Please wait a minute...
Journal of Integrative Agriculture  2023, Vol. 22 Issue (6): 1740-1749    DOI: 10.1016/j.jia.2022.08.125
Plant Protection Advanced Online Publication | Current Issue | Archive | Adv Search |

Characterization of wheat monogenic lines with known Sr genes and wheat cultivars for resistance to three new races of Puccinia graminis f. sp. tritici in China

WU Xian-xin1, 2*, ZANG Chao-qun3*, ZHANG Ya-zhao2, XU Yi-wei2, WANG Shu4, LI Tian-ya2#, GAO Li1#

1 State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, P.R.China

2 College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, P.R.China

3 Institute of Plant Protection, Liaoning Academy of Agricultural Sciences, Shenyang 110161, P.R.China

4 Agronomy College, Shenyang Agricultural University, Shenyang 110866, P.R.China

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

由禾柄锈菌(Puccinia graminis f. sp. tritici)引起的小麦秆锈病是小麦生产中最为严重的真菌病害之一,严重威胁着全球小麦的安全生产。种植抗病品种是防治该病害最为经济有效的方法,而抗病品种的选育要以小麦秆锈菌种群毒力变化为依据。为此,我们持续不断的开展小麦秆锈菌种群毒力变异监测工作,在鉴定中发现了3个来自于小麦秆锈菌转主寄主小檗上产生的锈孢子的新小种34C0MRGQM34C3MKGQM34C6MTGSM,特别是发现小种34C0MRGQM34C6MTGSM对我国小麦抗病育种中广泛使用的抗病基因Sr5Sr11具有联合毒力,在我国鉴定的13310个菌株中尚未发现对Sr5Sr11具有联合毒力的菌株。为此,本研究利用42已知小麦秆锈病抗病基因(Sr)的小麦品系对这3个小种的毒力特征进行了分析,同时鉴定了69份我国主要小麦品种对这3个小种在苗期和成株期的抗性水平。结果表明含有Sr9eSr17Sr21Sr22Sr26Sr30Sr31Sr33Sr35Sr36Sr37Sr38Sr47SrTmpSrTt3的单基因系在苗期和成株期对34C0MRGQM34C3MKGQM34C6MTGSM均具有良好的抗性。相反,含有Sr5Sr6Sr7bSr9aSr9dSr9fSr9gSr9bSr16Sr24Sr28Sr39的单基因系在苗期和成株期都对这些小种高度感病。含有Sr8aSr10Sr11Sr13Sr14Sr15Sr18Sr20Sr19Sr23Sr25Sr27Sr29Sr32Sr34单基因品系对供试小种中的一个或2个表现抗性。在供试的69份小麦材料中,有41份小麦品种对供试小种在苗期和成株期都表现出良好的抗性,占59.4%。进一步分子检测表明,有20个品种可能含有抗病基因Sr319个品种含有Sr384个品种含有Sr2,没有检测到含有Sr24Sr25Sr26的品种。研究结果开展兼抗高致病性的Ug99及我国小麦秆锈菌抗病基因的合理利用与抗病育种提供理论依据



Abstract  

Wheat stem rust, caused by Puccinia graminis f. sp. tritici (Pgt), is a potentially devastating fungal disease of wheat worldwide.  The present study was to evaluate the resistance of 42 wheat monogenic lines with known stem rust resistance (Sr) genes and 69 wheat cultivars to three new Pgt races (34C0MRGQM, 34C3MKGQM, and 34C6MTGSM) identified from aeciospores at the seedling and adult-plant stages.  The phenotyping results revealed that monogenic lines harboring resistance genes Sr9e, Sr17, Sr21, Sr22, Sr26, Sr30, Sr31, Sr33, Sr35, Sr36, Sr37, Sr38, Sr47, SrTmp, and SrTt3 were effectively resistant to all three Pgt races at the seedling and adult-plant stages.  In contrast, monogenic lines containing Sr5, Sr6, Sr7b, Sr9a, Sr9d, Sr9f, Sr9g, Sr9b, Sr16, Sr24, Sr28, and Sr39 were highly susceptible to these races at both seedling and adult-plant stages.  The other lines with Sr8a, Sr10, Sr11, Sr13, Sr14, Sr15, Sr18, Sr20, Sr19, Sr23, Sr25, Sr27, Sr29, Sr32, and Sr34, displayed variable levels of resistance to one or two of the tested races.  Seedling infection types (ITs) and adult-plant infection responses (IRs) indicated that 41 (59.4%) of the wheat cultivars showed high resistance to all the three races.  Molecular marker analysis showed that four wheat culitvars likely carried Sr2, 20 wheat culitvars likely carried Sr31, 9 wheat culitvars likely carried Sr38, and none of the cultivars carried Sr24, Sr25, and Sr26.  Our results provide a scientific basis for rational utilization of the tested Sr genes and wheat cultivars against these novel Pgt races. 

Keywords:  wheat stem rust        Puccinia graminis f. sp.Tritici        wheat cultivars        resistance genes  
Received: 06 April 2022   Online: 24 June 2022   Accepted: 25 May 2022
Fund: 

This study was supported by the Natural Science Foundation of Liaoning Province, China (2020-MS-204) and the National Natural Science Foundation of China (31701738).  

About author:  WU Xian-xin, E-mail: 2019200128@stu.syau.edu.cn; #Correspondence LI Tian-ya, E-mail: litianya11@syau.edu.cn; GAO Li, E-mail: xiaogaosx@hotmail.com * These authors contributed equally to this study.

Cite this article: 

WU Xian-xin, ZANG Chao-qun, ZHANG Ya-zhao, XU Yi-wei, WANG Shu, LI Tian-ya, GAO Li. 2023.

Characterization of wheat monogenic lines with known Sr genes and wheat cultivars for resistance to three new races of Puccinia graminis f. sp. tritici in China . Journal of Integrative Agriculture, 22(6): 1740-1749.

Bhattacharya S. 2017. Deadly new wheat disease threatens Europe’s crops. Nature, 542, 145-146.

Cao Y Y, Si B B, Zhu G Q, Xu X F, Li W H, Chen S, Zhao J, Li T Y. 2019. Races and virulence of asexual and sexual populations of Puccinia graminis f. sp. tritici in China from 2009 to 2015. European Journal of Plant Pathology, 153, 545-555.

Cao Y Y, Yao P, Zhu G Q, Liu W Z, Wu Y S. 1996. Application of computer to inferring stem rust resistance genes commercial wheat cultivars. Scientia Agricultura Sinica29, 89-91 (in Chiense)

Chen S S, Rouse M N, Zhang W J, Zhang X Q, Guo Y, Briggs J, Dubcovsky J. 2020. Wheat gene Sr60 encodes a protein with two putative kinase domains that confers resistance to stem rust. New Phytologist225, 948-959.

Dong J Z, Yang J S, Wu W, Wu Y S. 1986. The application of three mathematical models in the research of the wheat slow-rusting resistance. Journal of Heilongjiang Bayi Agricultural University2, 1-8 (in Chiense)

Flor HH. 1971. Current status of the gene-for-gene concept. Annual Review of Phytopathology9, 275-296.

FAO (Food and Agricultural Organization). 2017. The state of food security and nutrition in the world. FAO, Rome.

He Z H, Xia X C, Chen W Q. 2008. Breeding for resistance to new race Ug99 of stem rust pathogen. Journal of Triticeae Crops28, 170-173.

Jin Y. 2011. Role of Berberis spp. as alternate hosts in generating new races of Puccinia graminis and P. striiformis. Euphytica179, 105-108.

Jin Y, Singh R P, Ward R W, Wanyera R, Kinyua M, Njau P, Fetch T, Pretorius Z A, Yahyaoui A. 2007. Characterization of seedling infection types and adult plant infection responses of monogenic Sr gene lines to race TTKS of Puccinia graminis f. sp. tritici. Plant Disease91, 1096-1099.

Li T Y, Cao Y Y, Wu X X, Xu X F, Wang W L. 2016a. Seedling resistance to stem rust and molecular marker analysis of resistance genes in wheat cultivars of Yunnan, China. PLoS ONE11, e0165640.

Li T Y, Wu X X, Xu X F, Wang W L, Cao Y Y. 2016b. Postulation of seedling stem rust resistance genes of Yunnan wheat cultivars in China. Plant Protection Science4, 242-249.

Li T Y, Ma Y C, Wu X X, Chen S, Xu X F, Wang H, Cao Y Y, Xuan Y H. 2018. Race and virulence characterization of Puccinia graminis f. sp. tritici in China. PloS ONE13, e0197579.

Lin Q, Gao Y, Wu X, Ni X, Chen R, Xuan Y, Li T. 2021. Evaluation of resistance to wheat stem rust and identification of resistance genes in wheat lines from Heilongjiang province. Peer J, 9, e10580.

McIntosh R A, Dubcovsky J, Rogers J, Morris C, Appels R, Xia X C. 2016. Catalogue of gene symbols for wheat: 2015-2016 supplement. Annual Wheat Newsletter58, 1-18.

Moscou M J, van Esse P H. 2017. The quest for durable resistance. Science358, 1541-1542.

Olivera P, Newcomb M, Szabo L J, Rouse M, Johnson J, Gale S, Luster D G, Hodson D, Cox J A, Burgin L, Hort M, Gilligan C A, Patpour M, Justesen A F, Hovmøller M S, Woldeab G, Hailu E, Hundie B, Tadesse K, Pumphrey M, Singh R P, Jin Y. 2015. Phenotypic and genotypic characterization of race TKTTF of Puccinia graminis f. sp. tritici that caused a wheat stem rust Epidemic in Southern Ethiopia in 2013-14. Phytopathology105, 917-928.

Pardey P G, Beddow J M, Kriticos D J, Hurley T M, Park R F, Duveiller E, Sutherst R W, Burdon J J, Hodson D. 2013. Right-sizing stem-rust research. Science340, 147-148.

Periyannan S, Moore J, Ayliffe M, Bansal U, Wang X J, Huang L, Deal K, Luo M C, Kong X Y, Bariana H, Mago R, Mclntosh R, Dodds P, Dvorak J, Lagudah E. 2013. The gene Sr33, an ortholog of barley Mla genes, encodes resistance to wheat stem rust race Ug99. Science341, 786-788.

Peterson PD. 2018. The barberry eradication program in Minnesota for stem rust control: A case study. Annual Review of Phytopathology56, 203-223.

Peterson R F, Campbell A B, Hannah A E. 1948. A diagrammatic scale for estimating rust intensity of leaves and stem of cereals. Canadian Journal of Research, 26, 496-500.

Roelfs AP, Singh RP, Saari EE. 1992. Rust diseases of wheat: concepts and methods of disease management. CIMMYT, Mexico, D.F.

Singh R P, Hodson D P, Huerta-Espino J, Jin Y, Bhavani S, Njau P, Herrera-Foessel S, Singh P K, Singh S, Govindan V. 2011. The emergence of Ug99 races of the stem rust fungus in a threat to world wheat production. Annual Review of Phytopathology49, 465-481.

Spielmeyer W, Sharp P J, Lagudah E S. 2003. Identification and validation of markers linked to broad-spectrum stem rust resistance gene Sr2 in wheat (Triticum aestivum L.). Crop Science43, 333-336.

Stakman E C, Levin M N, Cotter R U. 1930. Origin of physiologic forms of Puccinia graminis through hybridization and mutation. Scientific Agriculture10, 707-720.

Stakman E C, Stewart D M, Loegering W Q. 1962. Identification of physiologic races of Puccinia graminis var. tritici. Washington, D.C.: United States Department of Agriculture, Agricultural Research Service, 1-53.

Wu Y S, Huang Z T. 1987. Twenty year’s racial identification and fluctuation analysis of Puccinia graminis var. tritici in China. Journal of Shenyang Agricultural University18, 105-108 (in Chiense).

Wu X X, Lin Q Q, Ni X Y, Qian S, Rong Z C, Xu X F, Qiu Y C, Li T Y. 2020. Characterization of wheat monogenic lines with known Sr genes and wheat lines with resistance to the Ug99 race group for resistance to prevalent races of Puccinia graminis f. sp. tritici in China. Plant disease, 104, 1939-1943.

Xu X F, Li D D, Liu Y, Gao Y, Wang Z Y, Ma Y C, Yang S, Cao Y Y, Xuan Y H, Li T Y. 2017. Evaluation and identification of stem rust resistance genes Sr2, Sr24, Sr25, Sr26, Sr31 and Sr38 in wheat lines from Gansu Province in China. Peer J, 5, e4146.

Xu X F, Yuan D P, Li D D, Gao Y Y, Wang Z Y, Liu Y, Wang S T, Xuan Y H, Zhao H, Li T Y, Wu Y H. 2018. Identification of stem rust resistance genes in wheat cultivars in China using molecular markers. Peer J, 6, e4882.

Yao P, Cao Y Y, Liu W Z, Wu Y S. 1997. Race population trend of Puccinia graminis f. sp. tritici in 1990-1994 in China. Plant Protection24, 297-302 (in Chiense)

Yao P, Cao Y Y, Zhang S S. 1998. Race dynamics analysis of Puccinia graminis f. sp. tritici in China. Plant Protection24, 3-6 (in Chiense)

Zhang S K, Zhang Y W, Wu Y S. 1987. Inheritance of resistance to Chinese stem rust (Puccinia graminis var. tritici) in four wheat vabieties as important resistant sources. Acta Phytopathologica  Sinica17, 69-77 (in Chiense)

Zhao J, Zhao S L, Chen X M, Wang Z Y, Wang Z, Yao J N, Chen W, Huang L L, Kang Z S. 2015. Determination of the role of Berberis spp. in wheat stem rust in China. Plant Disease99, 1113-1117.

[1] Yue Jin, Matt Rouse , Jim Groth. Population Diversity of Puccinia graminis is Sustained Through Sexual Cycle on Alternate Hosts[J]. >Journal of Integrative Agriculture, 2014, 13(2): 262-264.
[2] LIU Tai-guo, WANG Xi, GAO Li, LIU Bo, CHEN Wan-quan , XIANG Wen-sheng. A FIASCO-Based Approach for Detection and Diagnosis of Puccinia graminis f. sp. tritici in China[J]. >Journal of Integrative Agriculture, 2014, 13(11): 2438-2444.
No Suggested Reading articles found!