Please wait a minute...
Journal of Integrative Agriculture  2021, Vol. 20 Issue (9): 2438-2449    DOI: 10.1016/S2095-3119(20)63342-1
Special Issue: 动物科学合辑Animal Science 植物抗病遗传合辑Plant Disease-resistance Genetics
Plant Protection Advanced Online Publication | Current Issue | Archive | Adv Search |
Bioinformatic analysis and functional characterization of CFEM proteins in Setosphaeria turcica
WANG Jian-xia1*, LONG Feng1*, ZHU Hang1, ZHANG Yan1, WU Jian-ying1, SHEN Shen1, DONG Jin-gao1, 2, HAO Zhi-min1
1 State Key Laboratory of North China Crop Improvement and Regulation/Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology, College of Life Sciences, Hebei Agricultural University, Baoding 071001, P.R.China
2 College of Plant Protection, Hebei Agricultural University, Baoding 071001, P.R.China
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

本研究在引起北方玉米叶枯病的半活体性营养真菌——玉米大斑病菌(Setosphaeria turcica)基因组中鉴定了13个StCFEM蛋白。CFEM结构域的序列比对和WebLogo分析表明,StCFEM氨基酸高度保守,除StCFEM1、2、3和6外,整体上含有8个典型的半胱氨酸;系统发育分析表明,根据有无跨膜结构域的存在,13个蛋白(StCFEM1-13)可分为2个分支,其中6个有信号肽且无跨膜结构域的StCFEM蛋白(StCFEM3, 4, 5, 10, 12, 13)被假定为候选效应蛋白;对蛋白三级结构进行预测,发现候选效应蛋白的CFEM结构域可以形成螺旋结构,与白色念珠菌(Candida albicans)Csa2同源;进一步利用pSuc2t7M13or酵母分泌系统验证效应蛋白的分泌功能,结果发现6个候选效应蛋白均具有分泌能力,鉴定为分泌蛋白;转录组分析表明,6个候选基因在真菌侵染过程中不同时期均表达,其中SCFEM3、4、5和12在附着胞形成时期高度表达;我们还发现StCFEM3、4和5对BAX/INF诱导的本氏烟草程序性细胞死亡(PCD)没有影响,而StCFEM12可以抑制INF诱导的PCD,但对BAX诱导的PCD没有影响。本研究发现玉米大斑病菌(S. turcica )CFEM蛋白家族共有13个成员,鉴定StCFEM12为候选效应子,为阐明CFEM蛋白在植物原发病过程中的作用奠定了基础。




Abstract  
Common in Fungal Extracellular Membrane (CFEM) domains are uniquely found in fungal extracellular membrane proteins which are important for pathogens.  This study identified 13 StCFEM proteins in the genome of Setosphaeria turcica, the hemibiotrophic fungus that causes northern corn leaf blight.  Sequence alignment and WebLogo analysis of their CFEM domains indicated that the amino acids were highly conserved and that, with the exception of StCFEM1, 2, 3, and 6, they contained eight cysteines.  Phylogenic analysis suggested that these 13 proteins (StCFEM1–13) could be divided into 2 clades based on the presence of the trans-membrane domain.  Six StCFEM proteins with a signal peptide and without a trans-membrane domain were considered as candidate effector proteins.  The CFEM domain in the candidate effector proteins could form a helical-basket structure homologous to Csa2 in Candida albicans.  Transcriptome analysis suggested that the 13 genes were expressed during fungal infection and a yeast secretion assay revealed that these candidate effectors were secreted proteins.  It was also found that StCFEM3, 4, and 5 couldn’t affect BAX/INF1-induced programmed cell death (PCD) in Nicotiana benthamiana and while StCFEM12 could suppress INF1-induced PCD, it showed no effect on BAX-induced PCD.  This study found that there were 13 members of the S. turcica CFEM protein family and that StCFEM12 was a candidate effector.  This study laid the foundation for illustrating the roles of CFEM proteins during the pathogenic processes of phytopathogens.
Keywords:  CFEM domain        effector        Setosphaeria turcica        signal peptide        PCD  
Received: 21 May 2020   Accepted:
Fund: This work was supported by the grants from the Natural Science Foundation of Hebei Province, China (C2020204172 and C2018204120), the China Agriculture Research System   of MOF and MARA (CARS-02-25) and the National Natural Science Foundation of China (31601598 and 31901827).
Corresponding Authors:  Correspondence SHEN Shen, E-mail: shenshen0428@163.com; DONG Jin-gao, E-mail: shmdjg@hebau.edu.cn; HAO Zhi-min, E-mail: haozhimin@hebau.edu.cn   
About author:  WANG Jian-xia, E-mail: 746514180@qq.com; * These authors contributed equally to this study.

Cite this article: 

WANG Jian-xia, LONG Feng, ZHU Hang, ZHANG Yan, WU Jian-ying, SHEN Shen, DONG Jin-gao, HAO Zhi-min. 2021. Bioinformatic analysis and functional characterization of CFEM proteins in Setosphaeria turcica. Journal of Integrative Agriculture, 20(9): 2438-2449.

Baxter L, Tripathy S, Ishaque N, Boot N, Cabral A, Kemen E, Thines M. 2010. Signatures of adaptation to obligate biotrophy in the Hyaloperonospora arabidopsidis genome. Science, 330, 1549–1551.
Deng J X, Dean R A. 2008. Characterization of adenylatecyclase in-teracting protein ACI1 in the rice blast fungus, Magnaporthe oryzae. The Open Mycology Journal, 2, 74–81.
Dou D L, Kale S D, Wang X L, Chen Y B, Wang Q Q, Wang X, Jiang R H Y, Arredondo F D, Anderson R G, Thakur P B, McDowell J M, Wang Y C, Tyler B M. 2008a. Conserved C-terminal motifs required for avirulence and suppression of cell death by Phytophthora sojae effector Avr1b. The Plant Cell, 20, 1118–1133.
Dou D L, Kale S D, Wang X, Jiang R H Y, Bruce N A, Arredondo F D, Zhang X M, Tyler B M. 2008b. RXLR-mediated entry of Phytophthora sojae effector Avr1b into soybean cells does not require pathogen-encoded machinery. The Plant Cell, 20, 1930–1947.
Ellis J G, Rafiqi M, Gan P, Chakrabarti A, Dodds P N, Peter N. 2009. Recent progress in discovery and function alanalysis of effector proteins of fungal and oomycete plant pathogen. Current Opinion in Plant Biology, 12, 399–405.
Gong A D, Jing Z Y, Zhang K, Tan Q Q, WANG G L, Liu W D. 2020. Bioinformatic analysis and functional characterization of the CFEM proteins in maize anthracnose fungus Colletotrichum graminicola. Journal of Integrative Agriculture, 19, 541–550.
Han Y P, Li X Y, Cheng L, Liu Y C, Wang H, Ke D X, Yuan H Y, Zhang L S, Wang L. 2016. Genome-wide analysis of soybean JmjC domain-containing proteins suggests evolutionary conservation following whole-genome duplication. Frontiers in Plant Science, 7, 1800.
Hao Z M, Tong Y M, Han Y, Wu D, Yang Z, Shen S, Gong X D, Cao Z Y, Li Z Y, Gu S X, Dong J G. 2015. Molecular character-ization of StpkaC2 and expression patterns of both PKA-c isoforms during the invasive growth of Setosphaeria turcica. Tropical Plant Pathology, 40, 244–250.
Hu M, Luo L, Wang S. 2014. Infection processes of Ustilaginoidea virens during artificial inoculation of rice panicles. European Journal of Plant Pathology, 139, 67–77.
Huang G Y, Liu Z R, Gu B, Zhao H, Jia J B, Fan G J, Meng Y L, Du Y, Shan W X. 2019. An RXLR effector secreted by Phytophthora parasitica is a virulence factor and triggers cell death in various plants. Molecular Plant Pathology, 20, 356–371.
Huang W D, Yan M H, Duan H M, Bi Y L, Cheng X X, Yu H B, Premkumar T. 2020. Synergistic antifungal activity of green synthesized silver nanoparticles and epoxiconazole against Setosphaeria turcica. Journal of Nanomaterials, 3, 1–7.
Jacobs K A, Collins-Racie L A, Colbert J M. 1997. A genetic selection for isolating cDNAs encoding secreted proteins. Gene, 198, 289–296.
Jing Z Y, Wang G L, Liu W D. 2016. Bioinformatic identification and transcriptional analysis of Colletotrichum graminicola CFEM effector repertoires. Plant Protection, 42, 81–86. (in Chinese)
Kim O, Pertea G, Trapnell C, Pimentel H, Kelley R, Salzberg S L. 2013. TopHat2: Accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biology, 14, R36.
Kong X J, Shi J, Kong F F, Wang Z Y. 2016. Identification of the signal peptide of candidate effector protein RXLR5 from Plasmopara viticola. Plant Protection, 42, 40–44. (in Chinese)
Li P, Gong X D, Jia H, Fan Y S, Zhang Y F, Cao Z Y, Hao Z M, Han J M, Gu S Q, Dong J G. 2016. MAP kinase gene STK1 is required for hyphal, conidial, and appressorial development, toxin biosynthesis, pathogenicity, and hypertonic stress response in the plant pathogenic fungus Setosphaeria turcica. Journal of Integrative Agriculture, 15, 2786–2794.
Ling J, Zeng F, Cao Y X, Zhang J X, Chen G H, Mao Z C, Yang Y H, Xie B Y. 2015. Identification of a class of CFEM proteins containing a new conserved motif in Fusarium oxysporum. Physiological & Molecular Plant Pathology, 89, 41–48.
Liu S Y, Chen J Y, Wang J L, Li L, Xiao H L, Adam S M, Dai X F. 2013. Molecular characterization and functional analysis of a specific secreted protein from highly virulent defoliating Verticillium dahliae. Gene, 529, 307–316.
Lo P L, Lanver D, Schweizer G, Tanaka S, Liang L, Tollot M, Zuccaro A, Reissmann S, Kahmann R. 2015. Fungal effectors and plant susceptibility. Annual Review of Plant Biology, 66, 513–545.
Möosch H U, Küubler E, Krappmann S, Fink G R, Braus G H. 1999. Crosstalk between the Ras2p-controlled mitogen-activated protein kinase and cAMP pathways during invasive growth of Saccharomyces cerevisiae. Molecular Biology of the Cell, 10, 1325–1335.
Nick C S, Hanna R, Gabriella C P, Mercedes R, Julia A V, Jeroen R M, Michael F S, Reindert N, Bart P H J T. 2020. A plant pathogen utilizes effector proteins for microbiome manipulation. bioRxiv, 1, 926725.
Park C H, Chen S B, Shirsekar G, Zhou B, Khang C H, Songkumarn P, Afzal A J, Ning Y, Wang R Y, Bellizzi M, Valent B, Wang G L. 2012. The Magnaporthe oryzae effector AvrPiz-t targets the RING E3 ubiquitin ligase APIP6 to suppress pathogen-associated molecular pattern-triggered immunity in rice. The Plant Cell, 24, 4748–4762.
Peng T, Orsborn K I, Orbach M J. 1999. Proline-rich vaccine candidate antigen of Coccidioide simmitis: Conservation among isolates and differentia lexpression with spherule maturation. Journal of Infectious Diseases, 179, 518–521.
Qin H, Hazel M, Petra C B. 2020. All roads lead to susceptibility: The many modes-of-action of fungal and oomycete intracellular effectors. Plant Communications, 1, doi: 10.1016/j.xplc100050.
Rafiqi M, Ellis J G, Ludowici V A, Hardham A R, Dodds P N. 2012. Challenges and progress towards understanding the role of effectors in plant–fungal interactions. Current Opinion in Plant Biology, 15, 477–482.
Ren Y J, Armstrong M, Qi Y T, McLellan H, Zhong C, Du B, Birch P R J, Tian Z D. 2019. Phytophthora infestans RXLR effectors target parallel steps in an immune signal transduction pathway. Plant Physiology, 180, 2227–2239.
Resham D K, Hemant S K, Ralph A D. 2003. An eight-cysteine-containing CFEM domain unique to a group of fungal membrane proteins. Trends in Biochemical Sciences, 28, 118–121.
Ronnie D J, Melvin D B, Bart P T. 2011. How filamentous pathogens co-opt plants: The ins and outs of fungal effectors. Plant Biology, 14, 400–406. (in Chinese)
Songkumarn, Pattavipha. 2013. Identification and Characterization of in-planta expressed secreted effector proteins from Magnaporthe oryzae. Molecular Plant Microbe Interactions, 26,191–202.
Tanaka S, Gollin I, Rössel N, Kahmann R. 2020. The functionally conserved effector Sta1 is a fungal cell wall protein required for virulence in Ustilago maydis. New Phytologist, 227, 185–199.
Toruñno T Y, Stergiopoulos I, Coaker G. 2016. Plant–pathogen effectors: Cellular probes interfering with plant defenses in spatial and temporal manners. Annual Review of Phytopathology, 54, 419–441.
Wang W, Feng B M, Zhou J M, Tang D Z. 2020. Plant immune signaling: Advancing on two frontiers. Journal of Integrative Plant Biology, 62, 2–24.
Xu Q, Tang C L, Wang X D, Sun S T, Zhao J R, Kang Z S, Wang X J. 2019. An effector protein of the wheat stripe rust fungus targets chloroplasts and suppresses chloroplast function. Nature Communications, 10, 5571.
Yakir V, Yana S, Emma L, Michael M, Jacob R, Nir O. 2014. The three Aspergillus fumigatus CFEM-domain GPI-anchored proteins (CfmA-C) affect cell-wall stability but do not play a role in fungal virulence. Fungal Genetics and Biology, 63, 55–64.
Yan L B, Xiao S Q, Xue C X. 2017. Prediction and analysis of candidate effectors from the genome of Setosphaeria turcica. Journal of Shenyang Agricultural University, 48, 15–20. (in Chinese)
Yin W X, Wang Y F, Chen T, Lin Y, Luo C X. 2018. Functional evaluation of the signal peptides of secreted proteins. Bio-Protocol, 8, 2839.
Zhang L Q, Duan K, Zhou X H, He C Y, Gao Q H. 2017. Bioinformatics identification and transcriptional analysis of Colletotrichum gloeosporioides candidate CFEM effector proteins. Plant Protection, 43, 43–51. (in Chinese)
Zhang N, Yang J Y, Fang A F, Wang J Y, Li D Y, Li Y J, Wang S Z, Cui F H, Yu J J, Liu Y F, Peng Y L, Sun W X. 2020. The essential effector SCRE1 in Ustilaginoidea virens suppresses rice immunity via a small peptide region. Molecular Plant Pathology, 21, 445–459.
Zhang S R, Hao Z M, Wang L H, Shen S, Cao Z Y, Xin Y Y, Hou M L, Gu S Q, Han J M, Dong J G. 2012. StRas2 regulates morphogenesis, conidiation and appressorium development in Setosphaeria turcica. Microbiological Research, 167, 478–486.
Zhang Z N, Wu Q Y, Zhang G Z, Zhu Y Y, Murphy R W, Liu Z, Zou C G. 2015. Systematic analyses reveal uniqueness and origin of the CFEM domain in fungi. Scientific Reports, 5, 534–540.
Zhu W J, Wei W, Wu Y Y, Zhou Y, Fang P, Zhang S P, Chen P, Xu X W. 2017. BcCFEM1, a CFEM domain-containing protein with putative GPI-anchored site, is involved in pathogenicity, conidial production, and stress tolerance in Botrytis cinerea. Frontiers in Microbiology, 8, 1807.
[1] GUO Xiao-yue, LIU Ning, LIU Bing-hui, ZHOU Li-hong, CAO Zhi-yan, HAN Jian-min, DONG Jin-gao . Melanin, DNA replication, and autophagy affect appressorium development in Setosphaeria turcica by regulating glycerol accumulation and metabolism[J]. >Journal of Integrative Agriculture, 2022, 21(3): 762-773.
[2] GONG An-dong, JING Zhong-ying, ZHANG Kai, TAN Qing-qun, WANG Guo-liang, LIU Wen-de.
Bioinformatic analysis and functional characterization of the cfem proteins in maize anthracnose fungus Colletotrichum graminicola
[J]. >Journal of Integrative Agriculture, 2020, 19(2): 541-550.
[3] ZHU Kun-peng, BAO Jian-dong, ZHANG Lian-hu, YANG Xue, LI Yuan, Zhu Ming-hui, LIN Qing-yun, ZHAO Ao, ZHAO Zhen, ZHOU Bo, LU Guo-dong. Comparative analysis of the genome of the field isolate V86010 of the rice blast fungus Magnaporthe oryzae from Philippines[J]. >Journal of Integrative Agriculture, 2017, 16(10): 2222-2230.
[4] LI Po, GONG Xiao-dong, JIA Hui, FAN Yong-shan, ZHANG Yun-feng, CAO Zhi-yan, HAO Zhi-min, HAN Jian-min, GU Shou-qin, DONG Jin-gao. MAP kinase gene STK1 is required for hyphal, conidial, and appressorial development, toxin biosynthesis, pathogenicity, and hypertonic stress response in the plant pathogenic fungus Setosphaeria turcica[J]. >Journal of Integrative Agriculture, 2016, 15(12): 2786-2794.
No Suggested Reading articles found!