|
|
|
Biochemical Mechanism of Chlorantraniliprole Resistance in the Diamondback Moth, Plutella xylostella Linnaeus |
HU Zhen-di, FENG Xia, LIN Qing-sheng, CHEN Huan-yu, LI Zhen-yu, YIN Fei, LIANG Pei , GAO Xi-wu |
1、Institute of Plant Protection, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, P.R.China
2、Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou 510640, P.R.China
3、Department of Entomology, China Agricultural University, Beijing 100193, P.R.China |
|
|
摘要 The insecticide chlorantraniliprole exhibits good efficacy and plays an important role in controlling the diamondback moth, Plutella xylostella Linnaeus. However, resistance to chlorantraniliprole has been observed recently in some field populations. At present study, diamondback moths with resistance to chlorantraniliprole (resistant ratio (RR) was 82.18) for biochemical assays were selected. The assays were performed to determine potential resistance mechanisms. The results showed that the selected resistant moths (GDLZ-R) and susceptible moth could be synergized by known metabolic inhibitors such as piperonyl butoxide (PBO), triphenyl phosphate (TPP) and diethyl-maleate (DEM) at different levels (1.68-5.50-fold and 2.20-2.89-fold, respectively), and DEM showed the maximum synergism in both strains. In enzymes assays, a high level of glutathione-S-transferase (GST) was observed in the resistant moth, in contrast, moths that are susceptible to the insecticide had only 1/3 the GST activity of the resistant moths. The analysis of short-term exposure of chlorantraniliprole on biochemical response in the resistant strain also showed that GST activity was significantly elevated after exposure to a sub-lethal concentration of chlorantraniliprole (about 1/3 LC50, 12 mg L-1) 12 and 24 h, respectively. The results show that there is a strong correlation between the enzyme activity and resistance, and GST is likely the main detoxification mechanism responsible for resistance to chlorantraniliprole in P. xylostella L., cytochrome P450 monooxygenase (P450) and carboxy-lesterase (CarE) are involved in to some extent.
Abstract The insecticide chlorantraniliprole exhibits good efficacy and plays an important role in controlling the diamondback moth, Plutella xylostella Linnaeus. However, resistance to chlorantraniliprole has been observed recently in some field populations. At present study, diamondback moths with resistance to chlorantraniliprole (resistant ratio (RR) was 82.18) for biochemical assays were selected. The assays were performed to determine potential resistance mechanisms. The results showed that the selected resistant moths (GDLZ-R) and susceptible moth could be synergized by known metabolic inhibitors such as piperonyl butoxide (PBO), triphenyl phosphate (TPP) and diethyl-maleate (DEM) at different levels (1.68-5.50-fold and 2.20-2.89-fold, respectively), and DEM showed the maximum synergism in both strains. In enzymes assays, a high level of glutathione-S-transferase (GST) was observed in the resistant moth, in contrast, moths that are susceptible to the insecticide had only 1/3 the GST activity of the resistant moths. The analysis of short-term exposure of chlorantraniliprole on biochemical response in the resistant strain also showed that GST activity was significantly elevated after exposure to a sub-lethal concentration of chlorantraniliprole (about 1/3 LC50, 12 mg L-1) 12 and 24 h, respectively. The results show that there is a strong correlation between the enzyme activity and resistance, and GST is likely the main detoxification mechanism responsible for resistance to chlorantraniliprole in P. xylostella L., cytochrome P450 monooxygenase (P450) and carboxy-lesterase (CarE) are involved in to some extent.
|
Received: 02 August 2013
Accepted:
|
Fund: This project was sponsored by the Special Fund for Agro- Scientific Research in the Public Interest of China (201103021), the President Foundation of Guangdong Academy of Agricultural Sciences, China (201206) and the Guangdong Natural Science Foundation, China (S2013010012529). |
Corresponding Authors:
GAO Xi-wu, Tel: +86-10-62732974, E-mail: gaoxiwu@263.net.cn; FENG Xia,
Tel: +86-20-87597577, E-mail: fengx@gdppri.com
E-mail: gaoxiwu@263.net.cn;fengx@gdppri.com
|
About author: HU Zhen-di, Tel: +86-20-87597577, E-mail: littleblackfox@126.com |
Cite this article:
HU Zhen-di, FENG Xia, LIN Qing-sheng, CHEN Huan-yu, LI Zhen-yu, YIN Fei, LIANG Pei , GAO Xi-wu.
2014.
Biochemical Mechanism of Chlorantraniliprole Resistance in the Diamondback Moth, Plutella xylostella Linnaeus. Journal of Integrative Agriculture, 13(11): 2452-2459.
|
Ali N S, Ali S S, Shakoori A R. 2011. Effect of sublethaldose of Talstar on biochemical component of malathionresistantand -susceptible adults of Rhyzopertha dominica.Pakistan Journal of Zoology, 43, 879-887Athanassios K Z, Eunice J A. 1999. Bioactive compoundfrom neem tissue cultures and screening against insects.Pesticide Science, 55, 497-499Baxter S W, Chen M, Dawson A, Zhao J Z, Vogel H, Shelton AM, Heckel D G, Jiggins D D. 2010. Mis-spliced transcriptsof nicotinic acetylcholine receptor alpha6 are associatedwith field evolved spinosad resistance in Plutella xylostella(L.). PLoS Genetics, 6, e1000802.Bradford M M. 1976. A rapid and sensitive method for thequantitation of microgram quantities of protein utilizing theprinciple of protein-dyebinding. Analytical Biochemistry,72, 248-254Chen H Y, Zhang D Y, Huang H, Li Z Y, Hu Z D, FengX. 2010. Insecticidal activities and field efficacy ofchlorantraniliprole against diamondback moth (Plutellaxylostella). Guangdong Agricultural Science, 2, 96-98 (in Chinese)Cordova D, Benner E A, Sacher M D, Rauh J J, Sopa J S,Lahm G P. 2006. Anthranilic diamides: A new classof insecticides with a novel mode of action, ryanodinereceptor activation. Pesticide Biochemistry and Physiology,84, 196-214Croft B A, Hoyt S C, Westigard P H. 1987. Spidermitemanagement in pome fruits, revisited: Organotins andacaricide resistance management. Journal of EconomicEntomology, 80, 304-311Doichuanngam K, Thornhill R A. 1989. The role of nonspecificesterases in insecticide resistance to malathion inthe diamondback moth Plutella xylostella. ComparativeBiochemistry and Physiology, 93, 81-85Furlong M J, Wright D J, Dosdall L M. 2013. Diamondbackmoth ecology and management: problems, progress, andprospects. Annual Review of Entomology, 58, 517-541Han Z J, Moores G D, Devonshire A L, Denholm I. 1998.Association between biochemical markers and insecticideresistance in the cotton aphid, Aphis gossypii. PesticideBiochemistry and Physiology, 62, 164-171Harold J A, Sun C N. 2000. Characterization of esterasesassociated with profenofos resistance in the tobaccobudworm, Heliothis virescens (F.). Archives of InsectBiochemistry and Physiology, 45, 47-59Hu Z D, Chen H Y, Li Z Y, Zhang D Y, Yin F, Lin Q S, BaoH L, Zhou X M, Feng X. 2012. Found a field populationof diamondback moth, Plutella xylostella (L.), with highlevelresistance to chlorantraniliprole in South China.Guangdong Agricultural Science, 1, 79-81 (in Chinese)Hu Z D, Feng X, Li Z Y, Zhang D Y, Chen H Y. 2010. Studies on the susceptibility of diamondback moth (DBM), Plutellaxylostella L., to chlorantraniliprole in different vegetablefields. Agrochemicals Research and Application, 14, 25-27 (in Chinese)Huang C F, Sun C N. 1989. Microsomal mono-oxygenasesin diamondback moth larvae resistant to fenvalerateand piperonyl butoxide. Pesticide Biochemistry andPhysiology, 33, 168-175Huang J, Wu W J. 2003. Advance of studies on insecticideresistance to diamondback moth (Plutella xylostella L.).Journal of Guizhou University (Natural Science), 20, 97-104 (in Chinese)Jiang W G, Lu W P, Guo W C, Xia Z H, Fu W J, Li G Q.2012. Chlorantraniliprole susceptibility in Leptinotarsadecemlineata in the North Xinjiang Uygur Autonomousregion in China. Journal of Economic Entomology, 105,549-554Lahm G P, Cordova D, Barry J D. 2009. New and selectiveryanodine receptor activators for insect control. Bioorganicand Medicinal Chemistry, 17, 4127-4133Lahm G P, Selby T P, Freudenberger J H, Stevenson T N,Myers B J, Seburyamo G, Smith B K, Flexner L, Clark C E,Cordova D. 2005. Insecticidal anthranilic diamides: A newclass of potent ryanodine receptor activators. Bioorganicand Medicinal Chemistry Letters, 15, 4898-4906Lai T C, Su J Y. 2011. Monitoring of beet armywormSpodoptera exigua (Lepidoptera: Noctuidae) resistance tochlorantraniliprole in China. Pesticide Biochemistry andPhysiology, 101, 198-205LeOra software. 2002. Polo Plus, a User’s Guide to Probit orLogit Analysis. LeOra Software, Berkeley, CA.Loriatti C, Anfora G, Angeli G, Mazzoni V, Trona F. 2009.Effects of chlorantraniliprole on eggs and larvae ofLobesia botrana (Denis & Schiffermüller) (Lepidoptera:Tortricidae). Pest Management Science, 65, 717-722Noppum V, Saito T, Miyata T. 1989. Cuticular penetration of Sfenvalerate in fenvalerate-resistant and susceptible strainsof the diamondback moth Plutella xylostella L. PesticideBiochemistry and Physiology, 33, 83-87Qian Y, Cao G C, Song J X, Yin Q, Han Z J. 2008.Biochemical mechanisms conferring cross-resistancebetween tebufenozide and abamectin in Plutella xylostella.Pesticide Biochemistry and Physiology, 91, 175-179Sattelle D B, Cordova D, Cheek T R. 2008. Insect ryanodinereceptors: Molecular targets for novel pest controlchemicals. Invertebrate Neuroscience, 8, 107-119Shen J L, Wu Y D. 1995. Insecticide Resistance in CottonBollworm and Its Management. China Agriculture Press,Beijing, China. pp. 193-200 (in Chinese)Sial A A, Brunner J F. 2012. Selection for resistance, reversiontoward susceptibility, and synergism of chlorantraniliproleand spinetoram in obliquebanded leafroller, ChoristoneuraRosaceana (Lepidoptera: Tortricidae). Pest ManagementScience, 68, 462-468Sial A A, Brunner J F, Garczynski S F. 2011. Biochemicalcharacterization of chlorantraniliprole and spinetoramresistance in laboratory-selected obliquebanded leafroller,Choristoneura rosaceana (Harris) (Lepidoptera: Tortricidae).Pesticide Biochemistry and Physiology, 99, 274-279Silva J E, Siqueira H A A, Silva T B M, Barros M R,Campos D, Barros R. 2012. Baseline susceptibility tochlorantraniliprole of Brazilian populations of Plutellaxylostella. Crop Protection, 35, 97-101Smirle M J, Vincent C, Zurowski C L, Rancourt B. 1998.Azinphosmethyl resistance in the obliquebanded leafroller,Choristoneura rosaceana: Reversion in the absence ofselection and relationship to detoxification enzyme activity.Pesticide Biochemistry and Physiology, 61, 183-189Sonoda S. 2010. Molecular analysis of pyrethroid resistanceconferred by target insensitivity and increased metabolicdetoxification in Plutella xylostella. Pest ManagementScience, 66, 572-575Sparks T C, Dripps J E, Watson G B, Paroonagian D. 2012.Resistance and cross-resistance to spinosyns - a reviewand analysis. Pesticide Biochemistry and Physiology,102, 1-10Tabashnik B E, Cushing N L, Finson N. 1987. Leaf residuevs topical bioassay for assessing resistance in thediamondback moth (Lepidoptera: Plutellidae). FAO PlantProtection Bulletin, 35, 11-14Troczka B, Zimmer C T, Elias J, Schorn C, Bass C, Davies TG E, Field L M, Williamson M S, Slater R, Nauen R. 2012.Resistance to diamide insecticides in diamondback moth,Plutella xylostella (Lepidoptera: Plutellidae) is associatedwith a mutation in the membrane-spanning domain of theryanodine receptor. Insect Biochemistry and MolecularBiology, 42, 873-880Wang X L, Li X Y, Wu Y D. 2010. Baseline susceptibilityof the diamondback moth (Lepidoptera: Plutellidae)to chlorantraniliprole in China. Journal of EconomicEntomology, 103, 843-848Wang X L, Wu S W, Yang Y H, Wu Y D. 2012. Molecularcloning, characterization and mRNA expression of aryanodine receptor gene from diamondback moth, Plutellaxylostella. Pesticide Biochemistry and Physiology, 102,204-212Wang X L, Wu Y D. 2012. High levels of resistance tochlorantraniliprole evolved in field populations of Plutellaxylostella. Journal of Economic Entomology, 105, 1019-1023Zhao J Z, Collins H L, Li Y X, Mau R F L, Thompson GD, Hertlein M, Andalora J T, Boykin R, Shelton A M.2006. Monitoring of diamondback moth (Lepidoptera:Plutellidae) resistance to spinosad, indoxacarb, andemamectic benzoate. Journal of Economic Entomology,99, 176-181.Zhu K Y, Gao J R, Starkey S K. 2000. Organophosphateresistance mediated by alterations of acetylcholinesterasein resistance clone of the greenbug, Schizaphis graminum(Homoptera: Aphiditae). Pesticide Biochemistry andPhysiology, 68, 138-147 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|