Please wait a minute...
Journal of Integrative Agriculture  2023, Vol. 22 Issue (6): 1809-1819    DOI: 10.1016/j.jia.2022.10.012
Plant Protection Advanced Online Publication | Current Issue | Archive | Adv Search |

Lack of fitness cost and inheritance of resistance to abamectin based on the establishment of a near-isogenic strain of Tetranychus urticae

ZHANG Yan1*, TIAN Tian1, 2*, ZHANG Kun3, ZHANG You-jun1, WU Qing-jun1, XIE Wen1, GUO Zhao-jiang1, WANG Shao-li1#

1 State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, P.R.China

2 College of Agriculture, Yangtze University, Jingzhou 434025, P.R.China

3 Sanya Nanfan Research Institute, Hainan University, Sanya 572024, P.R.China

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

二斑叶螨Tetranychus urticae Koch对阿维菌素高水平抗性中国及其他国家田间种群中普遍存在。为阐明中国二斑叶螨田间种群对阿维菌素抗性的遗传模式、交互抗性和适合度代价本研究将采集到的田间抗性种群经过多代与室内敏感品系IPP-SS的回交、孤雌生殖和阿维菌素筛选过程,最终将田间二斑叶螨对阿维菌素高抗性的特征导入到敏感品系IPP-SS,构建了一个抗阿维菌素的近等基因系NIL-Aba。与IPP-SS品系相比,NIL-Aba品系对阿维菌素的抗性为25,147倍,对联苯菊酯呈现高水平交互抗性(288.17倍),对甲维盐中等水平交互抗性(42.57倍),对联苯肼酯、虫螨腈、丁氟螨酯、腈吡螨酯和乙唑螨腈为3.18-9.31倍的低交互抗性,对丙溴磷无交互抗性。NIL-Aba品系对阿维菌素抗性遗传模式为常染色体不完全显性遗传,且受多基因控制。基于两性生命表参数分析NIL-Aba品系存在适合度代价。建立二斑叶螨NIL-Aba品系后续对阿维菌素抗性的深入研究提供可靠基础,毒理学参数及适合度代价相关数据将有助于二斑叶螨田间种群阿维菌素抗性治理。



Abstract  

Many populations of the two-spotted spider mite, Tetranychus urticae Koch, have developed high levels of resistance to the pesticide abamectin in China and other countries.  This study developed a near-isogenic line to understand better the inheritance, cross-resistance, and fitness costs associated with abamectin resistance in the field population of Turticae in China.  We introduced the trait that confers extremely high abamectin resistance in a field-collected population of Turticae into a susceptible laboratory strain (IPP-SS) to generate an abamectin-resistant near-isogenic line (NIL-Aba).  This process was carried out through multiple backcrossing to IPP-SS and via parthenogenesis and abamectin screening.  Compared with IPP-SS, the NIL-Aba strain had a 25 147-fold resistance to abamectin and a high level of cross-resistance to bifenthrin (288.17-fold), an intermediate level to emamectin benzoate (42.57-fold), and low levels to bifenazate, chlorfenapyr, cyflumetofen, cyenopyrafen, and cyetpyrafen with resistance ranging from 3.18- to 9.31-fold.  But it had no cross-resistance to profenofos.  The resistance to abamectin in NIL-Aba was autosomal, incompletely dominant, and polygenic.  Based on two sex life table parameters, no fitness cost was found in NIL-Aba.  Establishing the NIL-Aba strain provides a reliable basis for an in-depth study of abamectin resistance in Turticae.  New information on toxicological characteristics and fitness cost should facilitate the management of abamectin resistance in field populations of Turticae.

Keywords:  two-spotted spider mite       abamectin resistance        near-isogenic strain        inheritance pattern        fitness cost  
Received: 16 July 2022   Online: 13 October 2022   Accepted: 31 August 2022
Fund: 

This research was funded by the National Natural Science Foundation of China (32072458), the earmarked fund for China Agriculture Research System (CARS-25), the Beijing Key Laboratory for Pest Control and Sustainable Cultivation of Vegetables, China, and the Science and Technology Innovation Program of the Chinese Academy of Agricultural Sciences (CAAS-ASTIP-IVFCAAS).  


About author:  ZHANG Yan, E-mail: zhangyanvob@163.com; TIAN Tian, E-mail: tiantian122333@yeah.net; #Correspondence WANG Shao-li, Tel/Fax: +86-10-82109518, E-mail: wangshaoli@caas.cn * These authors contributed equally to this study.

Cite this article: 

ZHANG Yan, TIAN Tian, ZHANG Kun, ZHANG You-jun, WU Qing-jun, XIE Wen, GUO Zhao-jiang, WANG Shao-li. 2023.

Lack of fitness cost and inheritance of resistance to abamectin based on the establishment of a near-isogenic strain of Tetranychus urticae . Journal of Integrative Agriculture, 22(6): 1809-1819.

Ahn S J, Dermauw W, Wybouw N, Heckel D G, Van Leeuwen T. 2014. Bacterial origin of a diverse family of UDP-glycosyltransferase genes in the Tetranychus urticae genome. Insect Biochemistry and Molecular Biology50, 43–57.

Ay R, Yorulmaz S. 2010. Inheritance and detoxification enzyme levels in Tetranychus urticae Koch (Acari: Tetranychidae) strain selected with chlorpyrifos. Journal of Pest Science83, 85–93.

Bi J L, Niu Z M, Yu L, Toscano N C. 2016. Resistance status of the carmine spider mite, Tetranychus cinnabarinus and the twospotted spider mite, Tetranychus urticae to selected acaricides on strawberries. Insect Science23, 88–93.

Che W N, Huang J L, Guan F, Wu Y D, Yang Y H. 2015. Cross-resistance and inheritance of resistance to emamectin benzoate in Spodoptera exigua (Lepidoptera: Noctuidae). Journal of Economic Entomology108, 2015–2020.

Chi H. 1988. Life-table analysis incorporating both sexes and variable development rates among individuals. Environmental Entomology17, 26–34.

Chi H. 2022. TWOSEX-MSChart: A computer program for the age-stage, two-sex life table analysis. National Chung Hsing University, Taichung, Taiwan, China. [2022-09-08]. http://140.120.197.173/Ecology of Taiwan of China Download/Twosex- MSChart.zip

Chi H, Liu H S. 1985. Two new methods for the study of insect population ecology. Bulletin of the Institute of ZoologyAcademia Sinica24, 225–240.

Daneshian L, Schlachter C, Timmers L F S M, Radford T, Kapingidza B, Dias T, Liese J, Sperotto R A, Grbic V, Grbic M, Chruszcz M. 2021. Delta class glutathione S-transferase (TuGSTd01) from the two-spotted spider mite Tetranychus urticae is inhibited by abamectin. Pesticide Biochemistry and Physiology176, 104873.

Dermauw W, Ilias A, Riga M, Tsagkarakou A, Grbić M, Tirry L, Van Leeuwen T, Vontas J. 2012. The cys-loop ligand-gated ion channel gene family of Tetranychus urticae: implications for acaricide toxicology and a novel mutation associated with abamectin resistance. Insect Biochemistry and Molecular Biology42, 455–465.

Dermauw W, Wybouw N, Rombauts S, Menten B, Vontas J, Grbic M, Clark R M, Feyereisen R, Van Leeuwen T. 2013. A link between host plant adaptation and pesticide resistance in the polyphagous spider mite Tetranychus urticaeProceedings of the National Academy of Sciences of the United States of America110, E113–E122.

Feng K Y, Wen X, He X L, Wei P, Shi L, Yang Y W, He L. 2018. Resistant inheritance and cross-resistance of cyflumetofen in Tetranychus cinnabarinus (Boisduval). Pesticide Biochemistry and Physiology148, 28–33.

Fu B L, Li Q, Qiu H Y, Tang L D, Zeng D Q, Liu K, Gao Y L. 2018. Resistance development, stability, cross-resistance potential, biological fitness and biochemical mechanisms of spinetoram resistance in Thrips hawaiiensis (Thysanoptera: Thripidae). Pest Management Science74, 1564–1574.

Georghiou G P, Taylor C E. 1977. Genetic and biological influences in the evolution of insecticide resistance. Journal of Economic Entomology70, 319–323.

Gorman K, Slater R, Blande J D, Clarke A, Wren J, McCaffery A, Denholm I. 2010. Cross-resistance relationships between neonicotinoids and pymetrozine in Bemisia tabaci (Hemiptera: Aleyrodidae). Pest Management Science66, 1186–1190.

Gul H, Ullah F, Biondi A, Desneux N, Qian D, Gao X W, Song D L. 2019. Resistance against clothianidin and associated fitness costs in the chive maggot, Bradysia odoriphaga Entomologia Generalis39, 81–92.

He L, Gao X W, Wang J J, Zhao Z M, Liu N N. 2009. Genetic analysis of abamectin resistance in Tetranychus cinnabarinusPesticide Biochemistry and Physiology95, 147–151.

He L, Yang Y, Fu J Z, Wang J J, Zhao Z M. 2004. Resistance selection and relative fitness of Tetranychus cinnabarinus (Boisduval) to abamectin. Journal of Plant Protection31, 395–399. (in Chinese)

Hoy M A, Conley J, Robinson W. 1988. Cyhexatin and fenbutatin-oxide resistance in pacific spider mite (Acari: Tetranychidae): Stability and mode of inheritance. Journal of Economic Entomology81, 57–64.

Le Jambre L F, Gill J H, Lenane I J, Baker P. 2000. Inheritance of avermectin resistance in Haemonchus contortusInternational Journal for Parasitology30, 105–111.

Jeffrey G S. 1989. Cross-resistance to the biological insecticide abamectin in pyrethroid-resistant house flies. Pesticide Biochemistry and Physiology34, 27–31.

Keena M A, Granett J. 1990. Genetic analysis of propargite resistance in pacific spider mites and twospotted spider mites (Acari: Tetranychidae). Journal of Economic Entomology83, 655–661.

Kliot A, Ghanim M. 2012. Fitness costs associated with insecticide resistance. Pest Management Science68, 431–437.

Kwon D H, Yoon K S, Clark J M, Lee S H. 2010. A point mutation in a glutamate-gated chloride channel confers abamectin resistance in the two-spotted spider mite, Tetranychus urticae Koch. Insect Molecular Biology19, 583–591.

Van Leeuwen T, Dermauw W. 2016. The molecular evolution of xenobiotic metabolism and resistance in chelicerate mites. Annual Review of Entomology61, 475–498.

Van Leeuwen T, Vontas J, Tsagkarakou A, Dermauw W, Tirry L. 2010. Acaricide resistance mechanisms in the two-spotted spider mite Tetranychus urticae and other important Acari: A review. Insect Biochemistry and Molecular Biology40, 563–572.

Li X C, Schuler M A, Berenbaum M R. 2007. Molecular mechanisms of metabolic resistance to synthetic and natural xenobiotics. Annual Review of Entomology52, 231–253.

Liu X, Shen G M, Xu H R, He L. 2016. The fenpropathrin resistant Tetranychus cinnabarinus showed increased fecundity with high content of vitellogenin and vitellogenin receptor. Pesticide Biochemistry and Physiology134, 31–38.

Ma Z, Li J, Zhang Y, Shan C, Gao X W. 2017. Inheritance mode and mechanisms of resistance to imidacloprid in the house fly Musca domestica (Diptera: Muscidae) from China. PLoS ONE12, e0189343.

Mermans C, Dermauw W, Geibel S, Van Leeuwen T. 2017. A G326E substitution in the glutamate-gated chloride channel 3 (GluCl3) of the two-spotted spider mite Tetranychus urticae abolishes the agonistic activity of macrocyclic lactones. Pest Management Science, 73, 2413–2418.

Padovez F E O P, Kanno R H, Omoto C, Guidolin A S. 2022. Fitness costs associated with chlorantraniliprole resistance in Spodoptera frugiperda (Lepidoptera: Noctuidae) strains with different genetic backgrounds. Pest Management Science, 78, 1279–1286.

Papapostolou K M, Riga M, Samantsidis G R, Skoufa E, Balabanidou V, Van Leeuwen T, Vontas J. 2022. Over-expression in cis of the midgut P450 CYP392A16 contributes to abamectin resistance in Tetranychus urticaeInsect Biochemistry and Molecular Biology142, 103709.

Van Pottelberge S, Van Leeuwen T, Khajehali J, Tirry L. 2009. Genetic and biochemical analysis of a laboratory-selected spirodiclofen-resistant strain of Tetranychus urticae Koch (Acari: Tetranychidae). Pest Management Science65, 358–366.

Pu X, Yang Y H, Wu S W, Wu Y D. 2010. Characterisation of abamectin resistance in a field-evolved multiresistant population of Plutella xylostellaPest Management Science66, 371–378.

Riga M, Tsakireli D, Ilias A, Morou E, Myridakis A, Stephanou E G, Nauen R, Dermauw W, Van Leeuwen T, Paine M, Vontas J. 2014. Abamectin is metabolized by CYP392A16, a cytochrome P450 associated with high levels of acaricide resistance in Tetranychus urticaeInsect Biochemistry and Molecular Biology46, 43–53.

Singarayan V T, Jagadeesan R, Nayak M K, Ebert P R, Daglish G J. 2021. Gene introgression in assessing fitness costs associated with phosphine resistance in the rusty grain beetle. Journal of Pest Science, 94, 1415–1426.

Stone B F. 1968. A formula for determining degree of dominance in cases of monofactorial inheritance of resistance to chemicals. Bulletin of the World Health Organization38, 325–326.

Sun J Y, Li C J, Jiang J Q, Song C G, Wang C, Feng K Y, Wei P, He L. 2022. Cross resistance, inheritance and fitness advantage of cyetpyrafen resistance in two-spotted spider mite, Tetranychus urticaePesticide Biochemistry and Physiology183, 105062.

Tabashnik B E. 1991. Determining the mode of inheritance of pesticide resistance with backcross experiments. Journal of Economic Entomology84, 703–712.

Tang X F, Zhang Y J, Wu Q J, Xie W, Wang S L. 2014. Stage-specific expression of resistance to different acaricides in four field populations of Tetranychus urticae (Acari: Tetranychidae). Journal of Economic Entomology107, 1900–1907.

Tsukamoto M. 1983. Methods of genetic analysis of insecticide resistance. In: Georghiou G P, Saito T, eds., Pest Resistance to Pesticides. Springer Publishing, Boston, MA, US. pp. 71–98.

Wang R, Che W N, Wang J D, Qu C, Luo C. 2020. Cross-resistance and biochemical mechanism of resistance to cyantraniliprole in a near-isogenic line of whitefly Bemisia tabaci Mediterranean (Q biotype). Pesticide Biochemistry and Physiology167, 104590.

Wang R, Fang Y, Zhang J S, Wang J D, Feng H L, Luo C. 2021. Characterization of field-evolved resistance to pyridalyl in a near-isogenic line of diamondback moth, Plutella xylostellaPest Management Science77, 1197–1203.

Wang R, Wu Y D. 2014. Dominant fitness costs of abamectin resistance in Plutella xylostellaPest Management Science70, 1872–1876.

Wang R, Zhang J S, Che W N, Wang J D, Luo C, 2022. Genetics and fitness costs of resistance to flupyradifurone in Bemisia tabaci from China. Journal of Integrative Agriculture, 21, 1436–1443.

Wolstenholme A J. 2010. Recent progress in understanding the interaction between avermectins and ligand-gated ion channels: Putting the pests to sleep. Invertebrate Neuroscience10, 5–10.

Wybouw N, Kosterlitz O, Kurlovs A H, Bajda S, Greenhalgh R, Snoeck S, Bui H, Bryon A, Dermauw W, Van Leeuwen T, Clark R M. 2019. Long-term population studies uncover the genome structure and genetic basis of xenobiotic and host plant adaptation in the herbivore Tetranychus urticaeGenetics211, 1409–1427.

Xu D D, He Y Y, Zhang Y J, Xie W, Wu Q J, Wang S L. 2018. Status of pesticide resistance and associated mutations in the two-spotted spider mite, Tetranychus urticae, in China. Pesticide Biochemistry and Physiology150, 89–96.

Xu D D, Wang K, Zhang Y T, Wang H S, Wu Q J, Wang S L. 2019. The performance of Tetranychus urticae on five melon cultivars is correlated with leaf thickness. Systematic and Applied Acarology24, 645–658.

Xu D D, Zhang Y, Zhang Y J, Wu Q J, Guo Z J, Xie W, Zhou X M, Wang S L. 2021. Transcriptome profiling and functional analysis suggest that the constitutive overexpression of four cytochrome P450s confers resistance to abamectin in Tetranychus urticae from China. Pest Management Science77, 1204–1213.

Xu Z F, Hu Y, Hu J, Qi C C, Zhang M Y, Xu Q, He L. 2020. The interaction between abamectin and RDL in the carmine spider mite: a target site and resistant mechanism study. Pesticide Biochemistry and Physiology164, 191–195.

Xue W X, Mermans C, Papapostolou K M, Lamprousi M, Christou I K, Inak E, Douris V, Vontas J, Dermauw W, Van Leeuwen T. 2021. Untangling a Gordian knot: The role of a GluCl3 I321T mutation in abamectin resistance in Tetranychus urticaePest Management Science77, 1581–1593.

Yuan G D, Wan Y R, Li X Y, He B Q, Zhang Y J, Xu B Y, Wang S L, Xie W, Zhou X G, Wu Q J. 2017. Development of near-isogenic lines in a parthenogenetically reproduced thrips species, Frankliniella occidentalisFrontiers in Physiology8, 130.

Zeng B, Liu Y T, Zhang W J, Feng Z R, Wu S F, Gao C F. 2022. Inheritance and fitness cost of buprofezin resistance in a near-isogenic, field-derived strain and insecticide resistance monitoring of Laodelphax striatellus in China. Pest Management Science78, 1833–1841.

Zhang Y, Xu D D, Zhang Y J, Wu Q J, Xie W, Guo Z J, Wang S L. 2022. Frequencies and mechanisms of pesticide resistance in Tetranychus urticae field populations in China. Insect Science, 29, 827–839.

Zhu X, Lei Y Y, Yang Y J, Baxter S W, Li J H, Wu Q J, Wang S L, Xie W, Guo Z J, Fu W, Zhang Y J. 2015. Construction and characterisation of near-isogenic Plutella xylostella (Lepidoptera: Plutellidae) strains resistant to Cry1Ac toxin. Pest Management Science71, 225–233.

No related articles found!
No Suggested Reading articles found!