Please wait a minute...
Journal of Integrative Agriculture  2025, Vol. 24 Issue (5): 2015-2018    DOI: 10.1016/j.jia.2024.12.001
Letter Advanced Online Publication | Current Issue | Archive | Adv Search |
Identification of a genomic region controlling broad-spectrum immunity to leaf rust in wheat–Agropyron cristatum 2P translocation lines

Xiajie Ji1, 3*, Shirui Xu1*, Zongyao Wang1, Haiming Han1, Jinpeng Zhang1, Shenghui Zhou1, Baojin Guo1, Xinming Yang1, Xiuquan Li1, Xiaomin Guo1, Taiguo Liu2#, Lihui Li1#, Weihua Liu1#

1 State Key Laboratory of Crop Gene Resources and Breeding/Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China

2 State Key Laboratory for Biology of Plant Diseases and Insect Pests/Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China

3 Institute of Agricultural Information and Economics, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050051, China


 Highlights 
Leaf rust resistance locus was mapped to the 926.4–935.6 Mb interval of Agropyron cristatum chromosome 2P.
There were 64 A. cristatum-specific genes in the mapping region.
Four potential disease resistance genes responded to the infection by Puccinia triticina.
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

叶锈病是危害小麦生产的主要病害之一,栽培小麦广谱高抗叶锈病基因匮乏。小麦-冰草易位系2PT-5具有来自冰草2P长臂对小麦叶锈病广谱免疫的区段。为了准确定位抗叶锈病基因区段,本研究利用辐照诱导获得的小麦-冰草2P易位系TT-5TT-3TT-26分离群体进行叶锈菌接种鉴定,结合基因组原位杂交(GISH、分子标记检测和基因组重测序对抗叶锈病基因进行物理定位。将抗叶锈病定位区间由原来的82 Mb缩小至9.2 Mb,定位于2P长臂物理位置926.4~935.6 Mb区间目标区间内注释了64冰草特异基因,包含6典型抗病基因,其中2编码NLR蛋白的基因和2编码受体激酶基因响应叶锈菌的侵染。抗叶锈病基因目标区段的定位,为进一步克隆和解析转移到小麦中的这一广谱抗叶锈病基因奠定了重要的基础。



Received: 15 July 2024   Online: 04 December 2024   Accepted: 21 October 2024
Fund: 

This research was funded by the National Natural Science Foundation of China (32272083).

About author:  Xiajie Ji, E-mail: jixiajie003@126.com; Shirui Xu, E-mail: xushirui1105@163.com; #Correspondence Weihua Liu, Tel: +86-10-62176077, Fax: +86-10-62189650, E-mail: liuweihua@caas.cn; Lihui Li, Tel: +86-10-62186670, E-mail: lilihui@caas.cn; Taiguo Liu, Tel: +86-10-62815618, E-mail: tgliu@ippcaas.cn * These authors contributed equally to this study.

Cite this article: 

Xiajie Ji, Shirui Xu, Zongyao Wang, Haiming Han, Jinpeng Zhang, Shenghui Zhou, Baojin Guo, Xinming Yang, Xiuquan Li, Xiaomin Guo, Taiguo Liu, Lihui Li, Weihua Liu. 2025. Identification of a genomic region controlling broad-spectrum immunity to leaf rust in wheat–Agropyron cristatum 2P translocation lines. Journal of Integrative Agriculture, 24(5): 2015-2018.

Chai Y, Pardey P G, Hurley T M, Senay S D, Beddow J M. 2020. A probabilistic bio-economic assessment of the global consequences of wheat leaf rust. Phytopathology110, 1886–1896.

Dong Y S, Zhou R H, Xu S J, Li L H, Cauderon Y, Wang R R C. 1992. Desirable characteristics in perennial Triticeae collected in China for wheat improvement. Hereditas116, 175–178.

Gebrewahid T W, Zhou Y, Zhang P P, Ren Y, Gao P, Xia X C, He Z H, Li Z F, Liu D Q. 2020. Mapping of stripe rust and leaf rust resistance quantitative trait loci in the Chinese Spring wheat line Mianyang351-15. Phytopathology110, 1074–1081.

Han G H, Wang J, Yan H W, Cao L J, Liu S Y, Li X Q, Zhou Y L, Liu W, Gu T T, Shi Z P, Liu H, Li L H, An D G. 2025. Development and molecular cytogenetic identifcation of a new wheat–rye 6RL ditelosomic addition and 1R (1B) substitution line with powdery mildew resistance. Journal of Integrative Agriculture24, 72–84.

He H G, Zhu S Y, Zhao R H, Jiang Z N, Ji Y Y, Ji J, Qiu D, Li H J, Bie T D. 2018. Pm21, encoding a typical CC-NBS-LRR protein, confers broad-spectrum resistance to wheat powdery mildew disease. Molecular Plant11, 879–882.

Hu W J, Fu L P, Gao D R, Li D S, Liao S, Lu C B. 2023. Marker-assisted selection to pyramid Fusarium head blight resistance loci Fhb1 and Fhb2 in a high-quality soft wheat cultivar Yangmai 15. Journal of Integrative Agriculture22, 360–370.

Huang L, Brooks S A, Li W, Fellers J P, Trick H N, Gill B S. 2003. Map-based cloning of leaf rust resistance gene Lr21 from the large and polyploid genome of bread wheat. Genetics164, 655–664.

Huerta-Espino J, Singh R P, Germán S, Mccallum B D, Park R F, Chen W Q, Bhardwaj S C, Goyeau H. 2011. Global status of wheat leaf rust caused by Puccinia triticinaEuphytica179, 143–160.

Jiang B, Liu T G, Li H H, Han H M, Li L H, Zhang J P, Yang X M, Zhou S H, Li X Q, Liu W H. 2018. Physical mapping of a novel locus conferring leaf rust resistance on the long arm of Agropyron cristatum chromosome 2P. Frontiers in Plant Science9, 817.

Jin Y L, Shi F Y, Liu W H, Fu X Y, Gu T T, Han G H, Shi Z P, Sheng Y, Xu H X, Li L H, An D G. 2021. Identification of resistant germplasm and detection of genes for resistance to powdery mildew and leaf rust from 2,978 wheat accessions. Plant Disease105, 3900–3908.

Jones J D, Dangl J L. 2006. The plant immune system. Nature444, 323–329.

Kolomiets T M, Zhemchuzhina A I, Kiseleva M I, Zhemchuzhina N S. 2021. Population and genetic monitoring the Puccinia triticina to provide food safety of Russia. IOP Conference Series (Earth Environmental Science & Technology), 663, 012006.

Li J J, Zhao L, Lü B Y, Fu Y, Zhang S F, Liu S H, Yang Q H, Wu J, Li J C, Chen X H. 2023. Development and characterization of a novel common wheat–Mexico Rye T1DL·1RS translocation line with stripe rust and powdery mildew resistance. Journal of Integrative Agriculture22, 1291–1307.

Lin Y D, Zhou S H, Liang X Z, Guo B J, Han B, Han H M, Zhang J P, Lu Y Q, Zhang Z, Yang X M, Li X Q, Liu W H, Li L H. 2022. Chromosomal mapping of a locus associated with adult-stage resistance to powdery mildew from Agropyron cristatum chromosome 6PL in wheat. Theoretical and Applied Genetics135, 2861–2873.

Liu T G, Chen W Q. 2012. Race and virulence dynamics of Puccinia triticina in China during 2000–2006. Plant Disease96, 1601–1607.

Men W Q, Fan Z W, Ma C, Zhao Y, Wang C L, Tian X B, Chen Q F, Miao J N, He J Q, Qian J J, Sehgal S K, Li H H, Liu W X. 2022. Mapping of the novel powdery mildew resistance gene Pm2Mb from Aegilops biuncialis based on ph1b-induced homoeologous recombination. Theoretical and Applied Genetics135, 2993–3003.

Robinson J T, Thorvaldsdóttir H, Winckler W, Guttman M, Lander E S, Getz G, Mesirov J P. 2011. Integrative genomics viewer. Nature Biotechnology29, 24–26.

Wang H W, Sun S L, Ge W Y, Zhao L F, Hou B Q, Wang K, Lyu Z F, Chen L Y, Xu S S, Guo J, Li M, Su P S, Li X F, Wang G P, Bo C Y, Fang X J, Zhuang W W, Cheng X X, Wu J W, Dong L H, et al. 2020. Horizontal gene transfer of Fhb7 from fungus underlies Fusarium head blight resistance in wheat. Science368, eaba5435.

Xing L P, Hu P, Liu J Q, Witek K, Zhou S, Xu J F, Zhou W H, Gao L, Huang Z P, Zhang R Q, Wang X, Chen P D, Wang H Y, Jones J D G, Karafiatova M K, Vrana J, Bartos J, Dolezel J, Tian Y C, Wu Y F, et al. 2018. Pm21 from Haynaldia villosa encodes a CC-NBS-LRR protein conferring powdery mildew resistance in wheat. Molecular Plant11, 874–878.

Xu S R, Ji X J, Sun S L, Han H M, Zhang J P, Zhou S H, Yang X M, Li X Q, Li L H, Liu W H. 2022. Production of new wheat–Acristatum translocation lines with modified chromosome 2P coding for powdery mildew and leaf rust resistance. Molecular Breeding42, 14.

Zhu T T, Wang L, Rimbert H, Rodriguez J C, Deal K R, De Oliveira R, Choulet F, Keeble-Gagnère G, Tibbits J, Rogers J, Eversole K, Appels R, Gu Y Q, Mascher M, Dvorak J, Luo M C. 2021. Optical maps refine the bread wheat Triticum aestivum cv. Chinese Spring genome assembly. The Plant Journal107, 303–314.

No related articles found!
No Suggested Reading articles found!