Please wait a minute...
Journal of Integrative Agriculture  2022, Vol. 21 Issue (3): 736-750    DOI: 10.1016/S2095-3119(21)63642-0
Horticulture Advanced Online Publication | Current Issue | Archive | Adv Search |
The comparative analysis and identification of secondary metabolites between Tibet wild and cultivated pomegranates (Punica granatum L.) in China
GUO Lin-hui1, 2, GE Da-peng1, 2, REN Yuan1, 2, DONG Jian-mei1, 2, ZHAO Xue-qing1, 2, LIU Xue-qing3, YUAN Zhao-he1, 2 
1 Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, P.R.China
2 College of Forestry, Nanjing Forestry University, Nanjing 210037, P.R.China
3 Yantai Academy of Agricultural Sciences, Yantai 265500, P.R.China
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      


Abstract  Secondary metabolites are closely related to the nutritional quality and health functions of plants.  We investigated the secondary metabolites of both wild (n=23) and cultivated (n=27) pomegranate plants (Punica granatum L.) growing in China.  The total flavonoid (TF) and tannin (TT) contents from the peel and juice were determined and the secondary metabolites in the peel (ZLP) and juice (ZLZ) of ‘Zela 4’ were identified using liquid chromatography–electrospray ionization tandem mass spectrometry (LC–ESI-MS/MS).  Analysis of variance (P<0.05) showed that there were significant differences in the TF content of peel (TF (P)) and juice (TF (J)), and the TT content of peel (TT (P)) and juice (TT (J)) among different pomegranate accessions.  Pearson correlation analysis showed that latitude and altitude might be the main environmental factors affecting TF and TT contents in pomegranates.  In this study, 279 secondary metabolites were identified in the ZLP and ZLZ.  In addition, we report for the first time 227 secondary metabolites in pomegranates.  Using orthogonal partial least squares discriminant analysis, 90 differential metabolites were identified in ZLP and ZLZ.  In addition, we screened eight specific germplasms (high-TF (P), ‘Junyong 3’; low-TF (P), ‘Yanzhihong’; high-TF(J), ‘Zela 4’; low-TF (J), ‘Yudazi’, high-TT (P), ‘Junyong 4’; low-TT (P), ‘Anba 1’; high-TT(J), ‘Yeba 1’; and low-TT (J), ‘Baihuayushizi’).  The results of our study provide a reference for the development and utilization of wild pomegranate resources and pomegranate breeding in China.

Keywords:  wild pomegranate        secondary metabolites        flavonoid        tannin        LC-ESI-MS/MS  
Received: 20 August 2020   Accepted: 01 February 2021
Fund: This work was supported by the Tibet Autonomous Region Natural Science Foundation (XZ201019ZRG-153), the Initiative Project for Talents of Nanjing Forestry University (GXL2014070, GXL2018032), the National Natural Science Foundation of China (31901341), the Natural Science Foundation of Jiangsu Province (BK20180768), the Priority Academic Program Development of Jiangsu High Education Institutions (PAPD).
About author:  GUO Lin-hui, E-mail:; Correspondence YUAN Zhao-he, Tel/Fax: +86-25-85427056, E-mail:

Cite this article: 

GUO Lin-hui, GE Da-peng, REN Yuan, DONG Jian-mei, ZHAO Xue-qing, LIU Xue-qing, YUAN Zhao-he. 2022. The comparative analysis and identification of secondary metabolites between Tibet wild and cultivated pomegranates (Punica granatum L.) in China. Journal of Integrative Agriculture, 21(3): 736-750.

Ambigaipalan P, de Camargo A C, Shahidi F. 2016. Phenolic compounds of pomegranate byproducts (outer skin, mesocarp, divider membrane) and their antioxidant activities. Journal of Agricultural and Food Chemistry, 64, 6584-6604.

Ambigaipalan P, de Camargo A C, Shahidi F. 2017. Identification of phenolic antioxidants and bioactives of pomegranate seeds following juice extraction using HPLC-DAD-ESI-MSn. Food Chemistry, 221, 1883-1894.

Amir R, Borochov-Neori H, Tian L, Holland D. 2019. The biodiversity of different traits of pomegranate fruit peels from a broad collection of diverse cultivars. Scientia Horticulturae, 246, 842-848.

Cao S Y, Hou Y F. 2013. Annals of Fruit Trees in China  Pomegranate Roll. China Forestry Press, Beijing. pp. 1-26. (in Chinese)

Chen C J, Chen H, Zhang Y, Thomas H R, Frank M H, He Y H, Xia R. 2020. TBtools - an integrative toolkit developed for interactive analyses of big biological data. Molecular Plant, 13, 1194-1202.

Chen W, Gao Y Q, Xie W B, Gong L, Lu K, Wang W S, Li Y, Liu X Q, Zhang H Y, Dong H X, Zhang W, Zhang L J, Yu S B, Wang G W, Lian X M, Luo J. 2014. Genome-wide association analyses provide genetic and biochemical insights into natural variation in rice metabolism. Nature Genetics, 46, 714-721.

Chen W, Gong L, Guo Z L, Wang W S, Zhang H Y, Liu X Q, Yu S B, Xiong L Z, Luo J. 2013. A novel integrated method for large-scale detection, identification, and quantification of widely targeted metabolites: application in the study of rice metabolomics. Molecular Plant, 6, 1769-1780.

Dong J E, Zhang K J, Liang Z S. 2009. Plant Secondary Metabolism and Regulation. Northwest A & F University Press, Shanxi. pp. 63-76. (in Chinese)

Dong T T, Han R P, Yu J W, Zhu M K, Zhang Y, Gong Y, Li Z Y. 2019. Anthocyanins accumulation and molecular analysis of correlated genes by metabolome and transcriptome in green and purple asparaguses (Asparagus officinalis, L.). Food Chemistry, 271, 18-28.

Dong X K, Chen W, Wang W S, Zhang H Y, Liu X Q, Luo J. 2014. Comprehensive profiling and natural variation of flavonoids in rice. Journal of Integrative Plant Biology, 56, 876-886.

Duan S L, Zong X P, Liu X Y, Zuo Y Z, Duan Y C. 1983. Preliminary report on the fruit germplasm resources in the autonomous region of Tibet. Journal of Horticulture, 10, 217-224. (in Chinese)

?ur?evi? S, Milovanovi? S, Šavikin K, Risti? M, Menkovi? N, Pljevljakuši? D, Petrovi? S, Bogdanovi? A. 2017. Improvement of supercritical CO2 and n-hexane extraction of wild growing pomegranate seed oil by microwave pretreatment. Industrial Crops and Products, 104, 21-27.

Ercisli S, Gadze J, Agar G, Yildirim N, Hizarci Y. 2011. Genetic relationships among wild pomegranate (Punica granatum) genotypes from Coruh Valley in Turkey. Genetics and Molecular Research, 10, 459-464.

Fawole O A, Makunga N P, Opara U L. 2012. Antibacterial, antioxidant and tyrosinase-inhibition activities of pomegranate fruit peel methanolic extract. BMC Complementary and Alternative Medicine, 12, 200.

Feng Z H, Gao Z F, Jiao X, Shi J F, Wang R F. 2020. Widely targeted metabolomic analysis of active compounds at different maturity stages of ‘Hupingzao’ jujube. Journal of Food Composition and Analysis, 88, 103417.

Fernandes L, Pereira J A, Lopéz-Cortés I, Salazar D M, González-Álvarez J, Ramalhosa E. 2017. Physicochemical composition and antioxidant activity of several pomegranate (Punica granatum L.) cultivars grown in Spain. European Food Research and Technology, 243, 1799-1814.

Fiorito S, Ianni F, Preziuso F, Epifano F, Scotti L, Bucciarelli T, Genovese S. 2019. UHPLC-UV/Vis quantitative analysis of hydroxylated and O-prenylated coumarins in pomegranate seed extracts. Molecules, 24, 1963.

Fischer U A, Carle R, Kammerer D R. 2011. Identification and quantification of phenolic compounds from pomegranate (Punica granatum L.) peel, mesocarp, aril and differently produced juices by HPLC-DAD–ESI/MSn. Food Chemistry, 127, 807-821.

Fraga C G, Clowers B H, Moore R J, Zink E M. 2010. Signature-discovery approach for sample matching of a nerve-agent precursor using liquid chromatography−mass spectrometry, XCMS, and chemometrics. Analytical Chemistry, 82, 4165-4173.

Garcia-Villalba R, Espin J C, Aaby K, Alasalvar C, Heinonen M, Jacobs G, Voorspoels S, Koivumaki T, Kroon P A, Pelvan E, Saha S, Tomas-Barberan F A. 2015. Validated method for the characterization and quantification of extractable and non-extractable ellagitannins after acid hydrolysis in pomegranate fruits, juices, and extracts. Journal of Agricultural and Food Chemistry, 63, 6555-6566.

Gómez-Caravaca A M, Verardo V, Toselli M, Segura-Carretero A, Fernández-Gutiérrez A, Caboni M F. 2013, Determination of the major phenolic compounds in pomegranate juices by HPLC-DAD-ESI-MS. Journal of Agricultural and Food Chemistry, 61, 5328-5337.

Gong J T, Yang F, Yang Q L, Tang X W, Shu F F, Xu L M, Wang Z T, Yang L. 2020. Sweroside ameliorated carbon tetrachloride (CCl4)-induced liver fibrosis through FXR-miR-29a signaling pathway. Journal of Natural Medicines, 74, 17-25.

Howell A B, D'Souza D H. 2013. The pomegranate: Effects on bacteria and viruses that influence human health. Evidence-Based Complementary and Alternative Medicine, 2013, 1-11.

El Kar C, Ferchichi A, Attia F, Bouajila J, 2011. Pomegranate (Punica granatum) juices: Chemical composition, micronutrient cations, and antioxidant capacity. Journal of Food Science, 76, C795-C800.

Kaur R, Kapoor N, Aslam L, Mahajan R. 2019. Molecular characterization of PgUFGT gene and R2R3-PgMYB transcription factor involved in flavonoid biosynthesis in four tissues of wild pomegranate (Punica granatum L.). Journal of Genetics, 98, 94.

Khadivi A, Mirheidari F, Moradi Y, Paryan S. 2020. Morphological variability of wild pomegranate (Punica granatum L.) accessions from natural habitats in the Northern parts of Iran. Scientia Horticulturae, 264, 109165.

Khwairakpam A D, Bordoloi D, Thakur K K, Monisha J, Arfuso F, Sethi G, Mishra S, Kumar A P, Kunnumakkara A B. 2018. Possible use of Punica granatum (Pomegranate) in cancer therapy. Pharmacological Research, 133, 53-64.

Kirichenko T V, Sukhorukov V N, Markin A M, Nikiforov N G, Liu P, Sobenin I A, Tarasov V V, Orekhov A N, Aliev G. 2020. Medicinal plants as a potential and successful treatment option in the context of atherosclerosis. Frontiers in Pharmacology, 11, doi: 10.3389/fphar.2020.00403.

Li G P, Chen M, Chen J, Shang Y H, Lian X H, Wang P L, Lei H M, Ma Q. 2020. Chemical composition analysis of pomegranate seeds based on ultra-high-performance liquid chromatography coupled with quadrupole-Orbitrap high-resolution mass spectrometry. Journal of Pharmaceutical and Biomedical Analysis, 187, 113357.

Li X W, Mao P Y, Yin B G, Song L X. 1991. A preliminary study on ancient trees in Tibet. Journal of Southwest Forestry University, 11, 134-138. (in Chinese)

Liu Y Q, Seeram N P. 2018. Liquid chromatography coupled with time-of-flight tandem mass spectrometry for comprehensive phenolic characterization of pomegranate fruit and flower extracts used as ingredients in botanical dietary supplements. Journal of Separation Science, 41, 3022-3033.

Mahajan R, Javed A, Kapoor N. 2018. Characterization of genetic diversity of wild pomegranate collected from Himachal Pradesh, India. Annals of Plant Sciences, 7, 2042-2046. 

Mena P, Calani L, Dall'Asta C, Galaverna G, García-Viguera C, Bruni R, Crozier A, Del Rio D. 2012. Rapid and comprehensive evaluation of (poly) phenolic compounds in pomegranate (Punica granatum L.) juice by UHPLC-MSn. Molecules, 17, 14821-14840.

Mousavinejad G, Emam-Djomeh Z, Rezaei K, Khodaparast M H H. 2009. Identification and quantification of phenolic compounds and their effects on antioxidant activity in pomegranate juices of eight Iranian cultivars. Food Chemistry, 115, 1274-1278.

Nafees M, Jaskani M J, Ahmad S, Shahid M, Malik Z, Jamil M. 2017. Biochemical diversity in wild and cultivated pomegranate (Punica granatum L.) in Pakistan. The Journal of Horticultural Science and Biotechnology, 92, 199-205.

Narzary D, Mahar K S, Rana T S, Ranade S A. 2009. Analysis of genetic diversity among wild pomegranates in Western Himalayas, using PCR methods. Scientia Horticulturae, 121, 237-242.

Nazeam J A, AL-Shareef W A, Helmy M W, El-Haddad A E. 2020. Bioassay-guided isolation of potential bioactive constituents from pomegranate agrifood by-product. Food Chemistry, 326, 126993.

NPC (National Pharmacopoeia Committee). 2015. Pharmacopoeia of the People's Republic of China-Part I. China Pharmaceutical Science and Technology Press, Beijing. pp. 93-94. (in Chinese)

Pirzadeh M, Caporaso N, Rauf A, Shariati M A, Yessimbekov Z, Khan M U, Imran M, Mubarak M S. 2020. Pomegranate as a source of bioactive constituents: A review on their characterization, properties and applications. Critical Reviews in Food Science and Nutrition61, 982-999.

Qin G H, Liu C Y, Li J Y, Qi Y J, Gao Z H, Zhang X L, Yi X K, Pan H F, Ming R, Xu Y L. 2020. Diversity of metabolite accumulation patterns in inner and outer seed coats of pomegranate: Exploring their relationship with genetic mechanisms of seed coat development. Horticulture Research, 7, doi: 10.1038/s41438-019-0233-4.

Rana J C, Pradheep K, Verma V D. 2007. Naturally occurring wild relatives of temperate fruits in Western Himalayan region of India: An analysis. Biodiversity and Conservation, 16, 3963-3991.

Russo M, Fanali C, Tripodo G, Dugo P, Muleo R, Dugo L, de Gara L, Mondello L. 2018. Analysis of phenolic compounds in different parts of pomegranate (Punica granatum) fruit by HPLC-PDA-ESI/MS and evaluation of their antioxidant activity: Application to different Italian varieties. Analytical and Bioanalytical Chemistry, 410, 3507-3520.

Sentandreu E, Cerdán-Calero M, Sendra J M. 2013. Phenolic profile characterization of pomegranate (Punica granatum) juice by high-performance liquid chromatography with diode array detection coupled to an electrospray ion trap mass analyzer. Journal of Food Composition and Analysis, 30, 32-40.

Singh S P, Pal R K, Saini M K, Singh J, Gaikwad N, Parashuram S, Kaur C. 2019. Targeted metabolite profiling to gain chemometric insight into Indian pomegranate cultivars and elite germplasm. Journal of the Science of Food and Agriculture, 99, 5073-5082.

Singh T J, Gupta T, Sharma S. 2019. Development and purity identification of hybrids by using molecular marker in wild pomegranate (Punica granatum L.). Scientia Horticulturae, 247, 436-448.

Sohrab G, Nasrollahzadeh J, Tohidi M, Zand H, Nikpayam O. 2018. Pomegranate juice increases sirtuin1 protein in peripheral blood mononuclear cell from patients with type 2 diabetes: A randomized placebo controlled clinical trial. Metabolic Syndrome and Related Disorders, 16, 446-451.

Soleimani M H, Talebi M, Sayed-Tabatabaei B E. 2012. Use of SRAP markers to assess genetic diversity and population structure of wild, cultivated, and ornamental pomegranates (Punica granatum L.) in different regions of Iran. Plant Systematics and Evolution, 298, 1141-1149.

Di Stefano V, Pitonzo R, Novara M E, Bongiorno D, Indelicato S, Gentile C, Avellone G, Bognanni R, Scandurra S, Melilli M G. 2019. Antioxidant activity and phenolic composition in pomegranate (Punica granatum L.) genotypes from south Italy by UHPLC-Orbitrap-MS approach. Journal of the Science of Food and Agriculture, 99, 1038-1045.

Sun H, Li L J, Zhang A H, Zhang N, Lv H T, Sun W J, Wang X J. 2013. Protective effects of sweroside on human MG-63 cells and rat osteoblasts. Fitoterapia, 84, 174-179.

Thakur N S, Bhat M M, Rana N, Joshi V K. 2010. Standardization of pre-treatments for the preparation of dried arils from wild pomegranate. Journal of Food Science and Technology, 47, 620-625.

Topalovi? A, Kne?evi? M, Ga?nik S, Mikulic-Petkovsek M. 2020. Detailed chemical composition of juice from autochthonous pomegranate genotypes (Punica granatum L.) grown in different locations in Montenegro. Food Chemistry, 330, 127261.

Vlachojannis C, Erne P, Schoenenberger A W, Chrubasik-Hausmann S. 2015. A critical evaluation of the clinical evidence for pomegranate preparations in the prevention and treatment of cardiovascular diseases. Phytotherapy Research, 29, 501-508.

Wang A M, Li R S, Ren L, Gao X L, Zhang Y G, Ma Z M, Ma D F, Luo Y H. 2018. A comparative metabolomics study of flavonoids in sweet potato with different flesh colors (Ipomoea batatas (L.) Lam). Food Chemistry, 260, 124-134.

Wang D D, Özen C, Abu-Reidah I M, Chigurupati S, Patra J K, Horbanczuk J O, Jó?wik A, Tzvetkov N T, Uhrin P, Atanasov A G. 2018. Vasculoprotective effects of pomegranate (Punica granatum L.). Frontiers in Pharmacology, 9, 544.

Wang F, Chen L, Chen H P, Chen S W, Liu Y P. 2019. Analysis of flavonoid metabolites in citrus peels (Citrus reticulata “Dahongpao”) using UPLC-ESI-MS/MS. Molecules, 24, 2680.

Wen W W, Li D, Li X, Gao Y Q, Li W Q, Li H H, Liu J, Liu H J, Chen W, Luo J, Yan J B. 2014. Metabolome-based genome-wide association study of maize kernel leads to novel biochemical insights. Nature Communications, 5, 3438.

Wishart D S, Jewison T, Guo A C, Wilson M, Knox C, Liu Y F, Djoumbou Y, Mandal R, Aziat F, Dong E, Bouatra S, Sinelnikov I, Arndt D, Xia J G, Liu P, Yallou F, Bjorndahl T, Perez-Pineiro R, Eisner R, Allen F, et al. 2012. HMDB 3.0-the human metabolome database in 2013. Nucleic Acids Research, 41, D801-D807.

Wu J, Xie C. 2011. Extraction and nitrosation inhibition activity of total flavonoids from Punica granatum L. peel. Food Science, 32, 111-114. (in Chinese)

Wu S, Tian L. 2017. Diverse phytochemicals and bioactivities in the ancient fruit and modern functional food pomegranate (Punica granatum). Molecules, 22, 1606.

Wu S, Tian L. 2018. A new flavone glucoside together with known ellagitannins and flavones with anti-diabetic and anti-obesity activities from the flowers of pomegranate (Punica granatum). Natural Product Research, 33, 252-257.

Xiong C, Luo D, Lin A H, Zhang C L, Shan L B, He P, Li B, Zhang Q M, Hua B, Yuan Z L, Li H X, Zhang J H, Yang C X, Lu Y G, Ye Z B, Wang T T. 2019. A tomato B-box protein S/BBX20 modulates carotenoid biosynthesis by directly activating PHYTOENE SYNTHASE 1, and is targeted for 26S proteasome-mediated degradation. New Phytologist, 221, 279-294.

Yang B H, He S A, Liu Y, Liu B C, Ju Y L, Kang D Z, Sun X Y, Fang Y L. 2020. Transcriptomics integrated with metabolomics reveals the effect of regulated deficit irrigation on anthocyanin biosynthesis in Cabernet Sauvignon grape berries. Food Chemistry, 314, 126170.

Young J E, Pan Z L, Teh H E, Menon V, Modereger B, Pesek J J, Matyska M T, Dao L, Takeoka G. 2017. Phenolic composition of pomegranate peel extracts using an liquid chromatography-mass spectrometry approach with silica hydride columns. Journal of Separation Science, 40, 1449-1456.

Yuan T, Ding Y Q, Wang C P, Li L, Xu J L, Liu K, Slitt A, Ferreira D, Khan I A, Seeram N P. 2012. Antidiabetic ellagitannins from pomegranate flowers: inhibition of α-glucosidase and lipogenic gene expression. Organic Letters, 14, 5358-5361.

Yuan T, Wan C P, Ma H, Seeram N P. 2013. New phenolics from the flowers of Punica granatum and their in vitro α-glucosidase inhibitory activities. Planta Medica, 79, 1674-1679.

Yuan Z H, Fang Y M, Zhang T K, Fei Z J, Han F M, Liu C Y, Liu M, Xiao W, Zhang W J, Wu S, Zhang M W, Ju Y H, Xu H L, Dai H, Liu Y J, Chen Y H, Wang L L, Zhou J Q, Guan D, Yan M, et al. 2018. The pomegranate (Punica granatum L.) genome provides insights into fruit quality and ovule developmental biology. Plant Biotechnology Journal, 16, 1363-1374.

Yuan Z H, Lv F F. 2018. Pomegranate Culture, Art and Function Utilization. China Agricultural Press, Beijing. pp. 131-153. (in Chinese)

Yuan Z H, Yin Y L, Qu J L, Zhu L Q, Li Y. 2007. Population genetic diversity in Chinese pomegranate (Punica granatum L.) cultivars revealed by fluorescent-AFLP markers. Journal of Genetics and Genomics, 34, 1061-1071.

Yuan Z H, Zhao X Q, Yin Y L, Feng L J. 2013. Advances in research on pomegranate phytochemistry. Deciduous Fruit Trees, 45, 1-6. (in Chinese) 

Zamani Z, Adabi M, Khadivi-Khub A. 2013. Comparative analysis of genetic structure and variability in wild and cultivated pomegranates as revealed by morphological variables and molecular markers. Plant Systematics and Evolution, 299, 1967-1980.

Zhao X Q, Yuan Z H, Feng L J, Fang Y M. 2015. Cloning and expression of anthocyanin biosynthetic genes in red and white pomegranate. Journal of Plant Research, 128, 687-696.

Zhu G T, Wang S C, Huang Z J, Zhang S B, Liao Q G, Zhang C Z, Lin T, Qin M, Peng M, Yang C K, Cao X, Han X, Wang X X, van der Knaap E, Zhang Z H, Cui X, Klee H, Fernie A R, Luo J, Huang S W. 2018. Rewiring of the fruit metabolome in tomato breeding. Cell, 172, 249-261.

Zhu Z J, Schultz A W, Wang J H, Johnson C H, Yannone S M, Patti G J, Siuzdak G. 2013. Liquid chromatography quadrupole time-of-flight mass spectrometry characterization of metabolites guided by the METLIN database. Nature Protocols, 8, 451-460.

Zou S C, Wu J C, Shahid M Q, He Y H, Lin S Q, Liu Z H, Yang X H. 2020. Identification of key taste components in loquat using widely targeted metabolomics. Food Chemistry, 323, 126822.

[1] FU Fang-fang, PENG Ying-shu, WANG Gui-bin, Yousry A. EL-KASSABY, CAO Fu-liang. Integrative analysis of the metabolome and transcriptome reveals seed germination mechanism in Punica granatum L.[J]. >Journal of Integrative Agriculture, 2021, 20(1): 132-146.
[2] David GRANADA, Lorena LóPEZ-LUJAN, Sara RAMíREZ-RESTREPO, Juan MORALES, Carlos PELáEZ-JARAMILLO, Galdino ANDRADE, Juan Carlos BEDOYA-PéREZ. Bacterial extracts and bioformulates as a promising control of fruit body rot and root rot in avocado cv. Hass[J]. >Journal of Integrative Agriculture, 2020, 19(3): 748-758.
[3] LI Jun, WANG Hui, LU Yang, MAO Tang-fen, XIONG Jiang, HE Sheng-ling, LIU Hui . Inhibitory effect of tartary buckwheat seedling extracts and associated flavonoid compounds on the polyphenol oxidase activity in potatoes (Solanum tuberosum L.)[J]. >Journal of Integrative Agriculture, 2019, 18(9): 2173-2182.
[4] Bevly M. Mampholo, Martin M. Maboko, Puffy Soundy, Dharini Sivakumar. Variety-specific responses of lettuce grown in a gravel-film technique closed hydroponic system to N supply on yield, morphology, phytochemicals, mineral content and safety[J]. >Journal of Integrative Agriculture, 2018, 17(11): 2447-2457.
[5] WU Yan-qing, WEI Meng-ran, ZHAO Da-qiu, TAO Jun. Flavonoid content and expression analysis of flavonoid biosynthetic genes in herbaceous peony (Paeonia lactiflora Pall.) with double colors[J]. >Journal of Integrative Agriculture, 2016, 15(9): 2023-2031.
[6] ZHANG Shi-lin, DENG Peng, XU Yu-chao, Lü Shan-wu, WANG Jian-jun. Quantification and analysis of anthocyanin and flavonoids compositions, and antioxidant activities in onions with three different colors[J]. >Journal of Integrative Agriculture, 2016, 15(9): 2175-2181.
No Suggested Reading articles found!