Please wait a minute...
Journal of Integrative Agriculture  2020, Vol. 19 Issue (4): 889-897    DOI: 10.1016/S2095-3119(19)62882-0
Special Focus: Bleeding canker of pear-An emerging devastating disease Advanced Online Publication | Current Issue | Archive | Adv Search |
Bleeding canker of pears caused by Dickeya fangzhongdai: Symptoms, etiology and biology
CHEN Bin1, TIAN Yan-li1, ZHAO Yu-qiang2, WANG Jia-nan1, XU Zhi-gang1, LI Xiang3, HU Bai-shi
1 College of Plant Protection and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing Agricultural University, Nanjing 210095, P.R.China
2 Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen)/Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Nanjing 210014, P.R.China
3 Charlottetown Laboratory, Canadian Food Inspection Agency, Charlottetown, PE C1A5T1, Canada
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
Abstract  

Bleeding canker, a devastating disease of pear trees (Pyrus pyrifolia L.), was first reported in the 1970s in Jiangsu, China and more recently in other provinces in China.  Trees infected with bleeding canker pathogen, Dickeya fangzhongdai, develop cankers on the trunks and branches, and a rust-colored mixture of bacterial ooze and tree sap could be seen all over the trunks and branches.  In this study, we provided detail descriptions of the symptoms and epidemiology of bleeding canker disease.  Based on pathogenic and phenotypic characterizations, we identified the causal agent of bleeding canker of pear as D. fangzhongdaiDickeya fangzhongdai strains isolated from pear were also pathogenic on Solanum tuberosum, Brassica pekinensis, Lycopersicon esculentum, and Phalaenopsis aphrodite based on artificial inoculation, and the pathogen were more virulent on potato than that of D. solani strain.  This study provides new information about this disease and bleeding canker disease of pear.

 
Keywords:  pear        bleeding canker        Dickeya fangzhongdai        symptoms        pathogenicity  
Received: 13 November 2019   Accepted:
Fund: This research was supported by the 111 International Cooperation Grant 2.0 (BP0719029) to Nanjing Agricultural University, China, from the Chinese government and Canadian Interdepartmental funding of Genomics Research and Development Initiatives (GRDI).
Corresponding Authors:  Correspondence HU Bai-shi, E-mail: hbs@njau.edu.cn; LI Xiang, E-mail: sean.li3@canada.ca   

Cite this article: 

CHEN Bin, TIAN Yan-li, ZHAO Yu-qiang, WANG Jia-nan, XU Zhi-gang, LI Xiang, HU Bai-shi. 2020. Bleeding canker of pears caused by Dickeya fangzhongdai: Symptoms, etiology and biology. Journal of Integrative Agriculture, 19(4): 889-897.

Ali? Š, Van Gijsegem F, Pédron J, Ravnikar M, Dreo T. 2018. Diversity within the novel Dickeya fangzhongdai sp., isolated from infected orchids, water and pears. Plant Pathology, 67, 1612–1620.
Bell A C, Ranney T G, Eaker T A, Sutton T B. 2005. Resistance to fire blight among flowering pears and quince. Hortscience, 40, 413–415.
Brady C L, Cleenwerck I, Denman S, Venter S N, Rodriguez-Palenzuela P, Coutinho T A, De Vos P. 2012. Proposal to reclassify Brenneria quercina (Hildebrand and Schroth 1967) Hauben et al. 1999 into a new genus, Lonsdalea gen. nov., as Lonsdalea quercina comb. nov., descriptions of Lonsdalea quercina subsp. quercina comb. nov., Lonsdalea quercina subsp. iberica subsp. nov. and Lonsdalea quercina subsp. britannica subsp. nov., emendation of the description of the genus Brenneria, reclassification of Dickeya dieffenbachiae as Dickeya dadantii subsp. dieffenbachiae comb. nov., and emendation of the description of Dickeya dadantii. International Journal of Systematic and Evolutionary Microbiology, 62, 1592–602.
Cembali T, Folwell R J, Wandschneider P, Eastwell K C, Howell W E. 2003. Economic implications of a virus prevention program in deciduous tree fruits in the US. Crop Protection, 22, 1149–1156.
Dong X L, Li B H, Zhang Z F, Li B D, Xu X M. 2006. Effect of environmental conditions on germination and survival of teliospores and basidiospores of the pear rust fungus (Gymnosporangium asiaticum). European Journal of Plant Pathology, 115, 341–350.
Hildebrand M, Dickler E, Geider K. 2000. Occurrence of Erwinia amylovora on insects in a fire blight orchard. Journal of Phytopathology, 4, 251–256.
Hugouvieux-Cotte-Pattat N, Jacot-des-Combes C, Briolay J. 2019. Dickeya lacustris sp. nov., a water-living pectinolytic bacterium isolated from lakes in France. International Journal of Systematic and Evolutionary Microbiology, 69, doi: 10.1099/ijsem.0.003208.
Jiang H, Jiang M Y, Yang L, Yao P Y, Ma L, Wang C T, Wang H, Qian G L, Hu B S, Fan J Q. 2017. The ribosomal protein RplY is required for Pectobacterium carotovorum virulence and is induced by Zantedeschia elliotiana extract. Phytopathology, 107, 1322–1330.
Kou L, Wang S. 2002. The occurrence and control of the bleeding canker in Dangshan pear in China. Fruit Growers’ Friend, 2, 44–45. (in Chinese)
Mizuno A, Tsukamoto T, Shimizu Y, Ooya H, Matsuura T, Saito N, Sato S, Kikuchi S, Uzuki T, Azegami K. 2010. Occurrence of bacterial black shoot disease of European pear in Yamagata Prefecture. Journal of General Plant Pathology, 76, 43–51.
Onwueme I. 1999. Taro cultivation in Asia and the Pacific. RAP Publication, 1, 1–9.
Parkinson N, De Vos P, Pirhonen M, Elphinstone J. 2014. Dickeya aquatica sp. nov., isolated from waterways. International Journal of Systematic and Evolutionary Microbiology, 64, 2264–2266.
Plese N, Hoxha E, Milicic D. 1975. Pathological anatomy of trees affected with apple stem grooving virus. Phytopathology, 82, 315–325.
Samson R, Legendre J B, Christen R, Fischer-Le Saux M, Achouak W, Gardan L. 2005. Transfer of Pectobacterium chrysanthemi (Burkholder et al. 1953) Brenner et al. 1973 and Brenneria paradisiaca to the genus Dickeya gen. nov. as Dickeya chrysanthemi comb. nov. and Dickeya paradisiaca comb. nov. and delineation of four novel species, Dickeya dadantii sp. nov., Dickeya dianthicola sp. nov., Dickeya dieffenbachiae sp. nov. and Dickeya zeae sp. nov. International Journal of Systematic and Evolutionary Microbiology, 55, 1415–1427.
Suarez G, Sierra J C, Erova T E, Sha J, Horneman A J, Chopra A K. 2010. A type VI secretion system effector protein, VgrG1, from Aeromonas hydrophila that induces host cell toxicity by ADP ribosylation of actin. Journal of Bacteriology, 192, 155–68.
Terakami S, Shoda M, Adachi Y, Gonai T, Kasumi M, Sawamura Y, Iketani H, Kotobuki K, Patocchi A, Gessler C, Hayashi T, Yamamoto T. 2006. Genetic mapping of the pear scab resistance gene Vnk of Japanese pear cultivar Kinchaku. Theoretical and Applied Genetics, 113, 743–752.
Tian Y L, Zhao Y Q, Yuan X L, Yi J P, Fan J Q, Xu Z G, Hu B S, De Boer S H, Li X. 2016. Dickeya fangzhongdai sp. nov., a plant-pathogenic bacterium isolated from pear trees (Pyrus pyrifolia). International Journal of Systematic and Evolutionary Microbiology, 66, 2831–2835.
Toth I K, van der Wolf J M, Saddler G, Lojkowska E, Helias V, Pirhonen M, Tsror L, Elphinstone J G. 2011. Dickeya species: An emerging problem for potato production in Europe. Plant Pathology, 60, 385–399.
van der Wolf J M, Nijhuis E H, Kowalewska M J, Saddler G S, Parkinson N, Elphinstone J G, Pritchard L, Toth I K, Lojkowska E, Potrykus M, Waleron M, De Vos P, Cleenwerck I, Pirhonen M, Garlant L, Helias V, Pothier J F, Pfluger V, Duffy B, Tsror L, et al. 2014. Dickeya solani sp. nov., a pectinolytic plant-pathogenic bacterium isolated from potato (Solanum tuberosum). International Journal of Systematic and Evolutionary Microbiology, 64, 768–774.
Wang G P, Hong N, Zhang Z P. 1994. Identification of virus species in pears cultivated in northern China. China Fruits, 4, 1–4. (in Chinese)
Yanase H. 1983. Back transmission of apple stem grooving virus to apple seedlings and induction of symptoms of apple topworking disease in Mitsuba Kaido (Malus sieboldii) and Kobano Zumi (Malus sieboldii var. arborescens) rootstocks. Acta Horticulturae, 130, 117–122.
Yin G Y, Xu Y G. 1973. Study on the occurrence and control of the bleeding canker of pear. Xuzhou Horticulture, 1, 15–19. (in Chinese)
Zhai L F, Zhang M X, Lv G, Chen X R, Jia N N, Hong N, Wang G P. 2014. Biological and molecular characterization of four Botryosphaeria species isolated from pear plants showing stem wart and stem canker in China. Plant Disease, 98, 716–726.
Zhang J X, Hu J, Shen H F, Zhang Y C, Sun D, Pu X M, Yang Q Y, Fan Q R, Lin B R. 2018. Genomic analysis of the Phalaenopsis pathogen Dickeya sp. PA1, representing the emerging species Dickeya fangzhongdai. BMC Genomics, 19, 782.
Zwet T V D, Keil H L. 1979. Fire Blight: A Bacterial Disease of Rosaceous Plants. United States Department of Agriculture, Washington, D.C.
[1] JIAO Hui-jun, WANG Hong-wei, RAN Kun, DONG Xiao-chang, DONG Ran, WEI Shu-wei, WANG Shao-min. Identification and functional analysis of arabinogalactan protein expressed in pear pollen tubes[J]. >Journal of Integrative Agriculture, 2023, 22(3): 776-789.
[2] GUAN Zhi-bin, ZHANG Yan-qi, CHAI Xiu-juan, CHAI Xin, ZHANG Ning, ZHANG Jian-hua, SUN Tan. Visual learning graph convolution for multi-grained orange quality grading[J]. >Journal of Integrative Agriculture, 2023, 22(1): 279-291.
[3] SHAN Yan-fei, LI Meng-yan, WANG Run-ze, LI Xiao-gang, LIN Jing, LI Jia-ming, ZHAO Ke-jiao, WU Jun. Evaluation of the early defoliation trait and identification of resistance genes through a comprehensive transcriptome analysis in pears[J]. >Journal of Integrative Agriculture, 2023, 22(1): 120-138.
[4] ZHANG Ying, CAO Yu-fen, HUO Hong-liang, XU Jia-yu, TIAN Lu-ming, DONG Xing-guang, QI Dan, LIU Chao. An assessment of the genetic diversity of pear (Pyrus L.) germplasm resources based on the fruit phenotypic traits[J]. >Journal of Integrative Agriculture, 2022, 21(8): 2275-2290.
[5] LIU Na, LIAN Sen, ZHOU Shan-yue, WANG Cai-xia, REN Wei-chao, LI Bao-hua. Involvement of the autophagy-related gene BdATG8 in development and pathogenicity in Botryosphaeria dothidea[J]. >Journal of Integrative Agriculture, 2022, 21(8): 2319-2328.
[6] TANG Zi-kai, SUN Man-yi, LI Jia-ming, SONG Bo-bo, LIU Yue-yuan, TIAN Yi-ke, WANG Cai-hong, WU Jun. Comparative transcriptome analysis provides insights into the mechanism of pear dwarfing[J]. >Journal of Integrative Agriculture, 2022, 21(7): 1952-1967.
[7] SONG Jun-xing, CHEN Ying-can, LU Zhao-hui, ZHAO Guang-ping, WANG Xiao-li, ZHAI Rui, WANG Zhi-gang, YANG Cheng-quan, XU Ling-fei. PbPH5, an H+ P-ATPase on the tonoplast, is related to malic acid accumulation in pear fruit[J]. >Journal of Integrative Agriculture, 2022, 21(6): 1645-1657.
[8] LIU Jian-long, ZHANG Chen-xiao, LI Tong-tong, LIANG Cheng-lin, YANG Ying-jie, LI Ding-Li, CUI Zhen-hua, WANG Ran, SONG Jian-kun. Phenotype and mechanism analysis of plant dwarfing in pear regulated by abscisic acid[J]. >Journal of Integrative Agriculture, 2022, 21(5): 1346-1356.
[9] GUO Bing-bing, LI Jia-ming, LIU Xing, QIAO Xin, Musana Rwalinda FABRICE, WANG Peng, ZHANG Shao-ling, WU Ju-you. Identification and expression analysis of the PbrMLO gene family in pear, and functional verification of PbrMLO23[J]. >Journal of Integrative Agriculture, 2021, 20(9): 2410-2423.
[10] SHI Hai-yan, CAO Li-wen, XU Yue, YANG Xiong, LIU Shui-lin, LIANG Zhong-shuo, LI Guo-ce, YANG Yu-peng, ZHANG Yu-xing, CHEN Liang. Transcriptional profiles underlying the effects of salicylic acid on fruit ripening and senescence in pear (Pyrus pyrifolia Nakai)[J]. >Journal of Integrative Agriculture, 2021, 20(9): 2424-2437.
[11] ZHAO Dong-sheng, LIU Jin-yu, DING Ai-qiu, ZHANG Tao, REN Xin-yu, ZHANG Lin, LI Qian-feng, FAN Xiao-lei, ZHANG Chang-quan, LIU Qiao-quan. Improving grain appearance of erect-panicle japonica rice cultivars by introgression of the null gs9 allele[J]. >Journal of Integrative Agriculture, 2021, 20(8): 2032-2042.
[12] SUN Hui-li, WANG Xin-yue, SHANG Ye, WANG Xiao-qian, DU Guo-dong, LÜ De-guo. Preharvest application of melatonin induces anthocyanin accumulation and related gene upregulation in red pear (Pyrus ussuriensis)[J]. >Journal of Integrative Agriculture, 2021, 20(8): 2126-2137.
[13] ZHANG Li-mei, CHEN Shu-ting, QI Min, CAO Xue-qi, LIANG Nan, LI Qian, TANG Wei, LU Guo-dong, ZHOU Jie, YU Wen-ying, WANG Zong-hua, ZHENG Hua-kun. The putative elongator complex protein Elp3 is involved in asexual development and pathogenicity by regulating autophagy in the rice blast fungus[J]. >Journal of Integrative Agriculture, 2021, 20(11): 2944-2956.
[14] GONG Xiao-dong, LIU Yu-wei, BI Huan-huan, YANG Xiao-rong, HAN Jian-min, DONG Jin-gao, GU Shou-qin. StKU80, a component in the NHEJ repair pathway, is involved in mycelial morphogenesis, conidiation, appressorium development, and oxidative stress reactions in Exserohilum turcicum[J]. >Journal of Integrative Agriculture, 2021, 20(1): 147-158.
[15] PAN Li-jun, LU Lin, LIU Yu-ping, WEN Sheng-xian, ZHANG Zeng-yan. The M43 domain-containing metalloprotease RcMEP1 in Rhizoctonia cerealis is a pathogenicity factor during the fungus infection to wheat[J]. >Journal of Integrative Agriculture, 2020, 19(8): 2044-2055.
No Suggested Reading articles found!