Please wait a minute...
Journal of Integrative Agriculture  2024, Vol. 23 Issue (7): 2332-2345    DOI: 10.1016/j.jia.2023.07.029
Plant Protection Advanced Online Publication | Current Issue | Archive | Adv Search |
Resistance development, cross-resistance, and fitness costs associated with Aphis gossypii resistance towards sulfoxaflor and acetamiprid in different geographical regions
Wei Wang1, 2, Renfu Zhang1, Haiyang Liu1, Ruifeng Ding1, Qiushi Huang2, Ju Yao1#, Gemei Liang2#
1 Key Laboratory of Integrated Pest Management on Crop in Northwestern Oasis of Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China
2 State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

棉蚜抗药性日益严重,使其变得越来越难以防治。室内,在两个不同基础抗性的棉蚜种群中分别建立了抗氟啶虫胺腈品系和抗啶虫脒品系,并评估了基础抗性对棉蚜抗药性发展、交互抗性和适合度的的影响。在相同的选择压力下,基础抗性低的莎车棉蚜对氟啶虫胺腈和啶虫脒抗性发展快于基础抗性高的精河棉蚜,并且莎车和精河棉蚜对氟啶虫胺腈的抗性发展快于啶虫脒。从莎车和精河中筛选的抗氟啶虫胺腈品系均对啶虫脒、吡虫啉、噻虫嗪和吡蚜酮产生了明显的交互抗性,筛选的抗啶虫脒品系均对氟啶虫胺腈、吡虫啉、噻虫嗪、吡蚜酮和毒死蜱产生了明显的交互抗性。随着棉蚜对氟啶虫胺腈和啶虫脒抗性发展,棉蚜的相对适合度下降,其中抗氟啶虫胺腈品系(Yarkant-SulR and Jinghe-SulR)相对适合度低于抗啶虫脒品系(Yarkant-AceRJinghe-AceR)。此外,精河的抗氟啶虫胺腈品系和抗啶虫脒品系的相对适合度低于莎车两个抗性品系。棉蚜基础抗性和杀虫剂类型影响棉蚜对杀虫剂的抗性发展对其他杀虫剂的交互抗性。棉蚜抗氟啶虫胺腈品系和抗啶虫脒品系存在明显适合度成本。本研究结果将有助于棉蚜抗药性管理及其综合防控



Abstract  

Aphis gossypii has become increasingly difficult to manage due to its strong insecticide resistance.  In the laboratory, we established sulfoxaflor-resistant and acetamiprid-resistant strains in two A. gossypii populations with different basal insecticide resistance levels, and evaluated the effects of basal insecticide resistance on the resistance development and cross-resistance, as well as differences in fitness.  Under the same selection pressure, Yarkant A. gossypii (with low basal insecticide resistance) evolved resistance to sulfoxaflor and acetamiprid more quickly than Jinghe A. gossypii (with high basal insecticide resistance), and the evolution of A. gossypii resistance to sulfoxaflor developed faster than acetamiprid in both Yarkant and Jinghe, Xingjiang, China.  The sulfoxaflor-resistant strains selected from Yarkant and Jinghe developed significant cross-resistance to acetamiprid, imidacloprid, thiamethoxam and pymetrozine; while the acetamiprid-resistant strains developed significant cross-resistance to sulfoxaflor, imidacloprid, thiamethoxam, pymetrozine, and chlorpyrifos.  The relative fitness of A. gossypii decreased as the resistance to sulfoxaflor and acetamiprid developed.  The relative fitness levels of the sulfoxaflor-resistant strains (Yarkant-SulR and Jinghe-SulR) were lower than those of the acetamiprid-resistant strains (Yarkant-AceR and Jinghe-AceR).  In addition, the relative fitness levels of sulfoxaflor- and acetamiprid-resistant strains were lower in Jinghe than in Yarkant.  In summary, basal insecticide resistance of A. gossypii and insecticide type affected the evolution of resistance to insecticides in A. gossypii, as well as cross-resistance to other insecticides.  The sulfoxaflor- and acetamiprid-resistant A. gossypii strains had obvious fitness costs.  The results of this work will contribute to the insecticide resistance management and integrated management of A. gossypii.

Keywords:  Aphis gossypii        sulfoxaflor        acetamiprid        cross-resistance        fitness costs        different sensitivities  
Received: 28 April 2023   Accepted: 19 June 2023
Fund: This work was supported by the National Key R&D Program of China (2022YFD1400300), the Open Fund of Key Laboratory of Integrated Pest Management on Crops in Northwestern Oasis, Ministry of Agriculture and Rural Affairs of China (KFJJ202204) and the China Agriculture Research System (CARS-15-20).
About author:  Wei Wang, Tel: +86-991-4524641, E-mail: wlzforever2004@sina. com; #Correspondence Ju Yao, Tel: +86-991-4524641, E-mail: yaoju500@sohu.com; Gemei Liang, Tel: +86-10-62815929, E-mail: gmliang@ippcaas.cn

Cite this article: 

Wei Wang, Renfu Zhang, Haiyang Liu, Ruifeng Ding, Qiushi Huang, Ju Yao, Gemei Liang. 2024. Resistance development, cross-resistance, and fitness costs associated with Aphis gossypii resistance towards sulfoxaflor and acetamiprid in different geographical regions. Journal of Integrative Agriculture, 23(7): 2332-2345.

An J J, Gao Z L, Dang Z H, Yan X, Pan W L, Li Y F. 2020. Development and risk assessment of resistance to sulfoxaflor in cotton aphid (Aphis gossypii). Journal of Hebei Agricultural University43, 71–81. (in Chinese)

Babcock J M, Gerwick C B, Huang J X, Loso M R, Nakamura G, Nolting S P, Rogers R B, Sparks T C, Thomas J, Watson G B, Zhu Y M. 2011. Biological characterization of sulfoxaflor, a novel insecticide. Pest Management Science67, 328–334.

Bass C, Denholm I, Williamson M S, Nauen R. 2015. The global status of insect resistance to neonicotinoid insecticides. Pesticide Biochemistry and Physiology121, 78–87.

Berticat C, Boquien G, Raymond M, Chevillon C. 2002. Insecticide resistance genes induce a mating competition cost in Culex pipiens mosquitoes. Genetical Research79, 41–47.

Chen X W, Li F, Chen A Q, Ma K S, Liang P Z, Liu Y, Song D L, Gao X W. 2017. Both point mutations and low expression levels of the nicotinic acetylcholine receptor β1 subunit are associated with imidacloprid resistance in an Aphis gossypii (Glover) population from a Bt cotton field in China. Pesticide Biochemistry and Physiology14, 1–8.

Chen X W, Tang C Y, Ma K S, Xia J, Song D L, Gao X W. 2020. Overexpression of UDP-glycosyltransferase potentially involved in insecticide resistance in Aphis gossypii Glover collected from Bt cotton fields in China. Pest Management Science76, 1371–1377.

Chi H. 2021. TWOSEX-MSChart: A Computer program for the age-stage, two-sex life table analysis. National Chung Hsing University of China. [2021-10-30]. http://140.120.197.173/ecology/products.htm

Chi H, You M S, Atlıhan R, Smith C L, Kavousi A, Özgökçe M S, Güncan A, Tuan S J, Fu J W, Xu Y Y, Zheng F Q, Ye B H, Chu D, Yu Y, Gharekhani G, Saska P, Gotoh T, Schneider M I, Bussaman P, Gökçe A, et al. 2020. Age-stage, two-sex life table: An introduction to theory, data analysis, and application. Entomologia Generalis40, 103–124.

Cutler P, Slater R, Edmunds A J, Maienfisch P, Hall R G, Earley F G, Pitterna T, Pal S, Paul V L, Goodchild J, Blacker M, Hagmann L, Crossthwaite A J. 2013. Investigating the mode of action of sulfoxaflor: A fourth-generation neonicotinoid. Pest Management Science69, 607–619.

Ffrench-Constant R H, Bass C. 2017. Does resistance really carry a fitness cost? Current Opinion in Insect Science21, 39–46.

Guo T F, Ma Y P, Ding R R, Du J, Zhou J, Li G P, Cai X L, Wang G P, Zhao F Q, Li J S, Shi X Y, Gao X W. 2012. Resistance of the Aphis gossypii populations from main cotto area in Xinjiang to imidacloprid and acetamiprid. China Cotton39, 4–5, 10. (in Chinese)

Guo T F, Shi X Y, Gao X W, Liu X N. 2014. Cross-resistance to, and synergists of, acetamiprid in Aphis gossypiiChinese Journal of Applied Entomology51, 819–826. (in Chinese)

Huang Y B, Chi H. 2013. Life tables of Bactrocera cucurbitae (Diptera: Tephritidae): with an invalidation of the jackknife technique. Journal of Applied Entomology137, 327–339.

IRAC (Insecticide Resistance Action Committee). 2023. The IRAC mode of action classification online. IRAC. [2023-4-12]. https://irac-online.org/mode-of-action/classification-online/

Kliot A, Ghanim M. 2012. Fitness costs associated with insecticide resistance. Pest Management Science68, 1431–1437.

Koo H N, An J J, Park S E, Kim J I, Kim G H. 2014. Regional susceptibilities to 12 insecticides of melon and cotton aphid, Aphis gossypii (Hemiptera: Aphididae) and a point mutation associated with imidacloprid resistance. Crop Protection55, 91–97.

Li R, Liang P Z, Cheng S H, Xue H, Guo T F, Lü N N, Liang P, Xie X P, Gao X W. 2021. Determination of resistance and cross-resistance to imidacloprid and sulfoxaflor in field populations of Aphis gossypii in China. Journal of Plant Protection48, 1104–1113. (in Chinese)

Li X A, Wang C, Li Q C, Zhu S G, Tian X J, Zhang Y H, Li X R, Gao H F, Liu E L, Wang L D, Zhu X. 2021. Field-evolved sulfoxaflor resistance of three wheat aphid species in China. Agronomy11, 2325.

Liao X, Jin R H, Zhang X L, Ali E, Mao K K, Xu P F, Li J H, Wan H. 2019a. Characterization of sulfoxaflor resistance in the brown planthopper, Nilaparvata lugens (Stål). Pest Management Science75, 1646–1654.

Liao X, Mao K K, Ali E, Jin R H, Li Z, Li W H, Li J H, Wan H. 2019b. Inheritance and fitness costs of sulfoxaflor resistance in Nilaparvata lugens (Stål). Pest Management Science75, 2981–2988.

Liao X, Mao K K, Ali E, Zhang X L, Wan H, Li J H. 2017. Temporal variability and resistance correlation of sulfoxaflor susceptibility among Chinese populations of the brown planthopper Nilaparvata lugens (Stål). Crop Protection102, 141–146.

Liao X, Xu P F, Gong P P, Wan H, Li J H. 2021. Current susceptibilities of brown planthopper Nilaparvata lugens to triflumezopyrim and other frequently used insecticides in China. Insect Science28, 115–126.

Longhurst C, Babcock J M, Denholm I, Gorman K, Thomas J D, Sparks T C. 2013. Cross-resistance relationships of the sulfoximine insecticide sulfoxaflor with neonicotinoids and other insecticides in the whiteflies Bemisia tabaci and Trialeurodes vaporariorumPest Management Science69, 809–813.

Ma K S, Tang Q L, Xia J, Lv N N, Gao X W. 2019a. Fitness costs of sulfoxaflor resistance in the cotton aphid, Aphis gossypii Glover. Pesticide Biochemistry and Physiology158, 40–46.

Ma K S, Tang Q L, Zhang B Z, Liang P, Wang B M, Gao X W. 2019b. Overexpression of multiple cytochrome P450 genes associated with sulfoxaflor resistance in Aphis gossypii Glover. Pesticide Biochemistry and Physiology157, 204–210.

Ma K S, Wang J H, Xie X P, Gao X W. 2021. Status and management strategies of neonicotinoid insecticide resistance in Aphis gossypii Glover. Journal of Plant Protection48, 947–957. (in Chinese)

Mao K K, Zhang X L, Ali E, Liao X, Jin R H, Ren Z J, Wan H, Li J H. 2019. Characterization of nitenpyram resistance in Nilaparvata lugens (Stål). Pesticide Biochemistry and Physiology157, 26–32.

Mokbel E S M S. 2018. Resistance risk assessment: Realized heritability, cross resistance and resistance stability of acetamiprid in the cotton aphid, Aphis gossypii Glover (Homoptera: Aphididae). Journal of Plant Protection Research58, 328–334.

Padovez F E O, Rubens K H, Omoto C, Guidolin A S. 2022. Fitness costs associated with chlorantraniliprole resistance in Spodoptera frugiperda (Lepidoptera: Noctuidae) strains with different genetic backgrounds. Pest Management Science78, 1279–1286.

Patima W, Guo P P, Ma S J, Gao X W, Zhang L J, Zhang S, Ma D Y. 2019. Resistance of different field populations of Aphis gossypii to ten insecticides in Xinjiang. Plant Protection45, 273–278. (in Chinese)

Pym A, Umina A P, Reidy-Crofts J, Troczka J B, Matthews A, Gardner J, Hunt J B, Van Rooyen R A, Edwards R O, Bass C. 2022. Overexpression of UDP-glucuronosyltransferase and cytochrome P450 enzymes confers resistance to sulfoxaflor in field populations of the aphid, Myzus persicaeInsect Biochemistry and Molecular Biology143, 103743.

Reyihanguli A, Aihemaiti W, Wei X Z, Yu H, Kuang M. 2019. Overview of main cotton diseases and insect pests in Xinjiang in 2019. China Cotton46, 7–9. (in Chinese)

Reyihanguli A, Yiliya’er D, Aihemaitijiang N, Wei X Z, Kuang M. 2021. Overview of main cotton diseases and insect pests in Xinjiang in 2020. China Cotton48, 10–12, 16. (in Chinese)

Rivero A, Magaud A, Nicot A, Vézilier J. 2011. Energetic cost of insecticide resistance in Culex pipiens mosquitoes. Journal of Medical Entomology48, 694–700.

Roush R T, Mckenzie J A. 1987. Ecological genetics of insecticide and acaricide resistance. Annual Review of Entomology32, 361–380.

Savin N E, Robertson J L, Russell R M. 1977. A critical evaluation of bioassay in insecticide research: likelihood ratio yests of dose-mortality regression. Bulletin of the Entomological Society of America23, 257–266.

Shah R M, Shad S A, Abbas N. 2017. Methoxyfenozide resistance of the housefly, Musca domestica L. (Diptera: Muscidae): cross-resistance patterns, stability and associated fitness costs. Pest Management Science73, 254–261.

Song X Y, Peng Y X, Wang L X, Ye W N, Pei X G, Zhang Y C, Zhang S, Gao C F, Wu S F. 2022. Monitoring, cross-resistance, inheritance, and fitness costs of brown planthoppers, Nilaparvata lugens, resistance to pymetrozine in China. Pest Management Science78, 3980–3987.

Sparks T C, Watson G B, Loso M R, Geng C, Babcock J M, Thomas J D. 2013. Sulfoxaflor and the sulfoximine insecticides: Chemistry, mode of action and basis for efficacy on resistant insects. Pesticide Biochemistry and Physiology107, 1–7.

Ullah F, Gul H, Tariq K, Desneux N, Gao X W, Song D L. 2021. Acetamiprid resistance and fitness costs of melon aphid, Aphis gossypii: An age-stage, two-sex life table study. Pesticide Biochemistry and Physiology171, 104729.

Valmorbida I, Coates B S, Hodgson E W, Ryan M, O’neal M E. 2022. Evidence of enhanced reproductive performance and lack-of-fitness costs among soybean aphids, Aphis glycines, with varying levels of pyrethroid resistance. Pest Management Science78, 2000–2010.

Wang K Y, Guo Q L, Xia X M, Wang H Y, Liu T X. 2007. Resistance of Aphis gossypii (Homoptera: Aphididae) to selected insecticides on cotton from five cotton production regions in Shandong, China. Journal of Pesticide Science32, 372–378.

Wang L, Cui L, Wang Q Q, Chang Y P, Huang W L, Rui C H. 2022. Sulfoxaflor resistance in Aphis gossypii: Resistance mechanism, feeding behavior and life history changes. Journal of Pest Science95, 811–825.

Wang L, Wang Q Q, Wang Q Y, Rui C H, Cui L. 2020. The feeding behavior and life history changes in imidacloprid-resistant Aphis gossypii Glover (Homoptera: Aphididae). Pest Management Science76, 1402–1412.

Wang L, Zhu J S, Cui L, Wang Q Q, Huang W L, Ji X J, Yang Q J, Rui C H. 2021a. Overexpression of ATP-binding cassette transporters associated with sulfoxaflor resistance in Aphis gossypii Glover. Pest Management Science77, 4064–4072.

Wang L, Zhu J S, Cui L, Wang Q Q, Huang W L, Yang Q J, Ji X J, Rui C H. 2021b. Overexpression of multiple UDP-glycosyltransferase genes involved in sulfoxaflor resistance in Aphis gossypii Glover. Journal of Agricultural and Food Chemistry69, 5198–5205.

Wang Z H, Gong Y J, Chen J C, Su X C, Cao L J, Hoffmann A A, Wei S J. 2018. Laboratory selection for resistance to sulfoxaflor and fitness costs in the green peach aphid Myzus persicaeJournal of Asia-Pacific Entomology21, 408–412.

Wang Z J, Liang C R, Shang Z Y, Yu Q T, Xue C B. 2021. Insecticide resistance and resistance mechanisms in the melon aphid, Aphis gossypii, in Shandong, China. Pesticide Biochemistry and Physiology172, 104768.

Watson G B, Siebert M W, Wang N X, Loso M R, Sparks T C. 2021. Sulfoxaflor - A sulfoximine insecticide: Review and analysis of mode of action, resistance and cross-resistance. Pesticide Biochemistry and Physiology178, 104924.

Wei M F, Chi H, Guo Y F, Li X W, Zhao L L, Ma R Y. 2020. Demography of Cacopsylla chinensis (Hemiptera: Psyllidae) reared on four cultivars of Pyrus bretschneideri (Rosales: Rosaceae) and P. communis pears with estimations of confidence intervals of specific life table statistics. Journal of Economic Entomology113, 2343–2353.

Zhang H B, Du H. 2004. The development of the insecticide acetamiprid in China. Zhejiang Chemical Industry35, 32–33, 29. (in Chinese)

Zhang H H, Chen A Q, Shan T S, Dong W Y, Shi X Y, Gao X W. 2020. Cross-resistance and fitness cost analysis of resistance to thiamethoxam in melon and cotton aphid (Hemiptera: Aphididae). Journal of Economic Entomology113, 1946–1954.

Zhao P C, Li Y, Yan W J, Zhang Y D, Wu N, Wang J G. 2018. Sensitivity of different geographical populations of Aphis gossypii (Glover) in Xinjiang to different insecticides. Journal of Shihezi University36, 159–163. (in Chinese)

[1] XIN Juan-juan, YU Wen-xin, YI Xiao-qing, GAO Jun-ping, GAO Xi-wu, ZENG Xiao-peng. Sublethal effects of sulfoxaflor on the fitness of two species of wheat aphids, Sitobion avenae (F.) and Rhopalosiphum padi (L.)[J]. >Journal of Integrative Agriculture, 2019, 18(7): 1613-1623.
No Suggested Reading articles found!