Please wait a minute...
Journal of Integrative Agriculture  2014, Vol. 13 Issue (6): 1320-1330    DOI: 10.1016/S2095-3119(13)60612-7
Plant Protection Advanced Online Publication | Current Issue | Archive | Adv Search |
Synthesis and Insecticidal Activity of Novel Camptothecin Derivatives Containing Analogs of Chrysanthemic Acid Moieties
 DENG Li, ZHANG Lan, CAO Li-dong, XIE Ru-liang, ZHANG Yan-ning, HE Wei-zhi , JIANG Hong-yun
State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, P.R.China
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  Creating high-efficient and environment-friendly pesticides is very important to produce the pollution free agriculture food and maintain the balance of the survival environmental of the human being. According to reports, camptothecin (CPT) and its derivatives are now being explored as a class of botanical insecticide in agriculture due to its novel mode of action. In order to improve the insecticidal activity of CPT, ten novel camptothecin (1) and 10-hydroxycamptothecin (2) derivatives (1a, 1b, 1c, 1d, 1e; 2a, 2b, 2c, 2d, 2e) were designed and synthesized via esterification with analogs of chrysanthemic acid, which have outstanding insecticidal activity. The results showed that compound 2a exhibited potent antifeeding effect and the best contact toxicity among the target compounds against the third-instar larvae of beet armyworm, Spodoptera exigua Hübner. Compound 2a was also found to be the most effective cytotoxic compound to the tested insect cell lines, IOZCAS-Spex-II, which were established from the fat bodies of S. exigua. It was proposed that the 10-hydroxyl group in the camptothecin derivatives is a key factor for the antifeeding activity of a compound. The nature of the substituents was considered the major factor in determining the insecticidal activity of these compounds.

Abstract  Creating high-efficient and environment-friendly pesticides is very important to produce the pollution free agriculture food and maintain the balance of the survival environmental of the human being. According to reports, camptothecin (CPT) and its derivatives are now being explored as a class of botanical insecticide in agriculture due to its novel mode of action. In order to improve the insecticidal activity of CPT, ten novel camptothecin (1) and 10-hydroxycamptothecin (2) derivatives (1a, 1b, 1c, 1d, 1e; 2a, 2b, 2c, 2d, 2e) were designed and synthesized via esterification with analogs of chrysanthemic acid, which have outstanding insecticidal activity. The results showed that compound 2a exhibited potent antifeeding effect and the best contact toxicity among the target compounds against the third-instar larvae of beet armyworm, Spodoptera exigua Hübner. Compound 2a was also found to be the most effective cytotoxic compound to the tested insect cell lines, IOZCAS-Spex-II, which were established from the fat bodies of S. exigua. It was proposed that the 10-hydroxyl group in the camptothecin derivatives is a key factor for the antifeeding activity of a compound. The nature of the substituents was considered the major factor in determining the insecticidal activity of these compounds.
Keywords:  camptothecin       analogs of chrysanthemic acid       synthesis       antifeeding activity       contact toxicity       cytotoxicity  
Received: 02 May 2013   Accepted:
Fund: 

This work has been supported by the National Natural Science Foundation of China (31171878, 31071707 and 31000851).

Corresponding Authors:  JIANG Hong-yun, Tel/Fax: +86-10-62893622, E-mail: hyjiang6281@gmail.com     E-mail:  hyjiang6281@gmail.com
About author:  DENG Li, Mobile: 15371011200, E-mail: dengli1102@126.com

Cite this article: 

DENG Li, ZHANG Lan, CAO Li-dong, XIE Ru-liang, ZHANG Yan-ning, HE Wei-zhi , JIANG Hong-yun. 2014. Synthesis and Insecticidal Activity of Novel Camptothecin Derivatives Containing Analogs of Chrysanthemic Acid Moieties. Journal of Integrative Agriculture, 13(6): 1320-1330.

Dayan F E, Cantrell C L, Duke S O. 2009. Natural products in crop protection. Bioorganic & Medicinal Chemistry, 17, 4022-4034

 DeMilo A B, Borkovec A B. 1974. Camptothecin, a potent chemosterilant against the house fly. Journal of Economic Entomology, 67, 457-458

 Duke S O, Cantrell C L, Meepagala K M, Wedge D E, Tabanca N, Schrader K K. 2010. Natural toxins for use in pest management. Toxins (Basel), 2, 1943-1962

 Elliott M, Janes N F, Potter C. 1978. The future of pyrethroids in insect control. Annual Review of Entomology, 23, 443- 469.

Gao R, Gao C, Tian X, Yu X, Di X, Xiao H, Zhang X. 2004. Insecticidal activity of deoxypodophyllotoxin, isolated from Juniperus sabina L., and related lignans against larvae of Pieris rapae L. Pest Management Science, 60, 1131-1136

 He X, Lu W, Jiang X, Cai J, Zhang X, Ding J. 2004. Synthesis and biological evaluation of bis and monocarbonate prodrugs of 10-hydroxycamptothecins. Bioorganic & Medicinal Chemistry, 12, 4003-4008

 Hsiang Y H, Lihou M G, Liu L F. 1989. Arrest of replication forks by drug-stabilized topoisomerase I-DNA cleavable complexes as a mechanism of cell killing by camptothecin. Cancer Research, 49, 5077-5082

 Hsiang Y H, Liu L F. 1988. Identification of mammalian DNA topoisomerase I as an intracellular target of the anticancer drug camptothecin. Cancer Research, 48, 1722-1726

 Hu Q, Han B Y, Ma J Y, Tang J. 2009. Field efficiency trials on Empoasca vitis Gothe with extractive from the leaf of Camptotheca acuminate. China Tea, 31, 32-33 (in Chinese)

Isman M B. 2006. Botanical insecticides, deterrents, and repellents in modern agriculture and an increasingly regulated world. Annual Review of Entomology, 51, 45-66

 Jiang H Y. 2008. Study on the insecticidal activity and mechanism of bioactive ingredient from the seeds of Camptotheca acuminata Decne and its derivatives. Ph D thesis, China Agricultural University, China. (in Chinese)

Katsuda Y. 2012. Progress and future of pyrethroids. Topics in Current Chemistry, 314, 1-30

 Li Y Y, You Q D, Wang L, Chen S, Chen X G, Li Y, Li H Y. 2006. 20(S)-20-O-camptothecin β-aminopropionate: novel synthesis and antitumor activity in vitro Chemical Research in Chinese Universities, 22, 727-731

 Liu Y Q, Liu Y, Zhao Y L, Li H Y. 2010. Synthesis of novel derivatives of camptothecin as potential insecticides. Pesticide Biochemistry and Physiology, 98, 219-223

 Lorence A, Medina B F, Nessler C L. 2004. Camptothecin and 10-hydroxycamptothecin from Camptotheca acuminata hairy roots. Plant Cell Reports, 22, 437-441

 Oliveira F M, Barbosa L C A, Teiseira R R, Demuner A J, Maltha C R A, Silva G A, Paula V F D. 2012. Synthesis and insecticidal activity of new phosphoramidates. Journal of Pesticide Science (Tokyo, Japan), 37, 85-88

 Redinbo M R. 1998. Crystal structures of human topoisomerase I in covalent and noncovalent complexes with DNA. Science, 279, 1504-1513

 Riva E, Comi D, Borrelli S, Colombo F, Danieli B, Borlak J, Evensen L, Lorens J B, Fontana G, Gia O M, Via L D, Passarella D. 2010. Synthesis and biological evaluation of new camptothecin derivatives obtained by modification of position 20. Bioorganic & Medicinal Chemistry, 18, 8660-8668

 Stewart L, Champoux J J. 1999. Methods in molecular biology. In: Osheroff N, Bjornsti M A, eds., Assaying DNA Topoisomerase I Relaxation Activity. vol. 95. Humana Press, Totowa, NJ. pp. 1-11

 Tong S M, Wang P W, Zhang L Q, Ma J Y, Sheng X Q. 2009. Insecticidal effect of camptothecin against Nilaparvata lugens, Brevicoryne brassicae and Chilo suppressalis Walker. Acta Agriculturae Zhejiangensis, 21, 288-292 (in Chinese)

Wall M E, Wani M C, Cook C E, Palmer K H, McPhail A T, Sim G A. 1966. Plant antitumor agents. I. The isolation and structure of camptothecin, a novel alkaloidal leukemia and tumor inhibitor from Camptotheca acuminata. Journal of the American Chemical Society, 88, 3888-3890

 Wang Y, Li L, Jiang W, Larrick J W. 2005. Synthesis and evaluation of a DHA and 10-hydroxycamptothecin conjugate. Bioorganic & Medicinal Chemistry, 13, 5592- 5599.

Zhang H, Zhang Y A, Qin Q, Li X, Miao L, Wang Y, Qu L, Zhang A, Yang Q. 2009. A cell strain cloned from Spodoptera exigua cell line (IOZCAS-Spex-II) highly susceptible to S. exigua nucleopolyhedrovirus infection. In Vitro Cellular & Developmental Biology-Animal, 45, 201-204

 Zhang L, Zhang Y, He W, Ma D, Jiang H. 2012. Effects of camptothecin and hydroxycamptothecin on insect cell lines Sf21 and IOZCAS-Spex-II. Pest Management Science, 68, 652-657

 Zhou S F, Zhang Y P, Chen M Y, Li D S, Zhang B X. 2010. Influence of camptothecin to Bactrocera dorsalis Hendel adults. Guangzhou Agricultural Sciences, 37, 89-92. (in Chinese)
[1] Haifeng Xu, Guifang Wang, Xinying Ji, Kun Xiang, Tao Wang, Meiyong Zhang, Guangning Shen, Rui Zhang, Junpei Zhang, Xin Chen. JrATHB-12 mediates JrMYB113 and JrMYB27 to control the anthocyanin levels in different types of red walnut[J]. >Journal of Integrative Agriculture, 2024, 23(8): 2649-2661.
[2] Chengxian Sun, Yaoguo Qin, Julian Chen, Zhengxi Li. The biosynthesis of alarm pheromone in the wheat aphid Rhopalo-siphum padi is regulated by hormones via fatty acid metabolism[J]. >Journal of Integrative Agriculture, 2024, 23(7): 2346-2361.
[3] Mingzhuo Li, Wenzhao Wang, Yeru Wang, Lili Guo, Yajun Liu, Xiaolan Jiang, Liping Gao, Tao Xia.

Duplicated chalcone synthase (CHS) genes modulate flavonoid production in tea plants in response to light stress [J]. >Journal of Integrative Agriculture, 2024, 23(6): 1940-1955.

[4] Qian Chen, Shunyuan Yong, Fan Xu, Hao Fu, Jiangbo Dang, Qiao He, Danlong Jing, Di Wu, Guolu Liang, Qigao Guo.

EjGASA6 promotes flowering and root elongation by enhancing gibberellin biosynthesis [J]. >Journal of Integrative Agriculture, 2024, 23(5): 1568-1579.

[5] Xinlong Gao, Fan Li, Yikun Sun, Jiaqi Jiang, Xiaolin Tian, Qingwen Li, Kaili Duan, Jie Lin, Huiquan Liu, Qinhu Wang.

Basal defense is enhanced in a wheat cultivar resistant to Fusarium head blight [J]. >Journal of Integrative Agriculture, 2024, 23(4): 1238-1258.

[6] YANG Wei-bing, ZHANG Sheng-quan, HOU Qi-ling, GAO Jian-gang, WANG Han-Xia, CHEN Xian-Chao, LIAO Xiang-zheng, ZHANG Feng-ting, ZHAO Chang-ping, QIN Zhi-lie.

Transcriptomic and metabolomic analysis provides insights into lignin biosynthesis and accumulation and differences in lodging resistance in hybrid wheat [J]. >Journal of Integrative Agriculture, 2024, 23(4): 1105-1117.

[7] WANG Kang-kang, JIN Meng-jiao, LI Jing-jing, REN Ye-song, LI Zai-yuan, REN Xing-hai, HUANG Cong, WAN Fang-hao, QIAN Wan-qiang, LIU Bo.

The evolution and diurnal expression patterns of photosynthetic pathway genes of the invasive alien weed, Mikania micrantha [J]. >Journal of Integrative Agriculture, 2024, 23(2): 590-604.

[8] CHANG Yao-jun, CHEN Guo-song, YANG Guang-yan, SUN Cong-rui, WEI Wei-lin, Schuyler S. KORBAN, WU Jun. The PcERF5 promotes anthocyanin biosynthesis in red-fleshed pear (Pyrus communis) through both activating and interacting with PcMYB transcription factors[J]. >Journal of Integrative Agriculture, 2023, 22(9): 2687-2704.
[9] XIE Dong-wei, LI Jing, ZHANG Xiao-yu, DAI Zhi-gang, ZHOU Wen-zhi, SU Jian-guang, SUN Jian. Systematic analysis of MYB transcription factors and the role of LuMYB216 in regulating anthocyanin biosynthesis in the flowers of flax (Linum usitatissimum L.)[J]. >Journal of Integrative Agriculture, 2023, 22(8): 2335-2345.
[10] XU Yan-xia, ZHANG Jing, WAN Zi-yun, HUANG Shan-xia, DI Hao-chen, HE Ying, JIN Song-heng. Physiological and transcriptome analyses provide new insights into the mechanism mediating the enhanced tolerance of melatonin-treated rhododendron plants to heat stress[J]. >Journal of Integrative Agriculture, 2023, 22(8): 2397-2411.
[11] WANG Xing-long, ZHU Yu-peng, YAN Ye, HOU Jia-min, WANG Hai-jiang, LUO Ning, WEI Dan, MENG Qing-feng, WANG Pu. Irrigation mitigates the heat impacts on photosynthesis during grain filling in maize [J]. >Journal of Integrative Agriculture, 2023, 22(8): 2370-2383.
[12] DING Yong-gang, ZHANG Xin-bo, MA Quan, LI Fu-jian, TAO Rong-rong, ZHU Min, Li Chun-yan, ZHU Xin-kai, GUO Wen-shan, DING Jin-feng. Tiller fertility is critical for improving grain yield, photosynthesis and nitrogen efficiency in wheat[J]. >Journal of Integrative Agriculture, 2023, 22(7): 2054-2066.
[13] CHEN Guang-yi, PENG Li-gong, LI Cong-mei, TU Yun-biao, LAN Yan, WU Chao-yue, DUAN Qiang, ZHANG Qiu-qiu, YANG Hong, LI Tian. Effects of the potassium application rate on lipid synthesis and eating quality of two rice cultivars[J]. >Journal of Integrative Agriculture, 2023, 22(7): 2025-2040.
[14] LIU Zhen-yu, LI Yi-yang, Leila. I. M. TAMBEL, LIU Yu-ting, DAI Yu-yang, XU Ze, LENG Xin-hua, ZHANG Xiang, CHEN De-hua, CHEN Yuan. Enhancing boll protein synthesis and carbohydrate conversion by the application of exogenous amino acids at the peak flowering stage increased the boll Bt toxin concentration and lint yield in cotton[J]. >Journal of Integrative Agriculture, 2023, 22(6): 1684-1694.
[15] ZHOU Rong, YANG Yalan, LIU Ying, CHEN Jie, YANG Bing, TANG Zhong-lin. High serum reproductive hormone levels at mid-pregnancy support Meishan pig prolificacy[J]. >Journal of Integrative Agriculture, 2023, 22(11): 3489-3499.
No Suggested Reading articles found!