Please wait a minute...
Journal of Integrative Agriculture  2014, Vol. 13 Issue (3): 499-506    DOI: 10.1016/S2095-3119(13)60705-4
Section 1: Biochar Characters and Impacts Advanced Online Publication | Current Issue | Archive | Adv Search |
Does Biochar Addition Influence the Change Points of Soil Phosphorus Leaching?
 ZHAOXiao-rong, LIDan, KONGJuan, LINQi-mei
College of Resource and Environmental Sciences, China Agricultural University, Beijing 100193, R.R.China
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  Phosphorus change point indicating the threshold related to P leaching, largely depends on soil properties. Increasing data have shown that biochar addition can improve soil retention capacity of ions. However, we have known little about weather biochar amendment influence the change point of P leaching. In this study, two soils added with 0, 5, 10, 20, and 50 g biochar kg-1 were incubated at 25°C for 14 d following adjusting the soil moisture to 50% water-holding capacity (WHC). The soils with different available P values were then obtained by adding a series of KH2PO4 solution (ranging from 0 to 600 mg P kg-1 soil), and subjecting to three cycles of drying and rewetting. The results showed that biochar addition significantly lifted the P change points in the tested soils, together with changes in soil pH, organic C, Olen-P and CaCl2-P but little on exchangeable Ca and Mg, oxalate-extractable Fe and Al. The Olsen-P at the change points ranged from 48.65 to 185.07 mg kg-1 in the alluvial soil and 71.25 to 98.65 mg kg-1 in the red soil, corresponding to CaCl2-P of 0.31-6.49 and 0.18-0.45 mg L-1, respectively. The change points of the alluvial soil were readily changed by adding biochar compared with that of the red soil. The enhancement of change points was likely to be explained as the improvement of phosphate retention ability in the biochar-added soils.

Abstract  Phosphorus change point indicating the threshold related to P leaching, largely depends on soil properties. Increasing data have shown that biochar addition can improve soil retention capacity of ions. However, we have known little about weather biochar amendment influence the change point of P leaching. In this study, two soils added with 0, 5, 10, 20, and 50 g biochar kg-1 were incubated at 25°C for 14 d following adjusting the soil moisture to 50% water-holding capacity (WHC). The soils with different available P values were then obtained by adding a series of KH2PO4 solution (ranging from 0 to 600 mg P kg-1 soil), and subjecting to three cycles of drying and rewetting. The results showed that biochar addition significantly lifted the P change points in the tested soils, together with changes in soil pH, organic C, Olen-P and CaCl2-P but little on exchangeable Ca and Mg, oxalate-extractable Fe and Al. The Olsen-P at the change points ranged from 48.65 to 185.07 mg kg-1 in the alluvial soil and 71.25 to 98.65 mg kg-1 in the red soil, corresponding to CaCl2-P of 0.31-6.49 and 0.18-0.45 mg L-1, respectively. The change points of the alluvial soil were readily changed by adding biochar compared with that of the red soil. The enhancement of change points was likely to be explained as the improvement of phosphate retention ability in the biochar-added soils.
Keywords:  biochar       soil       phosphorus       change point  
Received: 09 October 2013   Accepted:
Fund: 

This research was supported by the National Natural Science Foundation of China (41071206) and the Key Technologies R&D Program of China during the 11th Five-Year Plan period (2008BADA7B05).

Corresponding Authors:  LIN Qi-mei, Tel: +86-10-62732502, E-mail: linqm@cau.edu.cn     E-mail:  linqm@cau.edu.cn
About author:  ZHAO Xiao-rong, Tel: +86-10-62732502, E-mail: zhaoxr@cau.edu.cn

Cite this article: 

ZHAOXiao-rong , LIDan , KONGJuan , LINQi-mei . 2014. Does Biochar Addition Influence the Change Points of Soil Phosphorus Leaching?. Journal of Integrative Agriculture, 13(3): 499-506.

Asai H, Samson B K, Stephan H M, Songyikhangsuthor K, Homma K, Kiyono Y, Inoue Y, Shiraiwa T, HorieT.2009. Biochar amendment techniques for upland rice production in Northern Laos 1. Soil physical properties,leaf SPAD and grain yield. Field Crops Research, 111,81-84

Beesley L, Moreno-Jiménez E, Gomez-Eyles J L. 2010.Effects of biochar and greenwaste compost amendmentson mobility, bioavailability and toxicity of inorganic andorganic contaminants in a multi-element polluted soil.Environmental Pollution, 158, 2282-2287

Blake L, Hesketh N, Fortune S, Brookes P C. 2002.Assessing phosphorus ‘change-points’ and leachingpotential by isotopic exchange and sequential fractionation. Soil Use and Management, 18, 199-207

Brookes P C, Heckrath G, de Smet J, Hofman G,Vanderdeelen J. 1997. Losses of phosphorus in drainagewater. In: Tunney H, Carton O T, Brookes P C,Johnston A E, eds., Phosphorus Loss from Soil to Water.Guildford and King’s Lynn, UK. pp. 253-271

Collison M, Collison L, Sakrabani R, Tofield B, Wallage Z. 2009. Biochar and carbon sequestration: A regional perspective. In: Low Carbon Innovation Centre Report for East of England Development Agency (EEDA). CRCPress, Boca Raton. pp. 517-530

 Denyes M J, Rutter A, Zeeb B A. 2013. In situ application of activated carbon and biochar to PCB-contaminated soil and the effects of mixing regime. Environmental Pollution, 182, 201-208

 Fortune S, Lu J, Addiscott T M, Brookes P C. 2005. Assessment of phosphorus leaching losses from arable land. Plant and Soil, 269, 99-108

 Glaser B, Lehmann J, Zech W. 2002. Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal - a review. Biology and Fertility of Soils, 35, 219-230

 Gundale M J, DeLuca T H. 2006. Temperature and substrate influence the chemical properties of charcoal in the ponderosa pine/Douglas-fir ecosystem. Forest Ecology and Management, 231, 86-93

 Heckrath G, Brookes P C, Poulton P R, Goulding K W T. 1995. Phosphorus leaching from soil containing different phosphorus concentrations in the Broadbalk experiment. Journal of Environmental Quality, 24, 904-910

 Hesketh N, Brookes P C. 2000. Development of an indicator for risk of phosphorus leaching. Journal of Environmental Quality, 29, 105-110

 Kalembassa S J, Jenkinson D S. 1997. A comparative study of titrametic and gravimetric methods for the determination of organic carbon in soils. Journal of the Science of Food and Agriculture, 24, 1085-1090

 Kleinman P J A, Sharpley A N, McDowell R W, Flaten D N, Buda A R, Tao L, Bergstrom L, Zhu Q. 2011. Managing agricultural phosphorus for water quality protection: principles for progress. Plant and Soil, 349, 169-182

 Koopmans J F, McDowell R W, Chardon W J, Oenema O, Dolfing J. 2002. Soil phosphorus quantity-intensity relationships to predict increased soil phosphorus loss to overland and subsurface flow. Chemosphere, 48, 679- 687.

Laird D A, Fleming P, Davis D D, Horton R, Wang B Q, Karlen D L. 2010a. Impact of biochar amendments on the quality of a typical Midwestern agricultural soil. Geoderma, 158, 443-449

 Laird D A, Fleming P D, Wang B, Horton R, Karlen D L. 2010b. Biochar impact on nutrient leaching from a midwestern agricultural soil. Geoderma, 158, 436-442

 Lehmann J. 2007. Bio-energy in the black. Frontiers in Ecology and the Environment, 5, 381-387

 Lehmann J, Lan Z, Hyland C, Sato S, Solomon D, Ketterings Q M. 2005. Long-term dynamics of phosphorus forms and retention in manure-amended soils. Environmental Science and Technology, 39, 6672-6680

 Lehmann J, da Silva Jr J P, Steiner C, Nehls T, Zech W, Glaser B. 2003. Nutrient availability and leaching in an archaeological Anthrosol and a Ferralsol of the Central Amazon basin: fertilizer, manure and charcoal amendments. Plant and Soil, 249, 343-357

 Li X P, Shi X J, Liu P, Sui T. 2011. Environmental risk assessment about purple soil phosphorus loss-its phosphorus ‘change-point’. Chinese Journal of Soil Science, 45, 1153-1158 (in Chinese)

Liang B, Lehmann J, Solomon D. 2006. Black carbon increases cation exchange capacity in soils. Soil Science Society of America Journal, 70, 1719-1730

 Maguire R O, Sims J T. 2002. Soil testing to predict phosphorus leaching. Journal of Environmental Quality, 31, 1601-1609

 Major J, Lehmann J, Rondon M, Goodale C. 2010. Fate of soil-applied black carbon: downward migration, leaching and soil respiration. Global Change Biology, 16, 1366- 1379.

Murphy J, Riley J P. 1962. A modified single solution method for the determination of phosphate in natural waters. Analytica Chimica Acta, 27, 31-36

 Neri U, Diana G, Indiati R. 2005. Change point in phosphorus release from variously managed soils with contrasting properties. Communications in Soil Science and Plant Analysis, 36, 2227-2237

 Novak J M, Busscher W J, Laird D L, Ahmedna M, Watts D W, Niandou M A S. 2009. Impact of biochar amendment on fertility of a southeastern coastal plain soil. Soil Science, 174, 105-112

 Oguntunde P G, Abiodun B J, Ajayi A E, van de Giesen N. 2008. Effects of charcoal production on soil physical properties in Ghana. Journal of Plant Nutrition and Soil Science, 171, 591-596

 Peng X, Ye L L, Wang C H, Zhou H, Sun B. 2011. Temperature- and duration-dependent rice straw-derived biochar: Characteristics and its effects on soil properties of an Ultisol in southern China. Soil & Tillage Research, 112, 159-166

 Self-Davis M L, Moore P A, Joern B C. 2000. Determination of water- and/or dilute salt-extractable phosphorus. In: Pierzynski G M, ed., Methods of Phosphorus Analysis for Soils, Sediments, Residuals, And Waters. Southern Cooperative Series Bulletin No. 396. North Carolina State University, Raleigh. pp. 24-26

 Sharpley A N, Chapra S C,Wedepohl R, Sims J T, Daniel T C, Reddy K R. 1994. Managing agricultural phosphorus for protection of surface waters: issues and options. Journal of Environmental Quality, 23, 437-451

 Steiner C, Teixeira W G, Lehmann J, Nehls T, de Macêdo J L V, Blum W E H, Zech W. 2007. Long term effects of manure, charcoal and mineral fertilization on crop production and fertility on a highly weathered central Amazonian upland soil. Plant and Soil, 291, 275-290

 Thomas G. 1982. Exchangeable cations. In: Page A L, Miller R H, Keeney D R, eds., Methods of Soil Analysis. Part 2 Chemical and Microbiological Properties. 2nd ed. American Society of Agronomy, Madison, Wisconsin, USA. pp. 159-165

 Xu G, Wei L L, Sun J N, Shao H B, Chang S X. 2013. What is more important for enhancing nutrient bioavailability with biochar application into a sandy soil: Direct or indirect mechanism? Ecological Engineering, 52, 119- 124.

Yao Y, Gao B, Zhang M, Inyang M, Zimmerman A R. 2012. Effect of biochar amendment on sorption and leaching of nitrate, ammonium, and phosphate in a sandy soil. Chemosphere, 89, 1467-1471

 Yuan J H, Xu R K. 2010. The amelioration effects of low temperature biochar generated from nine crop residues on an acidic Ultisol. Soil Use and Management, 27, 110- 115.

Zhao X R, Zhong X Y, Bao H J, Li H H, Li G T, Tuo D B, Lin Q M, Brookes P C. 2007. Relating soil P concentrations at which P movement occurs to soil properties in Chinese agricultural soils. Geoderma, 142, 237-244

 Zhang J H, Lin Q M, Zhao X R. 2014. The hydrochar characters of municipal sewage sludge under different hydrothermal temperatures and durations. Journal of Integrative Agriculture, 13, 471-482

 van Zwieten L, Kimber S, Morris S, Chan Y K, Downie A, Rust J, Joseph S, Cowie A. 2010. Effect of biochar from slow pyrolysis of papermill waste on agronomic performance and soil fertility. Plant and Soil, 327, 235- 246.
[1] Xiaotong Liu, Siwei Liang, Yijia Tian, Xiao Wang, Wenju Liang, Xiaoke Zhang. Effect of land use on soil nematode community composition and co-occurrence network relationship[J]. >Journal of Integrative Agriculture, 2024, 23(8): 2807-2819.
[2] Xianglin Zhang, Jie Xue, Songchao Chen, Zhiqing Zhuo, Zheng Wang, Xueyao Chen, Yi Xiao, Zhou Shi. Improving model performance in mapping cropland soil organic matter using time-series remote sensing data[J]. >Journal of Integrative Agriculture, 2024, 23(8): 2820-2841.
[3] Sainan Geng, Lantao Li, Yuhong Miao, Yinjie Zhang, Xiaona Yu, Duo Zhang, Qirui Yang, Xiao Zhang, Yilun Wang. Nitrogen rhizodeposition from corn and soybean, and its contribution to the subsequent wheat crops[J]. >Journal of Integrative Agriculture, 2024, 23(7): 2446-2457.
[4] Wenjie Yang, Jie Yu, Yanhang Li, Bingli Jia, Longgang Jiang, Aijing Yuan, Yue Ma, Ming Huang, Hanbing Cao, Jinshan Liu, Weihong Qiu, Zhaohui Wang. Optimized NPK fertilizer recommendations based on topsoil available nutrient criteria for wheat in drylands of China[J]. >Journal of Integrative Agriculture, 2024, 23(7): 2421-2433.
[5] Guilong Li, Xiaofen Chen, Wenjing Qin, Jingrui Chen, Ke Leng, Luyuan Sun, Ming Liu, Meng Wu, Jianbo Fan, Changxu Xu, Jia Liu.

Characteristics of the microbial communities regulate soil multi-functionality under different cover crop amendments in Ultisol [J]. >Journal of Integrative Agriculture, 2024, 23(6): 2099-2111.

[6] Qianqian Chen, Qian Zhao, Baoxing Xie, Xing Lu, Qi Guo, Guoxuan Liu, Ming Zhou, Jihui Tian, Weiguo Lu, Kang Chen, Jiang Tian, Cuiyue Liang.

Soybean (Glycine max) rhizosphere organic phosphorus recycling relies on acid phosphatase activity and specific phosphorus-mineralizing-related bacteria in phosphate deficient acidic soils [J]. >Journal of Integrative Agriculture, 2024, 23(5): 1685-1702.

[7] Shanshan Cai, Lei Sun, Wei Wang, Yan Li, Jianli Ding, Liang Jin, Yumei Li , Jiuming Zhang, Jingkuan Wang, Dan Wei.

Straw mulching alters the composition and loss of dissolved organic matter in farmland surface runoff by inhibiting the fragmentation of soil small macroaggregates [J]. >Journal of Integrative Agriculture, 2024, 23(5): 1703-1717.

[8] Jialin Yang, Liangqi Ren, Nanhai Zhang, Enke Liu, Shikun Sun, Xiaolong Ren, Zhikuan Jia, Ting Wei, Peng Zhang.

Can soil organic carbon sequestration and the carbon management index be improved by changing the film mulching methods in the semiarid region? [J]. >Journal of Integrative Agriculture, 2024, 23(5): 1541-1556.

[9] Ping Xu, Hao Li, Haiyuan Li, Ge Zhao, Shengjie Dai, Xiaoyu Cui, Zhenning Liu, Lei Shi, Xiaohua Wang.

Genome-wide and candidate gene association studies identify BnPAP17 as conferring the utilization of organic phosphorus in oilseed rape [J]. >Journal of Integrative Agriculture, 2024, 23(4): 1134-1149.

[10] Haiqing Gong, Yue Xiang, Jiechen Wu, Laichao Luo, Xiaohui Chen, Xiaoqiang Jiao, Chen Chen.

Integrating phosphorus management and cropping technology for sustainable maize production [J]. >Journal of Integrative Agriculture, 2024, 23(4): 1369-1380.

[11] Jie Song, Dongsheng Yu, Siwei Wang, Yanhe Zhao, Xin Wang, Lixia Ma, Jiangang Li. Mapping soil organic matter in cultivated land based on multi-year composite images on monthly time scales[J]. >Journal of Integrative Agriculture, 2024, 23(4): 1393-1408.
[12] Junyu Xie, Jianyong Gao, Hanbing Cao, Jiahui Li, Xiang Wang, Jie Zhang, Huisheng Meng, Jianping Hong, Tingliang Li, Minggang Xu. Calcium carbonate promotes the formation and stability of soil macroaggregates in mining areas of China[J]. >Journal of Integrative Agriculture, 2024, 23(3): 1034-1047.
[13] Weina Zhang, Zhigan Zhao, Di He, Junhe Liu, Haigang Li, Enli Wang.

Combining field data and modeling to better understand maize growth response to phosphorus (P) fertilizer application and soil P dynamics in calcareous soils [J]. >Journal of Integrative Agriculture, 2024, 23(3): 1006-1021.

[14] Minghui Cao, Yan Duan, Minghao Li, Caiguo Tang, Wenjie Kan, Jiangye Li, Huilan Zhang, Wenling Zhong, Lifang Wu.

Manure substitution improves maize yield by promoting soil fertility and mediating the microbial community in lime concretion black soil [J]. >Journal of Integrative Agriculture, 2024, 23(2): 698-710.

[15] Ping’an Zhang, Mo Li, Qiang Fu, Vijay P. Singh, Changzheng Du, Dong Liu, Tianxiao Li, Aizheng Yang.

Dynamic regulation of the irrigation–nitrogen–biochar nexus for the synergy of yield, quality, carbon emission and resource use efficiency in tomato [J]. >Journal of Integrative Agriculture, 2024, 23(2): 680-697.

No Suggested Reading articles found!