Identifying and selecting high-quality seeds is crucial for improving crop yield. The purpose of this study was to improve the selection of crop seeds based on separating vital seeds from dead seeds, by predicting the potential germination ability of each seed, and thus improving seed quality. The methods of oxygen consumption (Q) of seeds and the headspace-gas chromatography-ion mobility spectrometry (HS-GC-IMS) were evaluated for identifying the viability of individual seeds. Firstly, the oxygen consumption technique showed clear differences among the values related to respiratory characteristics for seeds that were either vital or not, and the discrimination ability of final oxygen consumption (Q120) was achieved not only in sweet corn seeds but also in pepper and wheat seeds. Besides, Qt was established as a new variable to shorten the measuring process in the Q2 (oxygen sensor) procedure, which was significantly related to the viability of individual seeds. To minimize seed damage during measurement, the timing for viability evaluation was pinpointed at the 12, 6 and 9 h for pepper, sweet corn, and wheat seeds based on the new variables concerning oxygen consumption (i.e., Q12, Q6 and Q9, respectively). The accuracies of viability prediction were 91.9, 97.7 and 96.2%, respectively. Dead seeds were identified and hence discarded, leading to an enhancement in the quality of the seed lot as indicated by an increase in germination percentage, from 86.6, 90.9, and 53.8% to all at 100%. We then used the HS-GC-IMS to determine the viability of individual sweet corn seeds, noting that corn seed has a heavier weight so the volatile gas components are more likely to be detected. A total of 48 chromatographic peaks were identified, among which 38 target compounds were characterized, including alcohols, aldehydes, acids and esters. However, there were no significant differences between the vital and dead seeds, due to the trace amount volatile composition differences among the individual seeds. Furthermore, a PCA based on the signal intensities of the target volatile compounds obtained was found to lose its effectiveness, as it was unable to distinguish those two types of sweet corn seeds. These strategies can provide a reference for the rapid detection of single seed viability.
One of the most important objectives for breeders is to develop high-yield cultivars. The increase in crop yield has met with bottlenecks after the first green revolution, and more recent efforts have been focusing on achieving high photosynthetic efficiency traits in order to enhance the yield. Leaf shape is a significant agronomic trait of upland cotton that affects plant and canopy architecture, yield, and other production attributes. The major leaf shape types, including normal, sub-okra, okra, and super-okra, with varying levels of lobe severity, are controlled by a multiple allelic series of the D-genome locus L-D1. To analyze the effects of L-D1 alleles on leaf morphology, photosynthetic related traits and yield of cotton, two sets of near isogenic lines (NILs) with different alleles were constructed in Lumianyan 22 (LMY22) and Lumianyan 28 (LMY28) backgrounds. The analysis of morphological parameters and the results of virus-induced gene silencing (VIGS) showed that the regulation of leaf shape by L-D1 alleles was similar to a gene-dosage effect. Compared with the normal leaf, deeper lobes of the sub-okra leaf improved plant canopy structure by decreasing the leaf area index (LAI) and increasing the light transmittance rate (LTR), and the mid-range LAI of sub-okra leaf also guaranteed the accumulation of cotton biomass. Although the chlorophyll content (SPAD) of sub-okra leaf was lower than those of the other two leaf shapes, the net photosynthetic rate (Pn) of sub-okra leaf was higher than those of okra leaf and normal leaf at most stages. Thus, the improvements in canopy structure, as well as photosynthetic and physiological characteristics, contributed to optimizing the light environment, thereby increasing the total biomass and yield in the lines with a sub-okra leaf shape. Our results suggest that the sub-okra leaf may have practical application in cultivating varieties, and could enhance sustainable and profitable cotton production.
The peroxisomal matrix oxidase, catalase and peroxidase are imported peroxisomes through the shuttling receptors, which regulates the cellular oxidative homeostasis and function. Here, we report that PTS1 shuttling receptor FvPex5 is involved in the localization of PTS1, utilization of carbon sources and lipids, elimination ROS, cell wall stress, conidiation, fumonisin B1 (FB1) production, and virulence in maize pathogen Fusarium verticillioides. Significantly, differential expression of PTS1-, PTS2-, PEX- and FB1 toxin-related genes in wild type and ΔFvpex5 mutant were examined by RNA-Seq analyses and confirmed by RT-PCR assay. In addition, different expression of PTS1 and PTS2 genes of the ΔFvpex5 mutant were enriched in diverse biochemical pathways, such as carbon metabolism, nitrogen metabolism, lipid metabolism and the oxidation balance by combining GO and KEGG annotations. Overall, we showed that FvPex5 is involved in the regulation of genes associated with PTS, thereby affecting the oxidation balance, FB1 and virulence in F. verticillioides. The results help to clarify the functional divergence of Pex5 orthologs, and may provide a possible target for controlling F. verticillioides infections and FB1 biosynthesis.
Bleeding canker, a devastating disease of pear trees (Pyrus pyrifolia L.), was first reported in the 1970s in Jiangsu, China and more recently in other provinces in China. Trees infected with bleeding canker pathogen, Dickeya fangzhongdai, develop cankers on the trunks and branches, and a rust-colored mixture of bacterial ooze and tree sap could be seen all over the trunks and branches. In this study, we provided detail descriptions of the symptoms and epidemiology of bleeding canker disease. Based on pathogenic and phenotypic characterizations, we identified the causal agent of bleeding canker of pear as D. fangzhongdai. Dickeya fangzhongdai strains isolated from pear were also pathogenic on Solanum tuberosum, Brassica pekinensis, Lycopersicon esculentum, and Phalaenopsis aphrodite based on artificial inoculation, and the pathogen were more virulent on potato than that of D. solani strain. This study provides new information about this disease and bleeding canker disease of pear.
In order to clarify the main pathogens of tomato Fusarium wilt in Shanxi Province, China, morphological identification, elongation factor 1 alpha (EF-1α) sequence analysis, specific primer amplification and pathogenicity tests were applied to study the isolates which were recovered from diseased plants collected from 17 different districts of Shanxi Province. The results were as follows: 1) Through morphological and molecular identification, the following 7 species of Fusarium were identified: F. oxysporum, F. solani, F. verticillioides, F. subglutinans, F. chlamydosporum, F. sporotrichioides, and F. semitectum; 2) 56 isolates of F. oxysporum were identified using specific primer amplification, among which, 29, 5 and 6 isolates were respectively identified as F. oxysporum f. sp. lycopersici physiological race 1, race 2, and race 3; 3) pathogenicity test indicated the significant pathogenicity of F. oxysporum, F. solani, F. verticillioides, and F. subglutinans to tomato plant. Therefore, among these 4 species confirmed as pathogenic to tomato in Shanxi, the highest isolation rate (53.3%) corresponded to F. oxysporum. Three physiological species, race 1, race 2, and race 3 of F. oxysporum f. sp. lycopersici are detected in Shanxi, among which race 1 is the most widespread pathogen and is also considered as the predominant race.