Establishing VIGS and CRISPR/Cas9 techniques to verify RsPDS function in radish
In recent years, Meloidogyne enterolobii has emerged as a major parasitic nematode infesting many plants in tropical or subtropical areas. However, the regions of potential distribution and the main contributing environmental variables for this nematode are unclear. Under the current climate scenario, we predicted the potential geographic distributions of M. enterolobii worldwide and in China using a Maximum Entropy (MaxEnt) model with the occurrence data of this species. Furthermore, the potential distributions of M. enterolobii were projected under three future climate scenarios (BCC-CSM2-MR, CanESM5 and CNRM-CM6-1) for the periods 2050s and 2090s. Changes in the potential distribution were also predicted under different climate conditions. The results showed that highly suitable regions for M. enterolobii were concentrated in Africa, South America, Asia, and North America between latitudes 30° S to 30° N. Bio16 (precipitation of the wettest quarter), bio10 (mean temperature of the warmest quarter), and bio11 (mean temperature of the coldest quarter) were the variables contributing most in predicting potential distributions of M. enterolobii. In addition, the potential suitable areas for M. enterolobii will shift toward higher latitudes under future climate scenarios. This study provides a theoretical basis for controlling and managing this nematode.
In Bacillus thuringenesis (Bt) transgenic cotton, the cotton boll has the lowest insecticidal protein content when compared to the other organs. The present study investigated the effects of amino acid spray application at the peak flowering stage on the cotton boll Bt toxin concentration and yield formation. Boll protein synthesis and carbohydrate conversion were also studied to reveal the fundamental mechanism. Three treatments (i.e., CK, the untreated control; LA1, five amino acids; LA2, 21 amino acids) were applied to two Bt cultivars of G. hirsutum (i.e., the hybrid Sikang 3 and the conventional Sikang 1) in the cotton-growing seasons during 2017 and 2018. Amino acid spray application at the peak flowering stage resulted in an increase of 5.2–16.4% in the boll Bt protein concentration and an increase of 5.5–11.3% in the seed cotton yield, but there was no difference between the two amino acid treatments. In addition, amino acid applications led to increases in the amino acid content, soluble protein content, glutamate pyruvate transaminase (GPT) activity, glutamate oxaloacetate transaminase (GOT) activity, glucose content, fructose content and soluble acid invertase (SAI) activity. This study also found that Bt protein content, enhanced boll number and the weight of opened bolls were closely related to carbon and nitrogen metabolism. The Bt protein content had significant linear positive correlations with amino acid and soluble protein contents. Enhanced boll number had significant linear positive correlations with the GPT and GOT activities from 15–25 days after flowering (DAF). The weight of opened bolls from 55–65 DAF had a significant linear positive correlation with the SAI activity. These results indicate that the enhancement of boll protein synthesis and carbohydrate conversion by amino acid application resulted in a simultaneous increase in the boll Bt protein concentration and cotton lint yield.
Sugarcane has a large, complex, polyploid genome that has hindered the progress of genomic research and molecular marker-assisted selection. The user-friendly SSR markers have attracted considerable attention owing to their ideal genetic attributes. However, these markers were not characterized and developed at the genome-wide scale due to the previously lacking high-quality chromosome-level assembled sugarcane genomes. In this present study, 744 305 and 361 638 candidate SSRs were identified from the genomes of S. officinarum and S. spontaneum, respectively. We verified the reliability of the predicted SSRs by using 1 200 interspecific SSR primer pairs to detect polymorphisms among 11 representative accessions of Saccharum, including S. spontaneum, S. officinarum, S. robustum, and modern sugarcane hybrid. The results showed that 660 SSR markers displayed interspecific polymorphisms among these accessions. Furthermore, 100 SSRs were randomly selected to detect the genetic diversity for 39 representative Saccharum accessions. A total of 320 alleles were generated using 100 polymorphic primers, with each marker ranging from two to seven alleles. The genetic diversity analysis revealed that these accessions were distributed in four main groups, including group I (14 S. spontaneum accessions), group II (two S. officinarum accessions), group III (18 modern sugarcane hybrid accessions), and group IV (five S. robustum accessions). Experimental verification supported the reliability of the SSR markers based on genome-wide predictions. The development of a large number of SSR markers based on wet experiments is valuable for genetic studies, including genetic linkage maps, comparative genome analysis, genome-wide association studies, and marker-assisted selection in Saccharum.