Journals
  Publication Years
  Keywords
Search within results Open Search
Please wait a minute...
For Selected: Toggle Thumbnails
Integrating a novel irrigation approximation method with a process-based remote sensing model to estimate multi-years' winter wheat yield over the North China Plain
ZHANG Sha, YANG Shan-shan, WANG Jing-wen, WU Xi-fang, Malak HENCHIRI, Tehseen JAVED, ZHANG Jia-hua, BAI Yun
2023, 22 (9): 2865-2881.   DOI: 10.1016/j.jia.2023.02.036
Abstract179)      PDF in ScienceDirect      

Accurate estimation of regional winter wheat yields is essential for understanding the food production status and ensuring national food security.  However, using the existing remote sensing-based crop yield models to accurately reproduce the inter-annual and spatial variations in winter wheat yields remains challenging due to the limited ability to acquire irrigation information in water-limited regions.  Thus, we proposed a new approach to approximating irrigations of winter wheat over the North China Plain (NCP), where irrigation occurs extensively during the winter wheat growing season.  This approach used irrigation pattern parameters (IPPs) to define the irrigation frequency and timing.  Then, they were incorporated into a newly-developed process-based and remote sensing-driven crop yield model for winter wheat (PRYM–Wheat), to improve the regional estimates of winter wheat over the NCP.  The IPPs were determined using statistical yield data of reference years (2010–2015) over the NCP.  Our findings showed that PRYM–Wheat with the optimal IPPs could improve the regional estimate of winter wheat yield, with an increase and decrease in the correlation coefficient (R) and root mean square error (RMSE) of 0.15 (about 37%) and 0.90 t ha–1 (about 41%), respectively.  The data in validation years (2001–2009 and 2016–2019) were used to validate PRYM–Wheat.  In addition, our findings also showed R (RMSE) of 0.80 (0.62 t ha–1) on a site level, 0.61 (0.91 t ha–1) for Hebei Province on a county level, 0.73 (0.97 t ha–1) for Henan Province on a county level, and 0.55 (0.75 t ha–1) for Shandong Province on a city level.  Overall, PRYM–Wheat can offer a stable and robust approach to estimating regional winter wheat yield across multiple years, providing a scientific basis for ensuring regional food security.

Reference | Related Articles | Metrics
Maize straw application as an interlayer improves organic carbon and total nitrogen concentrations in the soil profile: A four-year experiment in a saline soil
CHANG Fang-di, WANG Xi-quan, SONG Jia-shen, ZHANG Hong-yuan, YU Ru, WANG Jing, LIU Jian, WANG Shang, JI Hong-jie, LI Yu-yi
2023, 22 (6): 1870-1882.   DOI: 10.1016/j.jia.2023.02.025
Abstract219)      PDF in ScienceDirect      

Soil salinization is a critical environmental issue restricting agricultural production.  Deep return of straw to the soil as an interlayer (at 40 cm depth) has been a popular practice to alleviate salt stress.  However, the legacy effects of straw added as an interlayer at different rates on soil organic carbon (SOC) and total nitrogen (TN) in saline soils still remain inconclusive.  Therefore, a four-year (2015–2018) field experiment was conducted with four levels (i.e., 0, 6, 12 and 18 Mg ha–1) of straw returned as an interlayer.  Compared with no straw interlayer (CK), straw addition increased SOC concentration by 14–32 and 11–57% in the 20–40 and 40–60 cm soil layers, respectively.  The increases in soil TN concentration (8–22 and 6–34% in the 20–40 and 40–60 cm soil layers, respectively) were lower than that for SOC concentration, which led to increased soil C:N ratio in the 20–60 cm soil depth.  Increases in SOC and TN concentrations in the 20–60 cm soil layer with straw addition led to a decrease in stratification ratios (0–20 cm:20–60 cm), which promoted uniform distributions of SOC and TN in the soil profile.  Increases in SOC and TN concentrations were associated with soil salinity and moisture regulation and improved sunflower yield.  Generally, compared with other treatments, the application of 12 Mg ha–1 straw had higher SOC, TN and C:N ratio, and lower soil stratification ratio in the 2015–2017 period.  The results highlighted that legacy effects of straw application as an interlayer were maintained for at least four years, and demonstrated that deep soil straw application had a great potential for improving subsoil fertility in salt-affected soils.

Reference | Related Articles | Metrics
Association mapping of lignin response to Verticillium wilt through an eight-way MAGIC population in Upland cotton
TIAN Xiao-min, HAN Peng, WANG Jing, SHAO Pan-xia, AN Qiu-shuang, Nurimanguli AINI, YANG Qing-yong, YOU Chun-yuan, LIN Hai-rong, ZHU Long-fu, PAN Zhen-yuan, NIE Xin-hui
2023, 22 (5): 1324-1337.   DOI: 10.1016/j.jia.2022.08.034
Abstract398)      PDF in ScienceDirect      

Lignin metabolism plays a pivotal role in plant defense against pathogens and is always positively correlated as a response to pathogen infection.  Thus, understanding resistance genes against pathogens in plants depends on a genetic analysis of lignin response.  In the study, eight upland cotton lines were used to construct a multi-parent advanced generation intercross (MAGIC) population (n=280), which exhibited peculiar characteristics from the convergence of various alleles coding for advantageous traits.  To measure the lignin response to Verticillium wilt (LRVW), artificial disease nursery (ADN) and rotation nursery (RN) were prepared for MAGIC population planting in four environments.  The stem lignin contents were collected, and the LRVW was measured with the lignin value of ADN/RN in each environment, which showed great variation.  A total of 9323 high-quality single-nucleotide polymorphism (SNP) markers obtained from the Cotton-SNP63K array were employed for genotyping the MAGIC population.  The SNPs were distributed through the whole genome with 4.78 SNP/Mb density, ranging from 1.14 (ChrA06) to 10.08 (ChrD08).  A genome-wide association study was performed using a mixed linear model (MLM) for LRVW, and three stable quantitative trait loci (QTLs), qLRVW-A04, qLRVW-A10 and qLRVW-D05, were identified in more than two environments.  Two key candidate genes, Ghi_D05G01046 and Ghi_D05G01221, were selected within the QTLs through the combination of variations in the coding sequence, induced expression patterns, and function annotations, both of which presented nonsynonymous mutations in coding regions and were strongly induced by Verticillium dahliae. Ghi_D05G01046 encodes a leucine-rich extensin (LRx) protein, which is involved in Arabidopsis cell wall biosynthesis and organization.  Ghi_D05G01221 encodes a transcriptional co-repressor novel interactor of jaz (NINJA), which functions in the jasmonic acid (JA) signaling pathway.  In summary, the study creates valuable genetic resources for breeding and QTL mapping and opens up a new perspective to uncover the genetic basis of VW resistance in upland cotton.

Reference | Related Articles | Metrics
Effects of LPA on the development of sheep in vitro fertilized embryos and attempt to establish sheep embryonic stem cells
ZHANG Xue-min, HUANG Xiang-hua, WANG Jing, XING Ying, LIU Fang, XIANG Jin-zhu, WANG Han-ning, YUE Yong-li, LI Xue-ling
2023, 22 (4): 1142-1158.   DOI: 10.1016/j.jia.2022.08.111
Abstract232)      PDF in ScienceDirect      

Lysophosphatidic acid (LPA) is a small molecule glycerophospholipid, which regulates multiple downstream signalling pathways through G-protein-coupled receptors to achieve numerous functions on oocyte maturation and embryo development.  In this study, sheep in vitro fertilized embryos were applied to investigate the effects of LPA on early embryos development and embryonic stem cell establishment.  At first, the maturation medium containing estrus female sheep serum and synthetic oviduct fluid (SOF) were optimized for sheep IVF, and then the effects of LPA were investigated.  From 0.1 to 10 μmol L–1, LPA had no significant effect on the cleavage rate (P>0.05), but the maturation rate and blastocyst rate increased dependently with LPA concentration (P<0.05), and the blastocyst morphology was normal.  When the LPA concentration was 15 μmol L–1, the maturation rate, cleavage rate and blastocyst rate decreased significantly (P<0.05), and the blastocyst exhibited abnormal morphology and could not develop into high-quality blastocyst.  Besides, the exogenous LPA increases the expression of LPAR2, LPAR4, TE-related gene CDX-2

and pluripotency-related gene OCT-4 in sheep early IVF embryos with the raise of LPA concentration from 0.1 to 10 μmol

L–1.  The expression of LPAR2, LPAR4, CDX-2 and OCT-4 from the LPA-0.1 μmol L–1 to LPA-10 μmol L–1 groups in early embryos were extremely significant (P<0.05), while the expression of these genes significantly decreased in 15 μmol L–1 LPA-treated embryos compared with LPA-10 μmol L–1 group (P<0.05).  The inner cell mass in 15 μmol L–1 LPA-treated embryos was also disturbed, and the blastocysts formation was abnormal.  Secondly, the sheep IVF blastocysts were applied to establish embryonic stem cells.  The results showed that LPA made the blastocyst inoculated cells grow towards TSC-like cells.  They enhanced the fluorescence intensity and mRNA abundance of OCT-4 and CDX-2 as the concentration increased from 0 to 10 μmol L–1, while 15 μmol L–1 LPA decreased OCT-4 and CDX-2 expression in the derived cells.  The expression of CDX-2 and OCT-4 in the blastocyst inoculated cells of LPA-1 μmol L–1 group and LPA-10 μmol L–1 group extremely significantly increased (P<0.05), but there was significant decrease in LPA-15 μmol L–1 group compared with LPA-10 μmol L–1 group (P<0.05).  Meanwhile, the protein expression of LPAR2 and LPAR4 remarkably increased after treatment of LPA at 10 μmol L–1 concentration.  This study references the IVF embryo production and embryonic stem cell research of domestic animals. 

Reference | Related Articles | Metrics
Virucidal activity of MICRO-CHEM PLUS against African swine fever virus
JIANG Cheng-gang, SUN Ying, ZHANG Fan, AI Xin, LU Ming, QIN Jia-lin, ZHANG Xian-feng, WANG Jing-fei, BU Zhi-gao, ZHAO Dong-ming, HE Xi-jun
2023, 22 (11): 3560-3563.   DOI: 10.1016/j.jia.2023.09.021
Abstract270)      PDF in ScienceDirect      
Reference | Related Articles | Metrics
Optimizing water management practice to increase potato yield and water use efficiency in North China
LI Yang, WANG Jing, FANG Quan-xiao, HU Qi, HUANG Ming-xia, CHEN Ren-wei, ZHANG Jun, HUANG Bin-xiang, PAN Zhi-hua, PAN Xue-biao
2023, 22 (10): 3182-3192.   DOI: 10.1016/j.jia.2023.04.027
Abstract141)      PDF in ScienceDirect      

Potato is one of the staple food crops in North China.  However, potato production in this region is threatened by the low amount and high spatial-temporal variation of precipitation.  Increasing yield and water use efficiency (WUE) of potato by various water management practices under water resource limitation is of great importance for ensuring food security in China.  However, the contributions of different water management practices to yield and WUE of potato have been rarely investigated across North China’s potato planting region.  Based on meta-analysis of field experiments from the literature and model simulation, this study quantified the potential yields of potatoes without water and fertilizer limitation, and yield under irrigated and rainfed conditions, and the corresponding WUEs across four potato planting regions including the Da Hinggan Mountains (DH), the Foothills of Yanshan hilly (YH), the North foot of the Yinshan Mountains (YM), and the Loess Plateau (LP) in North China.  Simulated average potential potato tuber dry weight yield by the APSIM-Potato Model was 12.4 t ha–1 for the YH region, 11.4 t ha–1 for the YM region, 11.2 t ha–1 for the DH region, and 10.7 t ha–1 for the LP region, respectively.  Observed rainfed potato tuber dry weight yield accounted for 61, 30, 28 and 24% of the potential yield in the DH, YH, YM, and LP regions.  The maximum WUE of 2.2 kg m–3 in the YH region, 2.1 kg m–3 in the DH region, 1.9 kg m–3 in the YM region and 1.9 kg m–3 in the LP region was achieved under the potential yield level.  Ridge-furrow planting could boost yield by 8–49% and WUE by 2–36% while ridge-furrow planting with film mulching could boost yield by 35–89% and WUE by 7–57% across North China.  Our study demonstrates that there is a large potential to increase yield and WUE simultaneously by combining ridge-furrow planting with film mulching and supplemental irrigation in different potato planting regions with limited water resources.

Reference | Related Articles | Metrics
Modelling the crop yield gap with a remote sensing-based process model: A case study of winter wheat in the North China Plain
YANG Xu, ZHANG Jia-hua, YANG Shan-shan, WANG Jing-wen, BAI Yun, ZHANG Sha
2023, 22 (10): 2993-3005.   DOI: 10.1016/j.jia.2023.02.003
Abstract238)      PDF in ScienceDirect      

Understanding the spatial distribution of the crop yield gap (YG) is essential for improving crop yields.  Recent studies have typically focused on the site scale, which may lead to considerable uncertainties when scaled to the regional scale.  To mitigate this issue, this study used a process-based and remote sensing driven crop yield model for winter wheat (PRYM-Wheat), which was derived from the boreal ecosystem productivity simulator (BEPS), to simulate the YG of winter wheat in the North China Plain from 2015 to 2019.  Yield validation based on statistical yield data revealed good performance of the PRYM-Wheat Model in simulating winter wheat actual yield (Ya).  The distribution of Ya across the North China Plain showed great heterogeneity, decreasing from southeast to northwest.  The remote sensing-estimated results show that the average YG of the study area was 6 400.6 kg ha–1.  The YG of Jiangsu Province was the largest, at 7 307.4 kg ha–1, while the YG of Anhui Province was the smallest, at 5 842.1 kg ha–1.  An analysis of the responses of YG to environmental factors showed no obvious correlation between YG and precipitation, but there was a weak negative correlation between YG and accumulated temperature.  In addition, the YG was positively correlated with elevation.  In general, studying the specific features of the YG can provide directions for increasing crop yields in the future

Reference | Related Articles | Metrics
Transcriptomic analysis elucidates the enhanced skeletal muscle mass, reduced fat accumulation, and metabolically benign liver in human follistatin-344 transgenic pigs
LONG Ke-ren, LI Xiao-kai, ZHANG Ruo-wei, GU Yi-ren, DU Min-jie, XING Xiang-yang, DU Jia-xiang, MAI Miao-miao, WANG Jing, JIN Long, TANG Qian-zi, HU Si-lu, MA Ji-deng, WANG Xun, PAN Deng-ke, LI Ming-zhou
2022, 21 (9): 2675-2690.   DOI: 10.1016/j.jia.2022.07.014
Abstract325)      PDF in ScienceDirect      

Follistatin (FST) is an important regulator of skeletal muscle growth and adipose deposition through its ability to bind to several members of the transforming growth factor-β (TGF-β) superfamily, and thus may be a good candidate for future animal breeding programs.  However, the molecular mechanisms underlying the phenotypic changes have yet to be clarified in pig.  We generated transgenic (TG) pigs that express human FST specifically in skeletal muscle tissues and characterized the phenotypic changes compared with the same tissues in wild-type pigs.  The TG pigs showed increased skeletal muscle growth, decreased adipose deposition, and improved metabolism status (P<0.05).  Transcriptome analysis detected important roles of the PIK3–AKT signaling pathway, calcium-mediated signaling pathway, and amino acid metabolism pathway in FST-induced skeletal muscle hypertrophy, and depot-specific oxidative metabolism changes in psoas major muscle.  Furthermore, the lipid metabolism-related process was changed in adipose tissue in the TG pigs.  Gene set enrichment analysis revealed that genes related to lipid synthesis, lipid catabolism, and lipid storage were down-regulated (P<0.01) in the TG pigs for subcutaneous fat, whereas genes related to lipid catabolism were significantly up-regulated (P<0.05) in the TG pigs for retroperitoneal fat compared with their expression levels in wild-type pigs.  In liver, genes related to the TGF-β signaling pathway were over-represented in the TG pigs, which is consistent with the inhibitory role of FST in regulating TGF-β signaling.  Together, these results provide new insights into the molecular mechanisms underlying the phenotypic changes in pig.

Reference | Related Articles | Metrics
Development of a recombinant pB602L-based indirect ELISA assay for detecting antibodies against African swine fever virus in pigs
WANG Peng-fei, WANG Ming, SHI Zhi-bin, SUN Zhen-zhao, WEI Li-li, LIU Zai-si, WANG Shi-da, HE Xi-jun, WANG Jing-fei
2022, 21 (3): 819-825.   DOI: 10.1016/S2095-3119(21)63767-X
Abstract219)      PDF in ScienceDirect      
African swine fever (ASF), caused by the African swine fever virus (ASFV), is a devastating disease of domestic and wild pigs.  There is no effective vaccine, and the control of the disease relies mainly on surveillance and early detection of infected pigs.  Previously, serological assays, such as ELISA, have been developed mainly based on recombinant structural viral proteins of ASFV, including p72, p54, and p30.  However, the antibodies against these proteins do not provide efficient protection against ASFV infection in pigs.  Therefore, new serological assays that can be applied for clinical diagnosis and evaluating serological immune response in vaccinated pigs are still required.  In this study, we expressed and purified a recombinant pB602L protein.  The purified pB602L protein was then used as an antigen to develop an indirect ELISA assay.  This assay has no cross-reaction with the anti-sera against the 15 most common pig pathogens in China, such as classical swine fever virus, pseudorabies virus, and porcine parvovirus.  This assay and a commercial ELISA kit were then used to detect 60 field pig serum samples, including an unknown number of anti-ASFV sera.  The coincidence of the two assays was 95%.  Furthermore, the pB602L-based ELISA was employed to test the antibody responses to the seven-gene-deleted ASFV strain HLJ/18-7GD in pigs.  The results showed that the antibody levels in all vaccinated pigs, starting from the 10th day post-inoculation, have increased continuously during the observation period of 45 days.  Our results indicate that this pB602L-based indirect ELISA assay can be employed potentially in the field of ASFV diagnosis.
Reference | Related Articles | Metrics
TaSnRK2.4 is a vital regulator in control of thousand-kernel weight and response to abiotic stress in wheat
MIAO Li-li, LI Yu-ying, ZHANG Hong-juan, ZHANG Hong-ji, LIU Xiu-lin, WANG Jing-yi, CHANG Xiao-ping, MAO Xin-guo, JING Rui-lian
2021, 20 (1): 46-54.   DOI: 10.1016/S2095-3119(19)62830-3
Abstract173)      PDF in ScienceDirect      
Sucrose non-fermenting 1-related protein kinase 2 (SnRK2) is a plant-specific serine/threonine kinase involved in response to adverse environmental stimuli.  Previous studies showed that TaSnRK2.4 was involved in response to abiotic stresses and conferred enhanced tolerance to multiple stresses in Arabidopsis.  Further experiments were performed to decipher the underlying mechanisms and discover new functions.  The genomic sequences of TaSnRK2.4s locating on chromosome 3A, 3B and 3D were obtained.  Sequencing identified one and 13 variations of TaSnRK2.4-3A and TaSnRK2.4-3B, respectively, but no variation was detected in TaSnRK2.4-3D.  The markers 2.4AM1, 2.4BM1 and 2.4BM2 were developed based on three variations.  Association analysis showed that both TaSnRK2.4-3A and TaSnRK2.4-3B were significantly associated with thousand-kernel weight (TKW), and that SNP3A-T and SNP3B-C were favorable alleles for higher TKW.  Yeast two-hybrid and split luciferase assays showed that TaSnRK2.4 physically interacted with abiotic stress responsive protein TaLTP3, suggesting that TaSnRK2.4 enhanced abiotic stress tolerance by activating TaLTP3.  Our studies suggested that TaSnRK2.4 have potential in improving TKW and response to abiotic stress.
 
Reference | Related Articles | Metrics
dCAPS markers developed for nitrate transporter genes TaNRT2L12s associating with 1 000-grain weight in wheat
HUANG Jun-fang, LI Long, MAO Xin-guo, WANG Jing-yi, LIU Hui-min, LI Chao-nan, JING Rui-lian
2020, 19 (6): 1543-1553.   DOI: 10.1016/S2095-3119(19)62683-3
Abstract119)      PDF in ScienceDirect      
Nitrate transporters (NRTs) are regulators of nitrate assimilation and transport.  The genome sequences of TaNRT2L12-A, -B and -D were cloned from wheat (Triticum aestivum L.), and polymorphisms were analyzed by sequencing.  TaNRT2L12-D in a germplasm population was highly conserved.  However, 38 single nucleotide polymorphisms (SNPs) in TaNRT2L12-A coding region and 11 SNPs in TaNRT2L12-B coding region were detected.  Two derived cleaved amplified polymorphic sequences (dCAPS) markers A-CSNP1 and A-CSNP2 were developed for TaNRT2L12-A based on SNP-351 and SNP-729, and three haplotypes were identified in the germplasm population.  B-CSNP1 and B-CSNP2 were developed for TaNRT2L12-B based on SNP-237 and SNP-1 227, and three haplotypes were detected in the germplasm population.  Association analyses between the markers and agronomic traits in 30 environments and phenotypic comparisons revealed that A-CSNP2-A is a superior allele of shorter plant height (PH), length of penultimate internode (LPI) and peduncle length (PL), B-CSNP2-G is a superior allele of higher grain number per spike (GNS).  Hap-6B-1 containing both superior alleles B-CSNP1-C and B-CSNP2-A is a superior haplotype of 1 000-grain weight (TGW).  Expression analysis showed that TaNRT2L12-B is mainly expressed in the root base and regulated by nitrate.  Therefore, TaNRT2L12 may be involved in nitrate transport and signaling to regulate TGW in wheat.  The superior alleles and dCAPS markers of TaNRT2L12-A/B are beneficial to genetic improvement and germplasm enhancement with molecular markers-assisted selection. 
 
Reference | Related Articles | Metrics
Development of peanut varieties with high oil content by in vitro mutagenesis and screening
WANG Jing-shan, SHI Lei, LIU Yue, ZHAO Ming-xia, WANG Xia, QIAO Li-xian, SUI Jiong-ming, LI Guan, ZHU Hong, YU Shan-lin
2020, 19 (12): 2974-2982.   DOI: 10.1016/S2095-3119(20)63182-3
Abstract148)      PDF in ScienceDirect      
Peanut (Arachis hypogaea L.) is an important oil crop globally and high oil content is one of the major targets in peanut breeding programs.  Previous studies indicated that the osmotic pressure (OP) of the leaves of peanut plants subjected to drought stress was negatively correlated with kernel oil content.  Based on this knowledge, we established a practical and reliable method for creating new peanut varieties with high oil content using in vitro mutagenesis and directional OP-based selection.  Using embryonic leaflets of peanut variety Huayu 20 as explants, pingyangmycin (PYM) as the mutagen, and hydroxyproline (HYP) as the OP regulator, we developed 15 HYP-tolerant regenerated plants.  For each regenerated plant, we selected offspring with oil content>55% (relative to 49.5% for Huayu 20).  We developed and released three new peanut varieties with high yield and high oil content from the offspring of the HYP-tolerant regenerated plants.  The three new varieties were named as Yuhua 4, Yuhua 9 and Yuhua 14 and their oil contents were 57.7, 61.1 and 59.3%, respectively.  The results indicate that in vitro mutagenesis with PYM followed by directed screening with HYP is a useful approach for breeding peanut varieties with high oil contents.
Reference | Related Articles | Metrics
First report of a new potato disease caused by Galactomyces candidum F12 in China
SONG Su-qin, Lü Zhuo, WANG Jing, ZHU Jing, GU Mei-ying, TANG Qi-yong, ZHANG Zhi-dong, WANG Wei, ZHANG Li-juan, WANG Bo
2020, 19 (10): 2470-2476.   DOI: 10.1016/S2095-3119(20)63257-9
Abstract123)      PDF in ScienceDirect      
Potato (Solanum tuberosum L.) is an important crop throughout the world.  An uncharacterized disease has been observed on potato plants during the growing season and tubers during the storage period from Nileke County, Qitai County and other locations in Xinjiang, China.  A particular fungus was consistently isolated from the infected potato plants and tubers.  Based on its morphology, molecular characteristics, pathogenicity test and internal transcribed spacer (ITS) sequence, the pathogens was identified as Galactomyces candidum F12.  Further study also showed that the hyphae and conidia of the pathogenic fungus grew faster as the temperature was 30°C, pH was 7, soluble starch was used as optimal carbon source and yeast powder as optimal nitrogen source.  In addition, 12-h continuous illumination light was beneficial to the hyphal growth, while 24-h continuous illumination was beneficial to the sporulation of the strain at 30°C.  To our knowledge, this is the first report of Galactomyces candidum causing leaf wilt and postharvest tuber rot on potato in China.
Reference | Related Articles | Metrics
Genetic and agronomic traits stability of marker-free transgenic wheat plants generated from Agrobacterium-mediated co-transformation in T2 and T3 generations
LIU Hui-yun, WANG Ke, WANG Jing, DU Li-pu, PEI Xin-wu, YE Xing-guo
2020, 19 (1): 23-32.   DOI: 10.1016/S2095-3119(19)62601-8
Abstract99)      PDF in ScienceDirect      
Genetically modified wheat has not been commercially utilized in agriculture largely due to regulatory hurdles associated with traditional transformation methods.  Development of marker-free transgenic wheat plants will help to facilitate biosafety evaluation and the eventual environmental release of transgenic wheat varieties.  In this study, the marker-free transgenic wheat plants previously obtained by Agrobacterium-mediated co-transformation of double T-DNAs vector were identified by fluorescence in situ hybridization (FISH) in the T1 generation, and their genetic stability and agronomic traits were analyzed in T2 and T3 generations.  FISH analysis indicated that the transgene often integrated into a position at the distal region of wheat chromosomes.  Furthermore, we show that the GUS transgene was stably inherited in the marker-free transgenic plants in T1 to T3 generations.  No significant differences in agronomic traits or grain characteristics were observed in T3 generation, with the exception of a small variation in spike length and grains per spike in a few lines.  The selection marker of bar gene was not found in the transgenic plants through T1 to T3 generations.  The results from this investigation lay a solid foundation for the potential application of the marker-free transgenic wheat plants achieved through the co-transformation of double T-DNAs vector by Agrobacterium in agriculture after biosafty evaluation.
Reference | Related Articles | Metrics
Patent analysis provides insights into the history of cotton molecular breeding worldwide over the last 50 years
HE Wei, ZHAO Hui-min, YANG Xiao-wei, ZHANG Rui, WANG Jing-jing
2019, 18 (3): 539-552.   DOI: 10.1016/S2095-3119(18)62012-X
Abstract209)      PDF (1488KB)(207)      
Cotton is a globally important natural fiber and oilseed crop of crucial economic significance.  Molecular breeding has become a dominant method of cotton cultivation because it allows for a shorter breeding period and directional selection of high quality genes.  Patent data are key resources and are the core competitiveness of agricultural development, as the world’s largest and most reliable source of technical information.  However, little attention has been paid to patent analysis of cotton molecular breeding.  This study uses bibliometric analysis methodology and technical classification indexing to reveal global development trends of cotton molecular breeding, based on patents by retrieval methods and expert screening.  The annual number of patents, the life-cycle of patent-based technology, patent portfolios of primary countries, and main patentees, as well as technical distribution of patents, were analyzed in this study.  In addition, this study put emphasis on the comparative analysis of two important patentees through patent roadmaps based on the relationship among patent citations.  Finally, in order to understand the trend of new molecular breeding technology, patents related to clustered regularly interspaced short palindromic repeats (CRISPR), RNA interference (RNAi), and gene chip were also analyzed, all of which apply to cotton but also to other crops.  Results in this paper can provide references for cotton molecular breeding researchers and relevant management departments.
 
 
Reference | Related Articles | Metrics
Effects of potassium deficiency on photosynthesis, chloroplast ultrastructure, ROS, and antioxidant activities in maize (Zea mays L.)
DU Qi, ZHAO Xin-hua, XIA Le, JIANG Chun-ji, WANG Xiao-guang, HAN Yi, WANG Jing, YU Hai-qiu
2019, 18 (2): 395-406.   DOI: 10.1016/S2095-3119(18)61953-7
Abstract342)      PDF (5041KB)(821)      
Potassium (K) deficiency significantly decreases photosynthesis due to leaf chlorosis induced by accumulation of reactive oxygen species (ROS).  But, the physiological mechanism for adjusting antioxidative defense system to protect leaf function in maize (Zea mays L.) is unknown.  In the present study, four maize inbred lines (K-tolerant, 90-21-3 and 099; K-sensitive, D937 and 835) were used to analyze leaf photosynthesis, anatomical structure, chloroplast ultrastructure, ROS, and antioxidant activities.  The results showed that the chlorophyll content, net photosynthetic rate (Pn), stomatal conductance (Gs), photochemical quenching (qP), and electron transport rate of PSII (ETR) in 90-21-3 and 099 were higher than those in D937 and 835 under K deficiency treatment.  Parameters of leaf anatomical structure in D937 that were significantly changed under K deficiency treatment include smaller thickness of leaf, lower epidermis cells, and vascular bundle area, whereas the vascular bundle area, xylem vessel number, and area in 90-21-3 were significantly larger or higher.  D937 also had seriously damaged chloroplasts and PSII reaction centers along with increased superoxide anion (O2-·) and hydrogen peroxide (H2O2).  Activities of antioxidants, like superoxide dismutase (SOD), catalase (CAT), and ascorbate peroxidase (APX), were significantly stimulated in 90-21-3 resulting in lower levels of O2-· and H2O2.  These results indicated that the K-tolerant maize promoted antioxidant enzyme activities to maintain ROS homeostasis and suffered less oxidative damage on the photosynthetic apparatus, thereby maintaining regular photosynthesis under K deficiency stress.
Reference | Related Articles | Metrics
Discovery of leaf region and time point related modules and genes in maize (Zea mays L.) leaves by Weighted Gene Co-expression Network analysis (WGCNA) of gene expression profiles of carbon metabolism
WANG Jing-lu, ZHANG Ying, PAN Xiao-di, DU Jian-jun, MA Li-ming, GUO Xin-yu
2019, 18 (2): 350-360.   DOI: 10.1016/S2095-3119(18)62029-5
Abstract290)      PDF (1658KB)(274)      
Maize (Zea mays L.) yield depends not only on the conversion and accumulation of carbohydrates in kernels, but also on the supply of carbohydrates by leaves.  However, the carbon metabolism process in leaves can vary across different leaf regions and during the day and night.  Hence, we used Weighted Gene Co-expression Network analysis (WGCNA) with the gene expression profiles of carbon metabolism to identify the modules and genes that may associate with particular regions in a leaf and time of day.  There were a total of 45 samples of maize leaves that were taken from three different regions of a growing maize leaf at five time points.  Robust Multi-array Average analysis was used to pre-process the raw data of GSE85963 (accession number), and quality control of data was based on Pearson correlation coefficients.  We obtained eight co-expression network modules.  The modules with the highest significance of association with LeafRegion and TimePoint were selected.  Functional enrichment and gene-gene interaction analyses were conducted to acquire the hub genes and pathways in these significant modules.  These results can support the findings of similar studies by providing evidence of potential module genes and enriched pathways associated with leaf development in maize.
Reference | Related Articles | Metrics
Non-target-site and target-site resistance to AHAS inhibitors in American sloughgrass (Beckmannia syzigachne)
WANG Jing-jing, LI Xiang-ju, LI Dan, HAN Yu-jiao, LI Zheng, YU Hui-lin, CUI Hai-lan
2018, 17 (12): 2714-2723.   DOI: 10.1016/S2095-3119(18)62021-0
Abstract285)      PDF in ScienceDirect      
American sloughgrass (Beckmannia syzigachne (Steud.) Fernald) is one of the most competitive and malignant weeds in rice-wheat rotation fields in China.  American sloughgrass populations in the Jiangsu Province of China became less sensitive to acetohydroxyacid synthase (AHAS) inhibitors after repeated application for many years in these areas.  Two suspected resistant American sloughgrass populations (R1 and R2) collected in the field were detected the resistance to inhibitors of AHAS in whole-plant dose-response assays, compared to the susceptible (S) population.  These assays indicated that R1 showed low resistance to mesosulfuron-methyl (3.32-fold), imazapic (2.84-fold) and pyroxsulam (1.55-fold), moderate resistance to flazasulfuron (4.67-fold) and pyribenzoxim (7.41-fold), and high resistance to flucarbazone (11.73-fold).  However, using a combination of the cytochrome P450 inhibitor, malathion, with mesosulfuron-methyl resulted in a reduction in R1 resistance relative to mesosulfuron-methyl alone.  Furthermore, R2 was highly resistant to flazasulfuron (34.90-fold), imazapic (11.30-fold), flucarbazone (49.20-fold), pyribenzoxim (12.94-fold), moderately resistant to mesosulfuron-methyl (9.77-fold) and pyroxsulam (6.26-fold), and malathion had no effect on R2 resistance to mesosulfuron-methyl.  The full-length of AHAS genes was sequenced and the AHAS enzymes were assayed in vitro in order to clarify the mechanism of resistance to AHAS inhibitors in R1 and R2 populations.  The results demonstrated that R2 had a Pro-197-Ser mutation in the AHAS gene, and the sensitivity of R2 to the five AHAS inhibitors was decreased, which may result in R2 resistance to AHAS inhibitors.  There was no mutation in the AHAS gene of R1, and there were no significant differences in enzyme sensitivity between susceptible (S) and resistant (R1) populations.  An enhanced metabolism may be the main mechanism of R1 resistance to AHAS inhibitors.
Reference | Related Articles | Metrics
GmDRR1, a dirigent protein resistant to Phytophthora sojae in Glycine max (L.) Merr.
CHEN Qing-shan, YU Guo-long, ZOU Jia-nan, WANG Jing, QIU Hong-mei, ZHU Rong-sheng, CHANG Hui-lin, JIANG Hong-wei, HU Zhen-bang, LI Chang-yu, ZHANG Yan-jiao, WANG Jin-hui, WANG Xueding, GAO Shan...
2018, 17 (06): 1289-1298.   DOI: 10.1016/S2095-3119(17)61821-5
Abstract553)      PDF in ScienceDirect      
Soil-borne pathogen Phytophthora sojae is an oomycete that causes devastating damage to soybean yield.  To mine original resistant genes in soybean is an effective and environmentally-friend approach controlling the disease.  In this study, soybean proteins were extracted from the first trifoliolates infected by predominant P. sojae race 1 and analyzed by two-dimensional gel electrophoresis.  Nineteen differently-expressed protein spots were detected, and 10 of them were further applied for Matrix-Assisted Laser Desorption/Ionization Time of Flight Mass Spectrometry Assay.  One protein containing a dirigent (DIR) domain was identified and belonged to the DIR-b/d family.  Therefore, it was named as GmDRR1 (Glycine max Disease Resistance Response 1).  Then, GmDRR1 gene was pathologically confirmed to be involved in the resistant to P. sojae in soybean.  GmDRR1-GFP (green fluorescent protein) fusion proteins localized in the cell membrane.  qRT-PCR results showed GmDRR1 gene expressed differently in P. sojae resistant- and susceptible-soybean cultivars.  By the promoter analysis, we found a haplotype H8 was existing in most resistant soybean varieties, while a haplotype H77 was existing in most susceptible soybean varieties.  The H77 haplotype had seven SNPs (C to A, G to C, C to A, T to A, T to C, T to C, and T to A) and two single nucleotide insertions.  The results supported that the expression difference of GmDRR1 genes between P. sojae resistant- and susceptible-soybean cultivars might depend on the GmDRR1 promoter SNPs.  The results suggested that GmDRR1 was a dirigent protein involved in soybean resistant to P. sojae and paved a novel way for investigation of the molecular regulatory mechanism of the defense response to P. sojae in soybean.
Related Articles | Metrics
Detection of illegal dyes in foods using a polyethersulfone/multi-walled carbon nanotubes composite membrane as a cleanup method
HE Ya-hui, WANG Jing
2018, 17 (03): 716-722.   DOI: 10.1016/S2095-3119(17)61694-0
Abstract569)      PDF in ScienceDirect      
In this paper, a polyethersulfone (PES)/multi-walled carbon nanotubes (MWCNTs) composite membrane was prepared using phase inversion.  The surface morphology and internal structure of the membrane were observed by scanning electron microscopy (SEM).  The effects of MWCNTs content on various aspects of membrane performance such as porosity, water flux, and antifouling characteristics were investigated.  Results showed that proper addition of MWCNTs would improve the properties of the membrane.  MWCNTs had a strong adsorption capacity for industrial dyes and the composite membrane could be used as an effective method to identify and clean up illegal dyes in foods.  In addition, this new method for identifying dyes is rapid: the cleanup procedure in the determination of illegal dyes in foods by the composite membrane was shortened to 30 min or less compared to 6–8 h for traditional methods.
Reference | Related Articles | Metrics
A wheat gene TaSAP17-D encoding an AN1/AN1 zinc finger protein improves salt stress tolerance in transgenic Arabidopsis
XU Qiao-fang, MAO Xin-guo, WANG Yi-xue, WANG Jing-yi, XI Ya-jun, JING Rui-lian
2018, 17 (03): 507-516.   DOI: 10.1016/S2095-3119(17)61681-2
Abstract687)      PDF in ScienceDirect      
The stress-associated protein (SAP) multigene family is conserved in both animals and plants.  Its function in some animals and plants are known, but it is yet to be deciphered in wheat (Triticum aestivum L.).  We identified the wheat gene TaSAP17-D, a member of the SAP gene family with an AN1/AN1 conserved domain.  Subcellular localization indicated that TaSAP17-D localized to the nucleus, cytoplasm, and cell membrane.  Expression pattern analyses revealed that TaSAP17-D was highly expressed in seedlings and was involved in NaCl response, polyethylene glycol (PEG), cold, and exogenous abscisic acid (ABA).  Constitutive expression of TaSAP17-D in transgenic Arabidopsis resulted in enhanced tolerance to salt stress, confirmed by improved multiple physiological indices and significantly upregulated marker genes related to salt stress response.  Our results suggest that TaSAP17-D is a candidate gene that can be used to protect crop plants from salt stress.  
Reference | Related Articles | Metrics
Effects of long-term fertilization on soil gross N transformation rates and their implications
DAI Shen-yan, WANG Jing, CHENG Yi, ZHANG Jin-bo, CAI Zu-cong
2017, 16 (12): 2863-2870.   DOI: 10.1016/S2095-3119(17)61673-3
Abstract843)      PDF in ScienceDirect      
Application of fertilizer has been found to significantly affect soil N cycling.  However, a comprehensive understanding of the effects of long-term fertilization on soil gross N transformation rates is still lacking.  We compiled data of observations from 10 long-term fertilization experiments and conducted a meta-analysis of the effects of long-term fertilization on soil gross N transformation rates.  The results showed that if chemical fertilizers of N, P and K were applied in balance, soil pH decreased very slightly.  There was a significantly positive effect of long-term fertilization, either chemical or organic fertilizers or their combinations, on gross N mineralization rate compared to the control treatment (the mean effect size ranged from 1.21 to 1.25 at 95% confidence intervals (CI) with a mean of 1.23), mainly due to the increasing soil total N content.  The long-term application of organic fertilizer alone and combining organic and chemical fertilizer could increase the mineralization-immobilization turnover, thus enhance available N for plant while reduce N losses potential compared to the control treatment.  However, long-term chemical fertilizer application did not significantly affect the gross NH4+ immobilization rate, but accelerated gross nitrification rate (1.19; 95% CI: 1.08 to 1.31).  Thus, long-term chemical fertilizer alone would probably induce higher N losses potential through NO3– leaching and runoff than organic fertilizer application compared to the control treatment.  Therefore, in the view of the effects of long-term fertilization on gross N transformation rates, it also supports that organic fertilizer alone or combination of organic and chemical fertilizer could not only improve crop yield, but also increase soil fertility and reduce the N losses potential.
Reference | Related Articles | Metrics
Buried straw layer and plastic mulching increase microflora diversity in salinized soil
LI Yu-yi, PANG Huan-cheng, HAN Xiu-fang, YAN Shou-wei, ZHAO Yong-gan, WANG Jing, ZHAI Zhen, ZHANG Jian-li
2016, 15 (7): 1602-1611.   DOI: 10.1016/S2095-3119(15)61242-4
Abstract1985)      PDF in ScienceDirect      
    Salt stress has been increasingly constraining crop productivity in arid lands of the world. In our recent study, salt stress was alleviated and crop productivity was improved remarkably by straw layer burial plus plastic film mulching in a saline soil. However, its impact on the microflora diversity is not well documented. Field micro-plot experiments were conducted from 2010 to 2011 using four tillage methods: (i) deep tillage with plastic film mulching (CK), (ii) straw layer burial at 40 cm (S), (iii) straw layer burial plus surface soil mulching with straw material (S+S), and (iv) plastic film mulching plus buried straw layer (P+S). Culturable microbes and predominant bacterial communities were studied; based on 16S rDNA, bacterial community structure and abundance were characterized using denaturing gradient gel electrophoresis (DGGE) and polymerase chain reaction (PCR). Results showed that P+S was the most favorable for culturable bacteria, actinomyces and fungi and induced the most diverse genera of bacteria compared to other tillage methods. Soil temperature had significant positive correlations with the number of bacteria, actinomyces and fungi (P<0.01). However, soil water was poorly correlated with any of the microbes. Salt content had a significant negative correlation with the number of microbers, especially for bacteria and fungi (P<0.01). DGGE analysis showed that the P+S exhibited the highest diversity of bacteria with 20 visible bands followed by S+S, S and CK. Moreover, P+S had the highest similarity (68%) of bacterial communities with CK. The major bacterial genera in all soil samples were Firmicutes, Proteobacteria and Actinobacteria. Given the considerable increase in microbial growth, the combined use of straw layer burial and plastic film mulching could be a practical option for alleviating salt stress effects on soil microbial community and thereby improving crop production in arid saline soils.
Reference | Related Articles | Metrics
Response of root morphology, physiology and endogenous hormones in maize (Zea mays L.) to potassium deficiency
ZHAO Xin-hua, YU Hai-qiu, WEN Jing, WANG Xiao-guang, DU Qi, WANG Jing, WANG Qiao
2016, 15 (4): 785-794.   DOI: 10.1016/S1671-2927(00)10445
Abstract1525)      PDF in ScienceDirect      
Potassium (K) deficiency is one of the major abiotic stresses which has drastically influenced maize growth and yield around the world. However, the physiological mechanism of K deficiency tolerance is not yet fully understood. To identify the differences of root morphology, physiology and endogenous hormones at different growing stages, two maize inbred lines 90-21-3 (tolerance to K deficiency) and D937 (sensitive to K deficiency) were cultivated in the long-term K fertilizer experimental pool under high potassium (+K) and low potassium (–K) treatments. The results indicated that the root length, volume and surface area of 90-21-3 were significantly higher than those of D937 under –K treatment at different growing stages. It was noteworthy that the lateral roots of 90-21-3 were dramatically higher than those of D937 at tasselling and flowering stage under –K treatment. Meanwhile, the values of superoxide dismutase (SOD) and oxidizing force of 90-21-3 were apparently higher than those of D937, whereas malondialdehyde (MDA) content of D937 was obviously increased. Compared with +K treatment, the indole-3-acetic acid (IAA) content of 90-21-3 was largely increased under –K treatment, whereas it was sharply decreased in D937. On the contrary, abscisic acid (ABA) content of 90-21-3 was slightly increased, but that of D937 was significantly increased. The zeatin riboside (ZR) content of 90-21-3 was significantly decreased, while that of D937 was relatively increased. These results indicated that the endogenous hormones were stimulated in 90-21-3 to adjust lateral root development and to maintain the physiology function thereby alleviating K deficiency.
Reference | Related Articles | Metrics
Isolation and molecular characterization of the FLOWERING LOCUS C gene promoter sequence in radish (Raphanus sativus L.)
XU Yuan-yuan, WANG Jing, NIE Shan-shan, HUANG Dan-qiong, WANG Yan, XU Liang, WANG Rong-hua, LUO Xiao-bo, LIU Li-wang
2016, 15 (4): 763-774.   DOI: 10.1016/S2095-3119(15)61295-3
Abstract1272)      PDF in ScienceDirect      
Both bolting and flowering times influence taproot and seed production in radish. FLOWERING LOCUS C (FLC) plays a key role in plant flowering by functioning as a repressor. Two genomic DNA sequences, a 3 046-bp from an early- and a 2 959-bp from a late-bolting radish line were isolated and named as RsFLC1 and RsFLC2, respectively, for they share approximately 87.03% sequence identity to the FLC cDNA sequences. The genomic DNA sequences, 1 466-bp and 1 744-bp, flanking the 5´-regions of RsFLC1 and RsFLC2, respectively, were characterized. Since both of them harbor the basic promoter elements, the TATA box and CAAT box, they were designated as PRsFLC1 and PRsFLC2. The transcription start site (TSS) was identified at 424 and 336 bp upstream of the start codon in PRsFLC1 and PRsFLC2, respectively. cis-regulatory elements including CGTCA (MeJA-responsive) and ABRE (abscisic acid-responsive) motifs were found in both promoters, while some cis-regulatory elements including TCA element and GARE-motif were present only in PRsFLC1. These sequence differences lead to the diversity of promoter core elements, which could partially result in the difference of bolting and flowering time in radish line NauDY13 (early-bolting) and Naulu127 (late-bolting). Furthermore, to investigate the activity of these promoters, a series of 5´-deletion fragment-GUS fusions were constructed and transformed into tobacco. GUS activity was detected in PRsFLC1-(1 to 4)-GUS-PS1aG-3 and PRsFLC2-(1 to 4)-GUS-PS1aG-3 transgenic tobacco leaf discs, and this activity progressively decreased from PRsFLC-1-GUS-PS1aG-3 to PRsFLC-5-GUS-PS1aG-3. Deletion analysis indicated that the cis-regulatory elements located at –395 bp to +1 bp may be critical for specifying RsFLC gene transcription.
Reference | Related Articles | Metrics
Characterization of Ppd-D1 alleles on the developmental traits and rhythmic expression of photoperiod genes in common wheat
ZHAO Yong-ying, WANG Xiang, WEI Li, WANG Jing-xuan, YIN Jun
2016, 15 (3): 502-511.   DOI: 10.1016/S2095-3119(15)61129-7
Abstract1833)      PDF in ScienceDirect      
Photoperiodic response is an important characteristic that plays an important role in plant adaptability for various environments. Wheat cultivars grow widely and have high yield potential for the strong photoperiod adaptibility. To assess the photoperiodic response of different genotypes in wheat cultivars, the photoperiodic effects of the Ppd-D1 alleles and the expressions of the related TaGI, TaCO and TaFT genes in Liaochun 10 and Ningchun 36 were investigated under the short-day (6 h light, SD), moderate-day (12 h light, MD) and long-day (24 h light, LD) conditions. Amplicon length comparison indicated that the promoter of Ppd-D1 in Ningchun 36 is intact, while Liaochun 10 presented the partial sequence deletion of Ppd-D1 promoter. The durations of all developmental stages of the two cultivars were reduced by subjection to an extended photoperiod, except for the stamen and pistil differentiation stage in the Liaochun 10 cultivar. The expression levels of the Ppd-D1 alleles and the TaGI, TaCO and TaFT genes associated with the photoperiod pathway were examined over a 24-h period under SD and MD conditions. The relationships of different photoperiodic responses of the two cultivars and the expression of photoperiod pathway genes were analyzed accordingly. The photoperiod insensitive (PI) genotype plants flower early under SD; meanwhile, the abnormal expression of the Ppd-D1a allele is accompanied with an increase in TaFT1 expression and the TaCO expression variation. The results would facilitate molecular breeding in wheat.
Reference | Related Articles | Metrics
Genetic dissection of the developmental behavior of plant height in rice under different water supply conditions
WANG Jiang-xu, SUN Jian, LI Cheng-xin, LIU Hua-long, WANG Jing-guo, ZHAO Hong-wei, ZOU De-tang
2016, 15 (12): 2688-2702.   DOI: 10.1016/S2095-3119(16)61427-2
Abstract1019)      PDF in ScienceDirect      
    Plant height (PH) is one of the most important agronomic traits of rice, as it directly affects the lodging resistance and the high yield potential. Meanwhile, PH is often constrained by water supply over the entire growth period. In this study, a recombinant inbred line (RIL) derived from Xiaobaijingzi and Kongyu 131 strains grown under drought stress and with normal irrigation over 2 yr (2013 and 2014), respectively (regarded as four environments), was used to dissect the genetic basis of PH by developmental dynamics QTL analysis combined with QTL×environment interactions. QTLs with net effects excluding the accumulated effects were detected to explore the relationship between gene×gene interactions and gene×environment interactions in specific growth period. A total of 26 additive QTLs (A-QTLs) and 37 epistatic QTLs (E-QTLs) associated with PH were detected by unconditional and conditional mapping over seven growth periods. qPH-2-3, qPH-4-3, qPH-6-1, qPH-7-1, and qPH-12-5 could be detected by both unconditional and conditional analyses. qPH-4-3 and qPH-7-5 were detected in four stages (periods) to be sequentially expressed QTLs controlling PH continuous variation. QTLs with additive effects (A-QTLs) were mostly expressed in the period S3|S2 (the time interval from stages 2 to 3), and QTL×environment interactions performed actively in the first three stages (periods) which could be an important developmental period for rice to undergo external morphogenesis during drought stress. Several QTLs showed high adaptability for drought stress and many QTLs were closely related to the environments such as qPH-3-5, qPH-2-2 and qPH-6-1. 72.5% of the QTLs with a and aa effects detected by conditional analysis were under drought stress, and the PVE of QTLs detected by conditional analysis under drought stress were also much higher than that under normal irrigation. We infer that environments would influence the detection results and sequential expression of genes was highly influenced by environments as well. Many QTLs (qPH-1-2, qPH-3-5, qPH-4-1, qPH-2-3) coincident with previously identified drought resistance genes. The result of this study is helpful to elucidating the genetic mechanism and regulatory network underlying the development of PH in rice and providing references to marker assisted selection.
Reference | Related Articles | Metrics
Polymorphism and association analysis of a drought-resistant gene TaLTP-s in wheat
LI Qian, WANG Jing-yi, Nadia Khan, CHANG Xiao-ping, LIU Hui-min, JING Rui-lian
2016, 15 (06): 1198-1206.   DOI: 10.1016/S2095-3119(15)61189-3
Abstract1494)      PDF in ScienceDirect      
   Lipid transfer protein (LTP) is a kind of small molecular protein, which is named for its ability to transfer lipid between cell membranes. It has been proved that the protein is involved in the responding to abiotic stresses. In this study, TaLTP-s, a genomic sequence of TaLTP was isolated from A genome of wheat (Triticum aestivum L). Sequencing analysis exhibited that there was no diversity in the coding region of TaLTP-s, but seven single nucleotide polymorphisms (SNPs) and 1 bp insertion/deletion (InDel) were detected in the promoter regions of different wheat accessions. Nucleotide diversity (π) in the region was 0.00033, and linkage disequilibrium (LD) extended over almost the entire TaLTP-s region in wheat. The dCAPS markers based on sequence variations in the promoter regions (SNP-207 and SNP-1696) were developed, and three haplotypes were identified based on those markers. Association analysis between the haplotypes and agronomic traits of natural population consisted of 262 accessions showed that three haplotypes of TaLTP-s were significantly associated with plant height (PH). Among the three haplotypes, HapIII is considered as the superior haplotype for increasing plant height in the drought stress environments. The G variance at the position of 207 bp could be a superior allele that significantly increased number of spikes per plant (NSP). The functional marker of TaLTP-s provide a tool for marker-assisted selection regarding to plant height and number of spikelet per plant in wheat.
Reference | Related Articles | Metrics
Fluorescent competitive assay for melamine using dummy molecularly imprinted polymers as antibody mimics
DU Xin-wei, ZHANG Yan-xin, SHE Yong-xin, LIU Guang-yang, ZHAO Feng-nian, WANG Jing, WANG Shan-shan, JIN Fen, SHAO Hua, JIN Mao-jun, ZHENG Lu-fei
2016, 15 (05): 1166-1177.   DOI: 10.1016/S2095-3119(16)61357-6
Abstract2482)      PDF in ScienceDirect      
    A fluorescent competitive assay for melamine was first developed utilizing dummy molecularly imprinted polymers (DMIPs) as artificial antibodies. This method is based on the competition between fluorescent substances and the unlabeled analyte for binding sites in synthesized DMIPs and the decreased binding of fluorescent substances to DMIPs due to increased concentrations of melamine in the solutions. DMIPs for melamine were synthesized under a hot water bath in the presence of the initiator azobisisobutyronitrile (AIBN) using 2,4-diamino-6-methyl-1,3,5-triazine (DAMT) as a dummy template, methacrylic acid (MAA) as a functional monomer, and ethylene glycol dimethacrylate (EGDMA) as a crosslinking agent. The adsorption capacity and selectivity of DMIPs for melamine were evaluated by the isothermal adsorption curve and Scatchard analysis. The evaluation results showed that the synthesized DMIPs had specific recognition sites for melamine and the maximum adsorption amount was 1 066.33 μg g–1. Later, 5-(4,6-dichlorotriazinyl) amino fluorescein (DTAF) with a triazine ring, which slightly resembles melamine, was selected as the fluorescent substance. The fluorescent competitive assay using DMIPs as the antibody mimics was finally established by selecting and optimizing the reaction solvents, DMIPs amount, DTAF concentration, and incubation time. The optimal detection system showed a linear response within range of 0.05–40 mg L–1 and the limit of detection (LOD) was 1.23 μg L–1. It was successfully applied to the detection of melamine in spiked milk samples with satisfactory recoveries (71.9 to 86.3%). According to the comparative analysis, the result of optimized fluorescent competitive assay revealed excellent agreement with the HPLC-MS/MS result for melamine.
Reference | Related Articles | Metrics
Resource use efficiency, ecological intensification and sustainability of intercropping systems
MAO Li-li, ZHANG Li-zhen, ZHANG Si-ping, Jochem B Evers, Wopke van der Werf, WANG Jingjing, SUN Hong-quan, SU Zhi-cheng, Huub Spiertz
2015, 14 (8): 1542-1550.   DOI: 10.1016/S2095-3119(15)61039-5
Abstract2796)      PDF in ScienceDirect      
The rapidly growing demand for food, feed and fuel requires further improvements of land and water management, crop productivity and resource-use efficiencies. Combined field experimentation and crop growth modelling during the past five decades made a great leap forward in the understanding of factors that determine actual and potential yields of monocrops. The research field of production ecology developed concepts to integrate biological and biophysical processes with the aim to explore crop growth potential in contrasting environments. To understand the potential of more complex systems (multi-cropping and intercropping) we need an agro-ecosystem approach that integrates knowledge derived from various disciplines: agronomy, crop physiology, crop ecology, and environmental sciences (soil, water and climate). Adaptation of cropping systems to climate change and a better tolerance to biotic and abiotic stresses by genetic improvement and by managing diverse cropping systems in a sustainable way will be of key importance in food security. To accelerate sustainable intensification of agricultural production, it is required to develop intercropping systems that are highly productive and stable under conditions with abiotic constraints (water, nutrients and weather). Strategies to achieve sustainable intensification include developing tools to evaluate crop growth potential under more extreme climatic conditions and introducing new crops and cropping systems that are more productive and robust under conditions with abiotic stress. This paper presents some examples of sustainable intensification management of intercropping systems that proved to be tolerant to extreme climate conditions.
Reference | Related Articles | Metrics