Please wait a minute...
Journal of Integrative Agriculture  2024, Vol. 23 Issue (6): 2099-2111    DOI: 10.1016/j.jia.2023.11.050
Agro-ecosystem & Environment Advanced Online Publication | Current Issue | Archive | Adv Search |

Characteristics of the microbial communities regulate soil multi-functionality under different cover crop amendments in Ultisol

Guilong Li1, 2, Xiaofen Chen1, 2, Wenjing Qin1, 2, Jingrui Chen1, 2, Ke Leng1, 2, Luyuan Sun1, 2, Ming Liu3, Meng Wu3, Jianbo Fan3, Changxu Xu1, 2, Jia Liu1, 2#

1 Soil and Fertilizer & Resources and Environment Institute, Jiangxi Academy of Agricultural Sciences, Nanchang 330200, China

2 Key Laboratory of Acidified Soil Amelioration and Utilization, Ministry of Agriculture and Rural Affairs, Nanchang 330200, China

3 Ecological Experimental Station of Red Soil, Chinese Academy of Sciences, Yingtan 335211, China

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

覆盖作物是调控土壤微生物群落的一种可持续措施,而土壤微生物群落对于多种土壤功能(即土壤多功能性)的实现至关重要。然而,在不同覆盖作物种植条件下,关于土壤微生物群落在调节土壤多功能性中的作用知之甚少。基于此,本研究评估了不同覆盖作物种植条件下(CK,冬闲;RD,肥田萝卜单播;HV,毛叶苕子单播;RDHV,肥田萝卜-毛叶苕子混播)土壤多功能性的变化;研究了土壤微生物丰富度、网络复杂度和生态集群对土壤多功能性的贡献。结果表明,与主作物植株化学性质差异较大的覆盖作物具有更高的土壤多功能性,且肥田萝卜-毛叶苕子混播下土壤多功能性最高。覆盖作物驱动的土壤微生物丰富度和网络复杂性的变化与土壤多功能性的提高有关。值得注意的是,土壤微生物网络中关键生态集群(生态集群2)中的特定微生物对于维持土壤的多功能性尤为重要。本研究结果强调了覆盖作物诱导的重要功能分类群的变化对于提升旱地红壤多功能性的重要性。



Abstract  

The use of cover crops is a promising strategy for influencing the soil microbial consortium, which is essential for the delivery of multiple soil functions (i.e., soil multifunctionality).  Nonetheless, relatively little is known about the role of the soil microbial consortium in mediating soil multifunctionality under different cover crop amendments in dryland Ultisols.  Here, we assessed the multifunctionality of soils subjected to four cover crop amendments (control, non-amended treatment; RD, radish monoculture; HV, hairy vetch monoculture; and RDHV, radish–hairy vetch mixture), and we investigated the contributions of soil microbial richness, network complexity, and ecological clusters to soil multifunctionality.  Our results demonstrated that cover crops whose chemical composition differed from that of the main plant crop promoted higher multifunctionality, and the radish–hairy vetch mixture rendered the highest enhancement.  We obtained evidence that changes in soil microbial richness and network complexity triggered by the cover crops were associated with higher soil multifunctionality.  Specifically, specialized microbes in a key ecological cluster (ecological cluster 2) of the soil microbial network were particularly important for maintaining soil multifunctionality.  Our results highlight the importance of cover crop-induced variations in functionally important taxa for promoting the soil multifunctionality of dryland Ultisols.

Keywords:  cover crops       soil multifunctionality       microbial richness       network complexity       ecological cluster   
Received: 11 July 2023   Accepted: 17 November 2023
Fund: This work was supported by the National Key Research and Development Program of China (2021YFD1901201-05), the China Agriculture Research System of MOF and MARA (CARS-22), the Special Program for Basic Research and Talent Training of Jiangxi Academy of Agricultural Sciences, China (JXSNKYJCRC202301 and JXSNKYJCRC202325), and the National Natural Science Foundation of China (32160766).
About author:  Guilong Li, Mobile: +86-13455171603, E-mail: glli@jxaas.cn; #Correspondence Jia Liu, Tel: +86-791-87090375, E-mail: liujia422@126.com

Cite this article: 

Guilong Li, Xiaofen Chen, Wenjing Qin, Jingrui Chen, Ke Leng, Luyuan Sun, Ming Liu, Meng Wu, Jianbo Fan, Changxu Xu, Jia Liu. 2024.

Characteristics of the microbial communities regulate soil multi-functionality under different cover crop amendments in Ultisol . Journal of Integrative Agriculture, 23(6): 2099-2111.

Ablimit R, Li W K, Zhang J D, Gao H N, Zhao Y M, Cheng M M, Meng X Q, An L Z, Chen Y. 2022. Altering microbial community for improving soil properties and agricultural sustainability during a 10-year maize-green manure intercropping in Northwest China. Journal of Environmental Management, 321, 115859.

Acharya J, Moorman T B, Kaspar T C, Lenssen A W, Robertson A E. 2020. Cover crop rotation effects on growth and development, seedling disease, and yield of corn and soybean. Plant Disease, 104, 677–687.

Bakker M G, Acharya J, Moorman T B, Robertson A E, Kaspar T C. 2016. The potential for cereal rye cover crops to host corn seedling pathogens. Phytopathology, 106, 591–601.

Banerjee S, Walder F, Buchi L, Meyer M, Held A Y, Gattinger A, Keller T, Charles R, van der Heijden M G A. 2019. Agricultural intensification reduces microbial network complexity and the abundance of keystone taxa in roots. The ISME Journal, 13, 1722–1736.

Barabote R D, Saier Jr M H. 2005. Comparative genomic analyses of the bacterial phosphotransferase system. Microbiology and Molecular Biology Reviews, 69, 608–634.

Bardgett R, Wardle D. 2010. Aboveground–Belowground Linkages: Biotic Interactions, Ecosystem Processes and Global Change. Oxford University Press, Oxford, UK.

Beltran M, Galantini J A, Salvagiotti F, Tognetti P, Bacigaluppo S, Sainz Rozas H R, Barraco M, Barbieri P A. 2021. Do soil carbon sequestration and soil fertility increase by including a gramineous cover crop in continuous soybean? Soil Science Society of America Journal, 85, 1380–1394.

Bolyen E, Rideout J R, Dillon M R, Bokulich N A, Abnet C C, Al-Ghalith G A, Alexander H, Alm E J, Arumugam M, Asnicar F, Bai Y, Bisanz J E, Bittinger K, Brejnrod A, Brislawn C J, Brown C T, Callahan B J, Caraballo-Rodríguez A M, Chase J, Cope E K, et al. 2019. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nature Biotechnology, 37, 852–857.

Callahan B J, McMurdie P J, Rosen M J, Han A W, Johnson A J A, Holmes S P. 2016. DADA2: High resolution sample inference from Illumina amplicon data. Nature Methods, 13, 581–583.

Cao W D, Xu C X. 2010. Technical Regulations for Production and Utilization of Green Manure Crops in Main Agricultural Areas of China. China Agricultural Science and Technology Press, Beijing. (in Chinese)

Chen W Q, Wang J Y, Chen X, Meng Z X, Xu R, Duoji D Z, Zhang J H, He J, Wang Z G, Chen J, Liu K X, Hu T M, Zhang Y J. 2022. Soil microbial network complexity predicts ecosystem function along elevation gradients on the Tibetan Plateau. Soil Biology and Biochemistry, 172, 108766.

Delgado-Baquerizo M, Maestre F T, Reich P B, Jeffries T C, Gaitan J J, Encinar D, Berdugo M, Campbell C D, Singh B K. 2016. Microbial diversity drives multifunctionality in terrestrial ecosystems. Nature Communications, 7, 1–8.

Delgado-Baquerizo M, Reich P B, Trivedi C, Eldridge D J, Abades S, Alfaro F D, Bastida F, Berhe A A, Cutler N A, Gallardo A, García-Velázquez L, Hart S C, Hayes P E, He J Z, Hseu Z Y, Hu H W, Kirchmair M, Neuhauser S, Pérez C A, Reed S C, et al. 2020. Multiple elements of soil biodiversity drive ecosystem functions across biomes. Nature Ecology and Evolution, 4, 210–220.

Drost S M, Rutgers M, Wouterse M, de Boer W, Bodelier P L E. 2020. Decomposition of mixtures of cover crop residues increases microbial functional diversity. Geoderma, 361, 114060.

Fan K K, Chu H Y, Eldridge D J, Gaitan J J, Liu Y R, Sokoya B, Wang J T, Hu H W, He J Z, Sun W, Cui H Y, Alfaro F D, Abades S, Bastida F, Díaz-López M, Bamigboye A R, Berdugo M, Blanco-Pastor J L, Grebenc T, Duran J, et al. 2023. Soil biodiversity supports the delivery of multiple ecosystem functions in urban greenspaces. Nature Ecology and Evolution, 7, 113–126.

Fan K K, Delgado-Baquerizo M, Guo X S, Wang D Z, Zhu Y G, Chu H Y. 2021. Biodiversity of key-stone phylotypes determines crop production in a 4-decade fertilization experiment. The ISME Journal, 15, 550–561.

Fanin N, Gundale M J, Farrell M, Ciobanu M, Baldock J A, Nilsson M, Kardol P, Wardle D A. 2018. Consistent effects of biodiversity loss on multifunctionality across contrasting ecosystems. Nature Ecology and Evolution, 2, 269–278.

Fernandez C W, Kennedy P G. 2016. Revisiting the ‘Gadgil effect’: Do interguild fungal interactions control carbon cycling in forest soils? New Phytologist, 209, 1382–1394.

Friedman J, Alm E J. 2012. Inferring correlation networks from genomic survey data. PLoS Computational Biology, 8, e1002687.

Furey G N, Tilman D. 2021. Plant biodiversity and the regeneration of soil fertility. Proceedings of the National Academy of Sciences of the United States of America, 118, e2111321118.

Gardes M, Bruns T D. 1993. ITS primers with enhanced specificity for basidiomycetes-application to the identification of mycorrhizae and rusts. Molecular Ecology, 2, 113–118.

Gilbert G S, Magarey R, Suiter K, Webb C O. 2012. Evolutionary tools for phytosanitary risk analysis: Phylogenetic signal as a predictor of host range of plant pests and pathogens. Evolutionary Applications, 5, 869–878.

Han Z Q, Xu P S, Li Z T, Lin H Y, Zhu C, Wang J Y, Zhou J E. 2022. Microbial diversity and the abundance of keystone species drive the response of soil multifunctionality to organic substitution and biochar amendment in a tea plantation. Global Change Biology Bioenergy, 14, 481–495.

Hu W G, Ran J Z, Dong L W, Du Q J, Ji M F, Yao S R, Sun Y, Gong C M, Hou Q Q, Gong H Y, Chen R F, Lu J L, Xie S B, Wang Z Q, Huang H, Li X W, Xiong J L, Xia R, Wei M H, Zhao D M, et al. 2021. Aridity-driven shift in biodiversity-soil multifunctionality relationships. Nature Communications, 12, 5350.

Huang S, Zhang W J, Yu X C, Huang Q R. 2010. Effects of long-term fertilization on corn productivity and its sustainability in an Ultisol of southern China. Agriculture Ecosystems and Environment, 138, 44–50.

Ingerslew K S, Kaplan I. 2018. Distantly related crops are not better rotation partners for tomato. Journal of Applied Ecology, 55, 2506–2516.

Islam R, Sherman B. 2021. Cover Crops and Sustainable Agriculture. Chemical & Rubber & Company Press, Boca Raton.

Jin L L, Xiang X J, Zhang J Y, Zhang J, Liu M, Qin W J, Chen J R, Chen X F, Xu C X, Liu J. 2021. Dramatic shifts in fungal communities following application of hairy vetch (Vicia villosa Roth L.) in upland of Ultisol. European Journal of Soil Biology, 106, 103349.

Kim N, Zabaloy M C, Guan K, Villamil M B. 2020. Do cover crops benefit soil microbiome? A meta-analysis of current research. Soil Biology and Biochemistry, 142, 107701.

Kong W B, Su F Y, Zhang Q, Ishii S, Sadowsky M J, Banerjee S, Shao M G, Qiu L P, Wei X R. 2022. Erosion and deposition divergently affect the structure of soil bacterial communities and functionality. Catena, 209, 105805.

Kurtz Z D, Müller C L, Miraldi E R, Littman D R, Blaser M J, Bonneau R A. 2015. Sparse and compositionally robust inference of microbial ecological networks. PLoS Computational Biology, 11, e1004226.

Lefcheck J. 2016. PIECEWISESEM: Piecewise structural equation modelling in R for ecology, evolution, and systematics. Methods in Ecology and Evolution, 7, 573–579.

Leng K, Liu J, Li G L, Wang P, Zhou P L, Sun M Z, Liu K L, Zhang J Y, Ma T T, Xiang X J. 2023. The relationship between core rhizosphere taxa and peanut nodulation capacity under different cover crop amendments. Agronomy, 13, 311.

Li G L, Li P F, Wu M, Liu K, Evangelos P, Liu J, Liu M, Li Z P. 2022. Variation in rhizosphere microbial communities and its association with the nodulation ability of peanut. Archives of Agronomy and Soil Science, 69, 759–770.

Li H, Yang S, Semenov M V, Yao F, Ye J, Bu R C, Ma R A, Lin J J, Kurganova I, Wang X G, Deng Y, Kravchenko I, Jiang Y, Kuzyakov Y. 2021. Temperature sensitivity of SOM decomposition is linked with a K-selected microbial community. Global Change Biology, 27, 2763–2779.

Li J, Delgado-Baquerizo M, Wang J T, Hu H W, Cai Z J, Zhu Y N, Singh B K. 2019. Fungal richness contributes to multifunctionality in boreal forest soil. Soil Biology and Biochemistry, 136, 107526.

Li K L, Zhang H Y, Li X L, Wang C, Zhang J L Jiang R F, Feng G, Liu X J, Zuo Y M, Yuan H M, Zhang C C, Gai J P, Tian J. 2021. Field management practices drive ecosystem multifunctionality in a smallholder-dominated agricultural system. Agriculture Ecosystems and Environment, 313, 107389.

Li P F, Liu J, Saleem M, Li G L, Luan L, Wu M, Li Z P. 2022. Reduced chemodiversity suppresses rhizosphere microbiome functioning in the mono-cropped agroecosystems. Microbiome, 10, 108.

Li X G, de Boer W, Zhang Y N, Ding C F, Zhang T L, Wang X X. 2018. Suppression of soil-borne Fusarium pathogens of peanut by intercropping with the medicinal herb Atractylodes lancea. Soil Biology and Biochemistry, 116, 120–130.

Li Y, Ge Y, Wang J C, Shen C C, Wang J L, Liu Y J. 2021. Functional redundancy and specific taxa modulate the contribution of prokaryotic diversity and composition to multifunctionality. Molecular Ecology, 30, 2915–2930.

Liang H, Fu L B, Chen H, Zhou G P, Gao S J, Cao W D. 2023. Green manuring facilitates bacterial community dispersal across different compartments of subsequent tobacco. Journal of Integrative Agriculture, 22, 1199–1215.

Liu X J, Hannula S E, Li X G, Hundscheid M P J, Klein-Gunnewiek P J A, Clocchiatti A, Ding W, de Boer W. 2021. Decomposing cover crops modify root-associated microbiome composition and disease tolerance of cash crop seedlings. Soil Biology and Biochemistry, 160, 108343.

Luo Y H, Cadotte M W, Liu J, Burgess K S, Tan S L, Ye L J, Zou J Y, Chen Z Z, Jiang X L, Li J, Xu K, Li D Z, Gao L M. 2022. Multitrophic diversity and biotic associations influence subalpine forest ecosystem multifunctionality. Ecology, 103, e3745.

Ma B, Wang H Z, Dsouza M, Lou J, He Y, Dai Z M, Brookes P C, Xu J M, Gilbert J A. 2016. Geographic patterns of co-occurrence network topological features for soil microbiota at continental scale in eastern China. The ISME Journal, 10, 1891–1901.

Ma L N, Zhang C X, Xu X F, Wang C W, Liu G F, Liang C Z, Zuo X A, Wang C J, Lv Y X, Wang R Z. 2022. Different facets of bacterial and fungal communities drive soil multifunctionality in grasslands spanning a 3,500 km transect. Functional Ecology, 36, 3120–3133.

Makhalanyane T P, Valverde A, Gunnigle E, Frossard A, Ramond J B, Cowan D A. 2015. Microbial ecology of hot desert edaphic systems. FEMS Microbiology Reviews, 39, 203–221.

Marinari S, Bonifacio E, Moscatelli M C, Falsone G, Antisari L V, Vianello G. 2013. Soil development and microbial functional diversity: Proposal for a methodological approach. Geoderma, 192, 437–445.

Morrien E, Hannula S E, Snoek L B, Helmsing N R, Zweers H, de Hollander M, Soto R L, Bouffaud M L, Buee M, Dimmers W, Duyts H, Geisen S, Girlanda M, Griffiths R I, Jorgensen H B, Jensen J, Plassart P, Redecker D, Schmelz R M, Schmidt O, et al. 2017. Soil networks become more connected and take up more carbon as nature restoration progresses. Nature Communications, 8, 14349.

Nguyen N H, Song Z W, Bates S T, Branco S, Tedersoo L, Menke J, Schilling J S, Kennedy P G. 2016. FUNGuild: An open annotation tool for parsing fungal community datasets by ecological guild. Fungal Ecology, 20, 241–248.

Nilsson R H, Larsson K H, Taylor A F S, Bengtsson-Palme J, Jeppesen T S, Schigel D, Kennedy P, Picard K, Glöckner F O, Tedersoo L, Saar I, Kõljalg U, Abarenkov K. 2019. The UNITE database for molecular identification of fungi: Handling dark taxa and parallel taxonomic classifications. Nucleic Acids Research, 47, D259–D264.

Pascault N, Ranjard L, Kaisermann A, Bachar D, Christen R, Terrat S, Mathieu O, Leveque J, Mougel C, Henault C, Lemanceau P, Pean M, Boiry S, Fontaine S, Maron P A. 2013. Stimulation of different functional groups of bacteria by various plant residues as a driver of soil priming effect. Ecosystems, 16, 810–822.

Pretty J. 2018. Intensification for redesigned and sustainable agricultural systems. Science, 362, eaav0294.

Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glöckner F O. 2013. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Research, 41, D590–D596.

R Core Team. 2022. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.

Rousk J, Brookes P C, Bååth E. 2011. Fungal and bacterial growth responses to N fertilization and pH in the 150-year ‘Park Grass’ UK grassland experiment. FEMS Microbiology Ecology, 76, 89–99.

Springmann M, Clark M, Mason-D’Croz D, Wiebe K, Bodirsky B L, Lassaletta L, de Vries W, Vermeulen S J, Herrero M, Carlson K M, Jonell M, Troell M, DeClerck F, Gordon L J, Zurayk R, Scarborough P, Rayner M, Loken B, Fanzo J, Godfray H C J, et al. 2018. Options for keeping the food system within environmental limits. Nature, 562, 519–525.

Toju H, Peay K G, Yamamichi M, Narisawa K, Hiruma K, Naito K, Fukuda S, Ushio M, Nakaoka S, Onoda Y, Yoshida K, Schlaeppi K, Bai Y, Sugiura R, Ichihashi Y, Minamisawa K, Kiers E T. 2018. Core microbiomes for sustainable agroecosystems. Nature Plants, 4, 247–257.

Venter Z, Jacobs K, Hawkins H. 2016. The impact of crop rotation on soil microbial diversity: A meta-analysis. Pedobiologia, 59, 215–223.

van der Voort M, Kempenaar M, van Driel M, Raaijmakers J M, Mendes R. 2016. Impact of soil heat on reassembly of bacterial communities in the rhizosphere microbiome and plant disease suppression. Ecology Letters, 19, 375–382.

Wang N, Xu R K, Li J Y. 2011. Amelioration of an acid Ultisol by agricultural by-products. Land Degradation and Development, 22, 513–518.

Wang Q, Garrity G M, Tiedje J M, Cole J R. 2007. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Applied and Environmental Microbiology, 73, 5261–5267.

Wang X Y, Liang C, Mao J D, Jiang Y J, Bian Q, Liang Y T, Chen Y, Sun B. 2023. Microbial key stone taxa drive succession of plant residue chemistry. The ISME Journal, 17, 748–757.

Wang Y F, Chen P, Wang F H, Han W X, Qiao M, Dong W X, Hu C S, Zhu D, Chu H Y, Zhu Y G. 2022. The ecological clusters of soil organisms drive the ecosystem multifunctionality under long-term fertilization. Environment International, 161, 107133.

Wagg C, Schlaeppi K, Banerjee S, Kuramae E E, van der Heijden M G A. 2019. Fungal-bacterial diversity and microbiome complexity predict ecosystem functioning. Nature Communications, 10, 4841.

Wear E K, Wilbanks E G, Nelson C E, Carlson C A. 2018. Primer selection impacts specific population abundances but not community dynamics in a monthly time-series 16S rRNA gene amplicon analysis of coastal marine bacterioplankton. Environmental Microbiology, 20, 2709–2726.

Wickings K, Grandy A S, Reed S C, Cleveland C C. 2012. The origin of litter chemical complexity during decomposition. Ecology Letters, 15, 1180–1188.

Wickings K, Stuart G A, Reed S, Cleveland C. 2011. Management intensity alters decomposition via biological pathways. Biogeochemistry, 104, 365–379.

Xie Z H, Yu Z H, Li Y S, Wang G H, Liu X B, Tang C X, Lian T X, Adams J, Liu J J, Liu J D, Herbert S J, Jin J. 2022. Soil microbial metabolism on carbon and nitrogen transformation links the crop-residue contribution to soil organic carbon. NPJ Biofilms and Microbiomes, 8, 14.

Yan H L, Gu S S, Li S Z, Shen W L, Zhou X L, Yu H, Ma K, Zhao Y G, Wang Y C, Zheng H, Deng Y, Lu G X. 2022. Grass-legume mixtures enhance forage production via the bacterial community. Agriculture Ecosystems and Environment, 338, 108087.

Yang G W, Ryo M, Roy J, Lammel D R, Ballhausen M B, Jing X, Zhu X F, Rillig M C. 2022. Multiple anthropogenic pressures eliminate the effects of soil microbial diversity on ecosystem functions in experimental microcosms. Nature Communications, 13, 4260.

Yang Y, Chai Y B, Xie H J, Zhang L, Zhang Z M, Yang X, Hao S L, Gai J P, Chen Y L. 2023. Responses of soil microbial diversity, network complexity and multifunctionality to three land-use changes. Science of the Total Environment, 859, 160255.

Yilmaz P, Parfrey L W, Yarza P, Gerken J, Pruesse M, Quast C, Schweer T, Peplies J, Ludwig W, Glöckner F O. 2014. The SILVA and “All-species Living Tree Project (LTP)” taxonomic frameworks. Nucleic Acids Research, 42, D643–D648.

Yu R P, Lambers H, Callaway R M, Wright A J, Li L. 2021. Belowground facilitation and trait matching: Two or three to tango? Trends in Plant Science, 26, 1227–1235.

Zhang B, Liang A Z, Wei Z B, Ding X L. 2019. No-tillage leads to a higher resistance but a lower resilience of soil multifunctionality than ridge tillage in response to dry-wet disturbances. Soil and Tillage Research, 195, 104376.

Zhang C Z, Xue W F, Xue J R, Zhang J, Qiu L J, Chen X Y, Hu F, Kardol P, Liu M Q. 2022. Leveraging functional traits of cover crops to coordinate crop productivity and soil health. Journal of Applied Ecology, 59, 2627–2641.

Zhang W P, Fornara D, Yang H, Yu R P, Callaway R M, Li L. 2023. Plant litter strengthens positive biodiversity-ecosystem functioning relationships overtime. Trends in Ecology and Evolution, 38, 473–484.

Zhou X, Liu L L, Zhao J, Zhang J B, Cai Z C, Huang X Q. 2022. High carbon resource diversity enhances the certainty of successful plant pathogen and disease control. New Phytologist, 237, 1333–1346.

Zhu D, Delgado-Baquerizo M, Su J Q, Ding J, Li H, Gillings M R, Penuelas J, Zhu Y G. 2021. Deciphering potential roles of earthworms in mitigation of antibiotic resistance in the soils from diverse ecosystems. Environmental Science and Technology, 55, 7445–7455.

Zuppinger-Dingley D, Schmid B, Petermann J, Yadav V, de Deyn G B, Flynn D F B. 2014. Selection for niche differentiation in plant communities increases biodiversity effects. Nature, 515, 108–111.

No related articles found!
No Suggested Reading articles found!