrative Agriculture, 2022, 21(8): 2197-2210.
[8] PAN Wen-jing, HAN Xue, HUANG Shi-yu, YU Jing-yao, ZHAO Ying, QU Ke-xin, ZHANG Ze-xin, YIN Zhen-gong, QI Hui-dong, YU Guo-long, ZHANG Yong, XIN Da-wei, ZHU Rong-sheng, LIU Chun-yan, WU Xiao-xia, JIANG Hong-wei, HU Zhen-bang, ZUO Yu-hu, CHEN Qing-shan, QI Zhao-ming. Identification of candidate genes related to soluble sugar contents in soybean seeds using multiple genetic analyses[J]. >Journal of Integrative Agriculture, 2022, 21(7): 1886-1902.
[9] LIU Chen, TIAN Yu, LIU Zhang-xiong, GU Yong-zhe, ZHANG Bo, LI Ying-hui, NA Jie, QIU Li-juan. Identification and characterization of long-InDels through whole genome resequencing to facilitate fine-mapping of a QTL for plant height in soybean (Glycine max L. Merr.)[J]. >Journal of Integrative Agriculture, 2022, 21(7): 1903-1912.
[10] HUI Fang, XIE Zi-wen, LI Hai-gang, GUO Yan, LI Bao-guo, LIU Yun-ling, MA Yun-tao. Image-based root phenotyping for field-grown crops: An example under maize/soybean intercropping[J]. >Journal of Integrative Agriculture, 2022, 21(6): 1606-1619.
[11] TIAN Yu, YANG Lei, LU Hong-feng, ZHANG Bo, LI Yan-fei, LIU Chen, GE Tian-li, LIU Yu-lin, HAN Jia-nan, LI Ying-hui, QIU Li-juan. QTL analysis for plant height and fine mapping of two environmentally stable QTLs with major effects in soybean[J]. >Journal of Integrative Agriculture, 2022, 21(4): 933-946.
[12] LIU Sang-lin, CHENG Yan-bo, MA Qi-bin, LI Mu JIANG Ze, XIA Qiu-ju, NIAN Hai. Fine mapping and genetic analysis of resistance genes, Rsc18, against soybean mosaic virus[J]. >Journal of Integrative Agriculture, 2022, 21(3): 644-653.
[13] LIU Li-feng, GAO Le, ZHANG Li-xin, CAI Yu-peng, SONG Wen-wen, CHEN Li, YUAN Shan, WU Ting-ting, JIANG Bing-jun, SUN Shi, WU Cun-xiang, HOU Wen-sheng, HAN Tian-fu. Co-silencing E1 and its homologs in an extremely late-maturing soybean cultivar confers super-early maturity and adaptation to high-latitude short-season regions[J]. >Journal of Integrative Agriculture, 2022, 21(2): 326-335.
[14] OCHAR Kingsley, SU Bo-hong, ZHOU Ming-ming, LIU Zhang-xiong, GAO Hua-wei, SOBHI F. Lamlom, QIU Li-juan. Identification of the genetic locus associated with the crinkled leaf phenotype in a soybean (Glycine max L.) mutant by BSA-Seq technology[J]. >Journal of Integrative Agriculture, 2022, 21(12): 3524-3539.
[15] JIA Jia, WANG Huan, CAI Zhan-dong, WEI Ru-qian, HUANG Jing-hua, XIA Qiu-ju, XIAO Xiao-hui, MA Qi-bin, NIAN Hai, CHENG Yan-bo. Identification and validation of stable and novel quantitative trait loci for pod shattering in soybean [Glycine max (L.) Merr.][J]. >Journal of Integrative Agriculture, 2022, 21(11): 3169-3184.
No Suggested Reading articles found!