Previous studies have revealed the miR164 family and the miR164-targeted NAC transcription factor genes in rice (Oryza sativa) and Arabidopsis that play versatile roles in developmental processes and stress responses. In wheat (Triticum aestivum L.), we found nine genetic loci of tae-miR164 (tae-MIR164 a to i) producing two mature sequences that down-regulate the expression of three newly identified target genes of TaNACs (TaNAC1, TaNAC11, and TaNAC14) by the cleavage of the respective mRNAs. Overexpression of tae-miR164 or one of its target genes (TaNAC14) demonstrated that the miR164-TaNAC14 module greatly affects root growth and development and stress (drought and salinity) tolerance in wheat seedlings, and TaNAC14 promotes root growth and development in wheat seedlings and enhances drought tolerance, while tae-miR164 inhibits root development and reduces drought and salinity tolerance by down-regulating the expression of TaNAC14. These findings identify the miR164-TaNAC14 module as well as other tae-miR164-regulated genes which can serve as new genetic resources for stress-resistance wheat breeding.
The interaction between myocytes and intramuscular adipocytes is a hot scientific topic. Using a co-culture system, this study aims to investigate the regulation of intramuscular fat deposition in chicken muscle tissue through the interaction between myocyte and adipocyte and identify important intermediary regulatory factors. Our proteomics data showed that the protein expression of tissue inhibitor of metalloproteinases 2 (TIMP2) increased significantly in the culture medium of the co-culture system, and the content of lipid droplets was more in the co-culture intramuscular adipocytes. In addition, TIMP2 was significantly upregulated (P<0.01) in muscle tissue of individuals with high intramuscular fat content. Weighted gene co-expression network analysis revealed that TIMP2 was mainly involved in the extracellular matrix receptor interaction signaling pathway and its expression was significantly correlated with triglyceride, intramuscular fat, C14:0, C14:1, C16:0, C16:1, and C18:1n9C levels. Additionally, TIMP2 was co-expressed with various representative genes related to lipid metabolism (such as ADIPOQ, SCD, ELOVL5, ELOVL7, and LPL), as well as certain genes involved in extracellular matrix receptor interaction (such as COL1A2, COL4A2, COL5A1, COL6A1, and COL6A3), which are also significantly upregulated (P<0.05 or P<0.01) in muscle tissue of individuals with high intramuscular fat content. Our findings reveal that TIMP2 promotes intramuscular fat deposition in muscle tissue through the extracellular matrix receptor interaction signaling pathway.
Insight into carbon turnover in soil aggregates and density fractions is essential to reduce uncertainty in estimating carbon pools on the Tibetan Plateau. Further, how these vary with land-use type is unclear. In this study, the effect of land use type on carbon storage and fractionation based on organic carbon and its 13C abundance was quantified at the microscale of soil aggregates and density fractions in Tibetan alpine. The sequence of soil aggregates destruction in plantation (13.1%)<shrubland (32.7%)<grassland (47.9%) farmland (61.8%) shows that plantation strengthen soil structure. Plantation increased light fraction organic carbon (28.3%) but reduced mineral associated organic carbon (40.6%) contribution to carbon stock compared to farmland (13.5%, 70.3%). Interestingly, plantation enhanced aggregational differentiation of organic carbon and 13C in each density fraction, whereas no such phenomenon exists in soil organic carbon. Carbon isotope analyses revealed that carbon transfer in the plantation occurred from light fraction in macroaggregate (-24.9‰) to the mineral associated fraction in microaggregate (-19.9‰). When compared to the other three land-use types, the low transferability of carbon in aggregates and density fractions in plantation provides a stable carbon pool for the Tibetan Plateau. This study shows that plantation can mitigate global climate change by slowing carbon transfer and increasing carbon storage at the micro-scale of aggregates and density fractions in alpine regions.