Please wait a minute...
Journal of Integrative Agriculture  2024, Vol. 23 Issue (5): 1557-1567    DOI: 10.1016/j.jia.2024.03.059
Horticulture Advanced Online Publication | Current Issue | Archive | Adv Search |

Establishing VIGS and CRISPR/Cas9 techniques to verify RsPDS function in radish

Jiali Ying1, Yan Wang1, Liang Xu1, Tiaojiao Qin1, Kai Xia1, Peng Zhang1, Yinbo Ma2, Keyun Zhang3, Lun Wang2, Junhui Dong1, Lianxue Fan1, Yuelin Zhu1, Liwang Liu1, 2#

National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization/Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of Ministry of Agriculture and Rural Affairs/College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China

College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China

College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  病毒诱导的基因沉默(VIGS)和成簇规律间隔的短回文重复序列/CRISPR相关蛋白(CRISPR/Cas)系统是现代植物生物技术中快速、精准进行基因功能验证的有效手段。然而,关于萝卜基因沉默和编辑的研究仍然有限。在本研究中,利用烟草脆裂病毒(TRV)和芜菁黄化花叶病毒(TYMV)介导的基因沉默技术敲减萝卜中八氢番茄红素脱氢酶基因(RsPDS),获得具有白化表型的株系;且TYMV介导的基因沉默效率高于TRV萝卜基因型‘NAU-067’叶片中RsPDS的表达水平显著下降。构建带有2RsPDS靶序列的2300GN-Ubi-RsPDS-Cas9载体,采用发根农杆菌介导的遗传转化对‘NAU-067’无根苗进行侵染。结果发现毛状根中9条不定根经GUS染色呈现蓝色,Sanger测序进一步发现其中4条不定根在RsPDS基因的靶序列1上发生了编辑。此外,通过根癌农杆菌介导的萝卜子叶转化获得了白化株系。株系1在靶序列2处发生了5个碱基替换和3个碱基缺失,株系2在靶序列1处发生了3个碱基插入和3个碱基替换。利用VIGSCRISPR/Cas9技术可以精准验证萝卜基因的生物学功能,因此,它将促进萝卜育种计划中重要园艺性状的遗传改良。

Abstract  Virus-induced gene silencing (VIGS) and clustered regularly interspaced short palindromic repeats/CRISPR-associated protein (CRISPR/Cas) systems are effective technologies for rapid and accurate gene function verification in modern plant biotechnology.  However, the investigation of gene silencing and editing in radish remains limited.  In this study, a bleaching phenotype was generated through the knockdown of RsPDS using tobacco rattle virus (TRV)- and turnip yellow mosaic virus (TYMV)-mediated gene silencing vectors.  The TYMV-mediated gene silencing efficiency was higher than the TRV-based VIGS system in radish.  The expression level of RsPDS was significantly inhibited using VIGS in ‘NAU-067’ radish leaves.  The rootless seedlings of ‘NAU-067’ were infected with Agrobacterium rhizogenes using the 2300GN-Ubi-RsPDS-Cas9 vector with two target sequences.  Nine adventitious roots were blue with GUS staining, and four of these adventitious roots were edited at target sequence 1 of the RsPDS gene as indicated by Sanger sequencing.  Furthermore, albino lines were generated with Atumefaciens-mediated transformation of radish cotyledons.  Five base substitutions and three base deletions occurred at target sequence 2 in Line 1, and three base insertions and three base substitutions occurred at target sequence 1 in Line 2.  This study shows that VIGS and CRISPR/Cas9 techniques can be employed to precisely verify the biological functions of genes in radish, which will facilitate the genetic improvement of vital horticultural traits in radish breeding program
Keywords:  Raphanus sativus L.       VIGS        CRISPR/Cas9        Agrobacterium rhizogenes        A. tumefaciens        RsPDS    
Received: 08 May 2023   Accepted: 06 January 2024
Fund: This work was supported by Jiangsu Seed Industry Revitalization Project, China [JBGS(2021)071], Fundamental Research Funds for the Central Universities, China (YDZX2023019), the National Natural Science Foundation of China (32172579) , the earmarked fund for Jiangsu Agricultural Industry Technology System, China [JATS (2023) 421], the Jiangsu Postgraduate Scientific Research Innovation Plan, China (KYCX21_0610-2021) and the Project Founded by the Priority Academic Program Development of Jiangsu Higher Education Institutions, China (PAPD).
About author:  Jiali Ying, E-mail: 2019204031@njau.edu.cn; #Correspondence Liwang Liu, E-mail: nauliulw@njau.edu.cn

Cite this article: 

Jiali Ying, Yan Wang, Liang Xu, Tiaojiao Qin, Kai Xia, Peng Zhang, Yinbo Ma, Keyun Zhang, Lun Wang, Junhui Dong, Lianxue Fan, Yuelin Zhu, Liwang Liu. 2024.

Establishing VIGS and CRISPR/Cas9 techniques to verify RsPDS function in radish . Journal of Integrative Agriculture, 23(5): 1557-1567.

Abdelrahman M, Wei Z, Rohila J S, Zhao K. 2021. Multiplex genome-editing technologies for revolutionizing plant biology and crop improvement. Frontiers in Plant Science, 12, 721203.

Aman R, Ali Z, Butt H, Mahas A, Aljedaani F, Khan M Z, Ding S W, Mahfouz M. 2018. RNA virus interference via CRISPR/Cas13a system in plants. Genome Biology, 19, 1.

Bennypaul H, Gill U S. 2022. Barley stripe mosaic virus (BSMV)-based virus-induced gene silencing to functionally characterize genes in wheat and barley. Methods in Molecular Biology, 2408, 85–93.

Berthomieu P, Jouanin L. 1992. Transformation of rapid cycling cabbage (Brassica oleracea var. capitata) with Agrobacterium rhizogenes. Plant Cell Reports, 11, 334–338.

Boch J, Scholze H, Schornack S, Landgraf A, Hahn S, Kay S, Lahaye T, Nickstadt A, Bonas U. 2009. Breaking the code of DNA binding specificity of TAL-type III effectors. Science, 326, 1509–1512.

Bortesi L, Fischer R. 2015. The CRISPR/Cas9 system for plant genome editing and beyond. Biotechnology Advances, 33, 41–52.

Bouzroud S, Gasparini K, Hu G, Barbosa M A M, Rosa B L, Fahr M, Bendaou N, Bouzayen M, Zsögön A, Smouni A, Zouine M. 2020. Down regulation and loss of auxin response factor 4 function using CRISPR/Cas9 alters plant growth, stomatal function and improves tomato tolerance to salinity and osmotic stress. Genes, 11, 272.

Campisi L, Fambrini M, Michelotti V, Salvini M, Giuntini D, Pugliesi C. 2006. Phytoene accumulation in sunflower decreases the transcript levels of the phytoene synthase gene. Plant Growth Regulation, 48, 79–87.

Cazzonelli C I, Pogson B I. 2010. Source to sink: Regulation of carotenoid biosynthesis in plants. Trends in Plant Science, 15, 266–274.

Chen S Y, Zhang N, Zhou G H, Hussain S, Ahmed S, Tian H N, Wang S C. 2021. Knockout of the entire family of AITR genes in Arabidopsis leads to enhanced drought and salinity tolerance without fitness costs. BMC Plant Biology, 21, 137.

Christian M, Qi Y, Zhang Y, Voytas D F. 2013. Targeted mutagenesis of Arabidopsis thaliana using engineered TAL effector nucleases. G3: Genes Genomes Genetics, 3, 1697–1705.

Cong L, Ran F A, Cox D, Lin S L, Barretto R, Habib N, Hsu P D, Wu X B, Jiang W Y, Marraffini L A, Zhang F. 2013. Multiplex genome engineering using CRISPR/Cas systems. Science, 339, 819–823.

Curtis I S, Nam H G. 2001. Transgenic radish (Raphanus sativus L. longipinnatus Bailey) by floral-dip method - plant development and surfactant are important in optimizing transformation efficiency. Transgenic Research, 10, 363–371.

Fagerlund R D, Staals R H J, Fineran P C. 2015. The Cpf1 CRISPR-Cas protein expands genome-editing tools. Genome Biology, 16, 251.

Gong Y, Li Y, Liu D, Jiang L, Liang H, Wu Y, Wang F, Yang J. 2023. Analysis of lysine acetylation in tomato spot wilt virus infection in Nicotiana benthamiana. Frontiers in Microbiology, 14, 1046163.

He Y H, Zhang Z R, Xu Y P, Chen S Y, Cai X Z. 2022. Genome-wide identification of rapid alkalinization factor family in Brassica napus and functional analysis of BnRALF10 in immunity to Sclerotinia sclerotiorum. Frontiers in Plant Science, 13, 877404.

Hsieh M H, Lu H C, Pan Z J, Yeh H H, Wang S S, Chen W H, Chen H H. 2013. Optimizing virus-induced gene silencing efficiency with Cymbidium mosaic virus in Phalaenopsis flower. Plant Science, 201, 25–41.

Hu Z, He Z, Li Y, Wang Q, Yi P, Yang J, Yang C, Borovskii G, Cheng X, Hu R, Zhang W. 2023. Transcriptomic and metabolic regulatory network characterization of drought responses in tobacco. Frontiers in Plant Science, 13, 1067076.

Huang Y, Cui L, Chen W F, Liu Z X, Yuan W L, Zhu F J, Jiao Z B, Zhang Z X, Deng X H, Wang L P, Qiu Z M, Yan C H. 2022. Comprehensive analysis of NAC transcription factors and their expressions during taproot coloration in radish (Raphanus sativus L.). Scientia Horticulturae, 299, 111047.

Kim Y G, Cha J, Chandrasegaran S. 1996. Hybrid restriction enzymes: Zinc finger fusions to Fok I cleavage domain. Proceedings of the National Academy of Sciences of the United States of America, 93, 1156–1160.

Li F Q, Tzfadia O, Wurtzel E T. 2009. The phytoene synthase gene family in the Grasses: Subfunctionalization provides tissue-specific control of carotenogenesis. Plant Signaling and Behavior, 4, 208–211.

Li Z F, Pi Y, Fan J M, Yang X X, Zhai C S, Chen H, Wang F, Ding J, Gu T T, Li Y, Wu H. 2022. High mobility group A3 enhances transcription of the DNA demethylase gene SlDML2 to promote tomato fruit ripening. Plant Physiology, 189, 315–328.

Liu J X, Li T, Wang H, Liu Y H, Feng K, Duan A Q, Liu H, Shu S, Xiong A S. 2022. CRISPR/Cas9-mediated precise targeted mutagenesis of phytoene desaturase in celery. Horticulture Research, 9, 1-3.

Lowe K, Wu E, Wang N, Hoerster G, Hastings C, Cho M J, Scelonge C, Lenderts B, Chamberlin M, Cushatt J, Wang L J, Ryan L, Khan T, Chow-Yiu J, Hua W, Yu M, Banh J, Bao Z M, Brink K, Igo E, et al. 2016. Morphogenic regulators baby boom and Wuschel improve monocot transformation. The Plant Cell, 28, 1998–2015.

Ma C F, Liu M C, Li Q F, Si J, Ren X S, Song H Y. 2019. Efficient BoPDS gene editing in cabbage by the CRISPR/Cas9 system. Horticultural Plant Journal, 5, 6.

Ma X, Liu Y G. 2016. CRISPR/Cas9-based multiplex genome editing in monocot and dicot plants. Current Protocols in Molecular Biology, 115, 1–21.

Mitsui Y, Shimomura M, Komatsu K, Namiki N, Shibata-Hatta M, Imai M, Katayose Y, Mukai Y, Kanamori H, Kurita K, Kagami T, Wakatsuki A, Ohyanagi H, Ikawa H, Minaka N, Nakagawa K, Shiwa Y, Sasaki T. 2015. The radish genome and comprehensive gene expression profile of tuberous root formation and development. Scientific Reports, 5, 10835.

Muntha S T, Zhang L L, Zhou Y F, Zhao X, Hu Z Y, Yang J H, Zhang M F. 2019. Phytochrome A signal transduction 1 and CONSTANS-LIKE 13 coordinately orchestrate shoot branching and flowering in leafy Brassica juncea. Plant Biotechnology Journal, 17, 1333–1343.

Muthappa S K, Mysore K S. 2011. Virus-induced gene silencing can persist for more than 2 years and also be transmitted to progeny seedlings in Nicotiana benthamiana and tomato. Plant Biotechnology Journal, 9, 797–806.

Muto N, Komatsu K, Matsumoto T. 2021. Efficient Agrobacterium-mediated genetic transformation method using hypocotyl explants of radish (Raphanus sativus L.). Plant Biotechnology, 38, 457–461.

Muto N, Matsumoto T. 2022. CRISPR/Cas9-mediated genome editing of RsGL1a and RsGL1b in radish (Raphanus sativus L.). Frontiers in Plant Science, 13, 1–11.

Ota S, Hisano Y, Ikawa Y, Kawahara A. 2014. Multiple genome modifications by the CRISPR/Cas9 system in zebrafish. Genes to Cells, 19, 555–564.

Park C H, Yeo H J, Lim H S, Hyeon H, Kim J K, Park S U. 2022. Gene expression and metabolic analyses of nontransgenic and AtPAP1 transgenic tobacco infected with Potato Virus X (PVX). Journal of Agricultural and Food Chemistry, 19, 5838–5848.

Peele C, Jordan C V, Muangsan N, Turnage M, Egelkrout E, Eagle P, Hanley-Bowdoin L, Robertson D. 2001. Silencing of a meristematic gene using geminivirus-derived vectors. The Plant Journal, 27, 357–366.

Pervitasari A N, Nugroho A B D, Kin D H, Kim J K, Jung W H. 2022. An efficient Agrobacterium tumefaciens-mediated transformation of apical meristem in radish (Raphanus sativus L.) using a needle perforation. Plant Cell, Tissue and Organ Culture, 148, 305–318.

Schuck J, Gursinsky T, Pantaleo V, Burgyan J, Behrens S E. 2013. AGO/RISC-mediated antiviral RNA silencing in a plant in vitro system. Nucleic Acids Research, 41, 5090–5103.

Shan Q W, Wang Y P, Li J, Zhang Y, Chen K L, Liang Z, Zhang K, Liu J X, Xi J Z J, Qiu J L, Gao C X. 2013. Targeted genome modification of crop plants using a CRISPR-Cas system. Nature Biotechnology, 31, 686–688.

Singh K, Gupta K, Tyagi V, Rajkumar S. 2020. Plant genetic resources in India: Management and utilization. Vavilovskii Zhurnal Genet Selektsii, 24, 306–314.

Soyk S, Müller N A, Park S J, Schmalenbach I, Jiang K, Hayama R, Zhang L, Eck J V, Jiménez-Gómez J M, Lippman Z B. 2017. Variation in the flowering gene SELF PRUNING 5G promotes day-neutrality and early yield in tomato. Nature Genetics, 49, 162–168.

Steinbrenner S J, Sandmann G S. 2006. Transformation of the green alga Haematococcus pluvialis with a phytoene desaturase for accelerated astaxanthin biosynthesis. Applied and Environmental Microbiology, 72, 7477–7484.

Di Stilio V S, Kumar R A, Oddone A M, Tolkin T R, Salles P, McCarty K. 2010. Virus-induced gene silencing as a tool for comparative functional studies in Thalictrum. PLoS ONE, 5, e12064.

Sudhir K, Glen S, Li M, Christina K, Koichiro T. 2018. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution, 35, 1547–1549.

Tanaka N, Hayakawa M, Mano Y, Ohkawa H, Matsui C. 1985. Infection of turnip and radish storage roots with Agrobacterium rhizogenes. Plant Cell Reports, 4, 74–77.

Wang K, Shi L, Liang X N, Zhao P, Wang W X, Liu J X, Chang Y N, Hiei Y, Yanagihara C, Du L P, Ishida Y, Ye X G. 2022a. The gene TaWOX5 overcomes genotype dependency in wheat genetic transformation. Nature Plants, 8, 110–117.

Wang K, Xu L, Wang Y, Ying J L, Li J X, Dong J H, Li C, Zhang X L, Liu L W. 2022b. Genome-wide characterization of homeodomain-leucine zipper genes reveals RsHDZ17 enhances the heat tolerance in radish (Raphanus sativus L.). Physiologia Plantarum, 174, e13789.

Wang Q B, Wang Y P, Sun H H, Sun L, Zhang L. 2020. Transposon-induced methylation of the RsMYB1 promoter disturbs anthocyanin accumulation in red-fleshed radish. Journal of Experimental Botany, 71, 2537–2550.

Xiao Z L, Xing M M, Liu X, Fang Z Y, Yang L M, Zhang Y Y, Wang Y, Zhuang M, Lv H H. 2020. An efficient virus-induced gene silencing (VIGS) system for functional genomics in Brassicas using a cabbage leaf curl virus (CaLCuV)-based vector. Planta, 252, 42.

Xie X, Ma X, Zhu Q, Zeng D, Li G, Liu Y G. 2017. CRISPR-GE: A convenient software toolkit for CRISPR-based genome editing. Molecular Plant, 10, 1246–1249.

Xu H, Xu L F, Yang P P, Cao Y W, Tang Y C, He G R, Yuan S X, Lei J Y, Ming J. 2019. Virus-induced Phytoene Desaturase (PDS) gene silencing using Tobacco rattle virus in Lilium×formolongi. Horticultural Plant Journal, 5, 31–38.

Xu L, Wang Y, Dong J H, Zhang W, Tang M J, Zhang W L, Wang K, Chen Y L, Zhang X L, He Q, Zhang X Y, Wang K, Wang L, Ma Y B, Xia K, Liu L W. 2023. A chromosome-level genome assembly of radish (Raphanus sativus L.) reveals insights into genome adaptation and differential bolting regulation. Plant Biotechnology Journal, 21, 990–1004.

Xu Z S, Feng K, Xiong A S. 2019. CRISPR/Cas9-mediated multiply targeted mutagenesis in orange and purple carrot plants. Molecular Biotechnology, 61, 191–199.

Yang H, Gao P, Rajashankar K R, Patel D J. 2016. PAM-dependent target DNA recognition and cleavage by C2c1 CRISPR-Cas endonuclease. Cell, 167, 1814–1828.

Yu J, Yang X D, Wang Q, Gao L W, Yang Y, Xiao D, Liu T K, Li Y, Hou X L, Zhang C W. 2018. Efficient virus-induced gene silencing in Brassica rapa using a turnip yellow mosaic virus vector. Biologia Plantarum, 62, 826–834.

Zhang H M, Li S, Yang L, Cai G H, Chen H M, Gao D L, Lin T, Cui Q Z, Wang D H, Li Z, Cai R, Bai S N, Lucas W J, Huang S W, Zhang Z H, Sun J J. 2021. Gain-of-function of the 1-aminocyclopropane-1-carboxylate synthase gene ACS1G induces female flower development in cucumber gynoecy. The Plant Cell, 33, 306–321.

Zhang Y, Zhou P, Bozorov T A, Zhang D Y. 2021. Application of CRISPR/Cas9 technology in wild apple (Malus sieverii) for paired sites gene editing. Plant Methods, 17, 79.

Zhu C X, Song Y Z, Yin G H, Wen F J. 2009. Induction of RNA-mediated multiple viral resistance to Potato virus y, Tobacco mosaic virus and Cucumber mosaic virus. Journal of Phytopathology, 157, 101–107.

No related articles found!
No Suggested Reading articles found!