Accurate estimation of regional winter wheat yields is essential for understanding the food production status and ensuring national food security. However, using the existing remote sensing-based crop yield models to accurately reproduce the inter-annual and spatial variations in winter wheat yields remains challenging due to the limited ability to acquire irrigation information in water-limited regions. Thus, we proposed a new approach to approximating irrigations of winter wheat over the North China Plain (NCP), where irrigation occurs extensively during the winter wheat growing season. This approach used irrigation pattern parameters (IPPs) to define the irrigation frequency and timing. Then, they were incorporated into a newly-developed process-based and remote sensing-driven crop yield model for winter wheat (PRYM–Wheat), to improve the regional estimates of winter wheat over the NCP. The IPPs were determined using statistical yield data of reference years (2010–2015) over the NCP. Our findings showed that PRYM–Wheat with the optimal IPPs could improve the regional estimate of winter wheat yield, with an increase and decrease in the correlation coefficient (R) and root mean square error (RMSE) of 0.15 (about 37%) and 0.90 t ha–1 (about 41%), respectively. The data in validation years (2001–2009 and 2016–2019) were used to validate PRYM–Wheat. In addition, our findings also showed R (RMSE) of 0.80 (0.62 t ha–1) on a site level, 0.61 (0.91 t ha–1) for Hebei Province on a county level, 0.73 (0.97 t ha–1) for Henan Province on a county level, and 0.55 (0.75 t ha–1) for Shandong Province on a city level. Overall, PRYM–Wheat can offer a stable and robust approach to estimating regional winter wheat yield across multiple years, providing a scientific basis for ensuring regional food security.
Soil salinization is a critical environmental issue restricting agricultural production. Deep return of straw to the soil as an interlayer (at 40 cm depth) has been a popular practice to alleviate salt stress. However, the legacy effects of straw added as an interlayer at different rates on soil organic carbon (SOC) and total nitrogen (TN) in saline soils still remain inconclusive. Therefore, a four-year (2015–2018) field experiment was conducted with four levels (i.e., 0, 6, 12 and 18 Mg ha–1) of straw returned as an interlayer. Compared with no straw interlayer (CK), straw addition increased SOC concentration by 14–32 and 11–57% in the 20–40 and 40–60 cm soil layers, respectively. The increases in soil TN concentration (8–22 and 6–34% in the 20–40 and 40–60 cm soil layers, respectively) were lower than that for SOC concentration, which led to increased soil C:N ratio in the 20–60 cm soil depth. Increases in SOC and TN concentrations in the 20–60 cm soil layer with straw addition led to a decrease in stratification ratios (0–20 cm:20–60 cm), which promoted uniform distributions of SOC and TN in the soil profile. Increases in SOC and TN concentrations were associated with soil salinity and moisture regulation and improved sunflower yield. Generally, compared with other treatments, the application of 12 Mg ha–1 straw had higher SOC, TN and C:N ratio, and lower soil stratification ratio in the 2015–2017 period. The results highlighted that legacy effects of straw application as an interlayer were maintained for at least four years, and demonstrated that deep soil straw application had a great potential for improving subsoil fertility in salt-affected soils.
Lignin metabolism plays a pivotal role in plant defense against pathogens and is always positively correlated as a response to pathogen infection. Thus, understanding resistance genes against pathogens in plants depends on a genetic analysis of lignin response. In the study, eight upland cotton lines were used to construct a multi-parent advanced generation intercross (MAGIC) population (n=280), which exhibited peculiar characteristics from the convergence of various alleles coding for advantageous traits. To measure the lignin response to Verticillium wilt (LRVW), artificial disease nursery (ADN) and rotation nursery (RN) were prepared for MAGIC population planting in four environments. The stem lignin contents were collected, and the LRVW was measured with the lignin value of ADN/RN in each environment, which showed great variation. A total of 9323 high-quality single-nucleotide polymorphism (SNP) markers obtained from the Cotton-SNP63K array were employed for genotyping the MAGIC population. The SNPs were distributed through the whole genome with 4.78 SNP/Mb density, ranging from 1.14 (ChrA06) to 10.08 (ChrD08). A genome-wide association study was performed using a mixed linear model (MLM) for LRVW, and three stable quantitative trait loci (QTLs), qLRVW-A04, qLRVW-A10 and qLRVW-D05, were identified in more than two environments. Two key candidate genes, Ghi_D05G01046 and Ghi_D05G01221, were selected within the QTLs through the combination of variations in the coding sequence, induced expression patterns, and function annotations, both of which presented nonsynonymous mutations in coding regions and were strongly induced by Verticillium dahliae. Ghi_D05G01046 encodes a leucine-rich extensin (LRx) protein, which is involved in Arabidopsis cell wall biosynthesis and organization. Ghi_D05G01221 encodes a transcriptional co-repressor novel interactor of jaz (NINJA), which functions in the jasmonic acid (JA) signaling pathway. In summary, the study creates valuable genetic resources for breeding and QTL mapping and opens up a new perspective to uncover the genetic basis of VW resistance in upland cotton.
Lysophosphatidic acid (LPA) is a small molecule glycerophospholipid, which regulates multiple downstream signalling pathways through G-protein-coupled receptors to achieve numerous functions on oocyte maturation and embryo development. In this study, sheep in vitro fertilized embryos were applied to investigate the effects of LPA on early embryos development and embryonic stem cell establishment. At first, the maturation medium containing estrus female sheep serum and synthetic oviduct fluid (SOF) were optimized for sheep IVF, and then the effects of LPA were investigated. From 0.1 to 10 μmol L–1, LPA had no significant effect on the cleavage rate (P>0.05), but the maturation rate and blastocyst rate increased dependently with LPA concentration (P<0.05), and the blastocyst morphology was normal. When the LPA concentration was 15 μmol L–1, the maturation rate, cleavage rate and blastocyst rate decreased significantly (P<0.05), and the blastocyst exhibited abnormal morphology and could not develop into high-quality blastocyst. Besides, the exogenous LPA increases the expression of LPAR2, LPAR4, TE-related gene CDX-2
and pluripotency-related gene OCT-4 in sheep early IVF embryos with the raise of LPA concentration from 0.1 to 10 μmol
L–1. The expression of LPAR2, LPAR4, CDX-2 and OCT-4 from the LPA-0.1 μmol L–1 to LPA-10 μmol L–1 groups in early embryos were extremely significant (P<0.05), while the expression of these genes significantly decreased in 15 μmol L–1 LPA-treated embryos compared with LPA-10 μmol L–1 group (P<0.05). The inner cell mass in 15 μmol L–1 LPA-treated embryos was also disturbed, and the blastocysts formation was abnormal. Secondly, the sheep IVF blastocysts were applied to establish embryonic stem cells. The results showed that LPA made the blastocyst inoculated cells grow towards TSC-like cells. They enhanced the fluorescence intensity and mRNA abundance of OCT-4 and CDX-2 as the concentration increased from 0 to 10 μmol L–1, while 15 μmol L–1 LPA decreased OCT-4 and CDX-2 expression in the derived cells. The expression of CDX-2 and OCT-4 in the blastocyst inoculated cells of LPA-1 μmol L–1 group and LPA-10 μmol L–1 group extremely significantly increased (P<0.05), but there was significant decrease in LPA-15 μmol L–1 group compared with LPA-10 μmol L–1 group (P<0.05). Meanwhile, the protein expression of LPAR2 and LPAR4 remarkably increased after treatment of LPA at 10 μmol L–1 concentration. This study references the IVF embryo production and embryonic stem cell research of domestic animals.
Potato is one of the staple food crops in North China. However, potato production in this region is threatened by the low amount and high spatial-temporal variation of precipitation. Increasing yield and water use efficiency (WUE) of potato by various water management practices under water resource limitation is of great importance for ensuring food security in China. However, the contributions of different water management practices to yield and WUE of potato have been rarely investigated across North China’s potato planting region. Based on meta-analysis of field experiments from the literature and model simulation, this study quantified the potential yields of potatoes without water and fertilizer limitation, and yield under irrigated and rainfed conditions, and the corresponding WUEs across four potato planting regions including the Da Hinggan Mountains (DH), the Foothills of Yanshan hilly (YH), the North foot of the Yinshan Mountains (YM), and the Loess Plateau (LP) in North China. Simulated average potential potato tuber dry weight yield by the APSIM-Potato Model was 12.4 t ha–1 for the YH region, 11.4 t ha–1 for the YM region, 11.2 t ha–1 for the DH region, and 10.7 t ha–1 for the LP region, respectively. Observed rainfed potato tuber dry weight yield accounted for 61, 30, 28 and 24% of the potential yield in the DH, YH, YM, and LP regions. The maximum WUE of 2.2 kg m–3 in the YH region, 2.1 kg m–3 in the DH region, 1.9 kg m–3 in the YM region and 1.9 kg m–3 in the LP region was achieved under the potential yield level. Ridge-furrow planting could boost yield by 8–49% and WUE by 2–36% while ridge-furrow planting with film mulching could boost yield by 35–89% and WUE by 7–57% across North China. Our study demonstrates that there is a large potential to increase yield and WUE simultaneously by combining ridge-furrow planting with film mulching and supplemental irrigation in different potato planting regions with limited water resources.
Understanding the spatial distribution of the crop yield gap (YG) is essential for improving crop yields. Recent studies have typically focused on the site scale, which may lead to considerable uncertainties when scaled to the regional scale. To mitigate this issue, this study used a process-based and remote sensing driven crop yield model for winter wheat (PRYM-Wheat), which was derived from the boreal ecosystem productivity simulator (BEPS), to simulate the YG of winter wheat in the North China Plain from 2015 to 2019. Yield validation based on statistical yield data revealed good performance of the PRYM-Wheat Model in simulating winter wheat actual yield (Ya). The distribution of Ya across the North China Plain showed great heterogeneity, decreasing from southeast to northwest. The remote sensing-estimated results show that the average YG of the study area was 6 400.6 kg ha–1. The YG of Jiangsu Province was the largest, at 7 307.4 kg ha–1, while the YG of Anhui Province was the smallest, at 5 842.1 kg ha–1. An analysis of the responses of YG to environmental factors showed no obvious correlation between YG and precipitation, but there was a weak negative correlation between YG and accumulated temperature. In addition, the YG was positively correlated with elevation. In general, studying the specific features of the YG can provide directions for increasing crop yields in the future
Follistatin (FST) is an important regulator of skeletal muscle growth and adipose deposition through its ability to bind to several members of the transforming growth factor-β (TGF-β) superfamily, and thus may be a good candidate for future animal breeding programs. However, the molecular mechanisms underlying the phenotypic changes have yet to be clarified in pig. We generated transgenic (TG) pigs that express human FST specifically in skeletal muscle tissues and characterized the phenotypic changes compared with the same tissues in wild-type pigs. The TG pigs showed increased skeletal muscle growth, decreased adipose deposition, and improved metabolism status (P<0.05). Transcriptome analysis detected important roles of the PIK3–AKT signaling pathway, calcium-mediated signaling pathway, and amino acid metabolism pathway in FST-induced skeletal muscle hypertrophy, and depot-specific oxidative metabolism changes in psoas major muscle. Furthermore, the lipid metabolism-related process was changed in adipose tissue in the TG pigs. Gene set enrichment analysis revealed that genes related to lipid synthesis, lipid catabolism, and lipid storage were down-regulated (P<0.01) in the TG pigs for subcutaneous fat, whereas genes related to lipid catabolism were significantly up-regulated (P<0.05) in the TG pigs for retroperitoneal fat compared with their expression levels in wild-type pigs. In liver, genes related to the TGF-β signaling pathway were over-represented in the TG pigs, which is consistent with the inhibitory role of FST in regulating TGF-β signaling. Together, these results provide new insights into the molecular mechanisms underlying the phenotypic changes in pig.