Adhikari K, Hartemink A E. 2016. Linking soils to ecosystem services - A global review. Geoderma, 262, 101–111.
Badgley G, Field C B, Berry J A. 2017. Canopy near-infrared reflectance and terrestrial photosynthesis. Science Advances, 3, e1602244.
Bannari A, Morin D, Bonn F, Huete A. 1995. A review of vegetation indices. Remote Sensing Reviews, 13, 95–120.
Bao S D. 2000. Soil Agrochemical Analysis. 3rd ed. China Agriculture Press, China. pp. 30–107. (in Chinese)
Breiman L. 2001. Random forests. Machine Learning, 45, 5–32.
Caubet M, Dobarco M R, Arrouays D, Minasny B, Saby N P A. 2019. Merging country, continental and global predictions of soil texture: Lessons from ensemble modelling in France. Geoderma, 337, 99–110.
Chen J M, Cihlar J. 1996. Retrieving leaf area index of boreal conifer forests using Landsat TM images. Remote Sensing of Environment, 55, 153–162.
Chen S C, Arrouays D, Leatitia Mulder V, Poggio L, Minasny B, Roudier P, Libohova Z, Lagacherie P, Shi Z, Hannam J, Meersmans J, Richer-de-Forges A C, Walter C. 2022. Digital mapping of GlobalSoilMap soil properties at a broad scale: A review. Geoderma, 409, 115567.
Chen S C, Liang Z Z, Webster R, Zhang G L, Zhou Y, Teng H F, Hu B F, Arrouays D, Shi Z. 2019. A high-resolution map of soil pH in China made by hybrid modelling of sparse soil data and environmental covariates and its implications for pollution. Science of the Total Environment, 655, 273–283.
Chen S C, Mulder V L, Heuvelink G B, Poggio L, Caubet M, Dobarco M R, Walter C, Arrouays D. 2020. Model averaging for mapping topsoil organic carbon in France. Geoderma, 366, 114237.
Chen S C, Xue J, Shi Z. 2023. Spectral-guided ensemble modelling for soil spectroscopic prediction. Geoderma, 437, 116594.
Chen Y, Ma L X, Yu D S, Zhang H D, Feng K Y, Wang X, Song J. 2022. Comparison of feature selection methods for mapping soil organic matter in subtropical restored forests. Ecological Indicators, 135, 108545.
Conrad O, Bechtel B, Bock M, Dietrich H, Fischer E, Gerlitz L, Wehberg J, Wichmann V, Böhner J. 2015. System for automated geoscientific analyses (SAGA) v. 2.1.4. Geoscientific Model Development, 8, 1991–2007.
Dobarco M R, Arrouays D, Lagacherie P, Ciampalini R, Saby N P A. 2017. Prediction of topsoil texture for Region Centre (France) applying model ensemble methods. Geoderma, 298, 67–77.
Drusch M, Del Bello U, Carlier S, Colin O, Fernandez V, Gascon F, Hoersch B, Isola C, Laberinti P, Martimort P, Meygret A, Spoto F, Sy O, Marchese F, Bargellini P. 2012. Sentinel-2: ESA’s optical high-resolution mission for GMES operational services. Remote Sensing of Environment, 120, 25–36.
Farr T G, Rosen P A, Caro E, Crippen R, Duren R, Hensley S, Kobrick M, Paller M, Rodriguez E, Roth L, Seal D, Shaffer S, Shimada J, Umland J, Werner M, Oskin M, Burbank D, Alsdorf D. 2007. The shuttle radar topography mission. Reviews of Geophysics, 45, doi: 10.1029/2005RG000183.
Fick S E, Hijmans R J. 2017. WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. International Journal of Climatology, 37, 4302–4315.
Friedman J H. 2001. Greedy function approximation: A gradient boosting machine. Annals of Statistics, 29, 1189–1232.
Gao B C. 1996. NDWI - A normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sensing of Environment, 58, 257–266.
Gitelson A A, Kaufman Y J, Merzlyak M N. 1996. Use of a green channel in remote sensing of global vegetation from EOS-MODIS. Remote Sensing of Environment, 58, 289–298.
Goldstein A, Turner W R, Spawn S A, Anderson-Teixeira K J, Cook-Patton S, Fargione J, Gibbs H K, Griscom B, Hewson J H, Howard J F, Ledezma J C, Page S, Koh L P, Rockström J, Sanderman J, Hole D G. 2020. Protecting irrecoverable carbon in Earth’s ecosystems. Nature Climate Change, 10, 287–295.
Gomes L C, Faria R M, de Souza E, Veloso G V, Schaefer C E G R, Filho E I F. 2019. Modelling and mapping soil organic carbon stocks in Brazil. Geoderma, 340, 337–350.
Gorelick N, Hancher M, Dixon M, Ilyushchenko S, Thau D, Moore R. 2017. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sensing of Environment, 202, 18–27.
Granger C W, Ramanathan R. 1984. Improved methods of combining forecasts. Journal of Forecasting, 3, 197–204.
Guyon I, Weston J, Barnhill S, Vapnik V. 2002. Gene selection for cancer classification using support vector machines. Machine Learning, 46, 389–422.
He X L, Yang L, Li A Q, Zhang L, Shen F X, Cai Y Y, Zhou C H. 2021. Soil organic carbon prediction using phenological parameters and remote sensing variables generated from Sentinel-2 images. Catena, 205, 105442.
Huete A, Didan K, Miura T, Rodriguez E P, Gao X, Ferreira L G. 2002. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sensing of Environment, 83, 195–213.
Huete A R. 1988. A soil-adjusted vegetation index (SAVI). Remote Sensing of Environment, 25, 295–309.
Jiang Z Y, Huete A R, Didan K, Miura T. 2008. Development of a two-band enhanced vegetation index without a blue band. Remote sensing of Environment, 112, 3833–3845.
Keesstra S D, Bouma J, Wallinga J, Tittonell P, Smith P, Cerdà A, Montanarella L, Quinton J N, Pachepsky Y, van der Putten W H, Bardgett R D, Moolenaar S, Mol G, Jansen B, Fresco L O. 2016. The significance of soils and soil science towards realization of the United Nations Sustainable Development Goals. Soil, 2, 111–128.
Keskin H, Grunwald S, Harris W G. 2019. Digital mapping of soil carbon fractions with machine learning. Geoderma, 339, 40–58.
Kuhn M. 2008. ‘Caret’, Classification and Regression Training. Journal of Statistical Software, 28, 1–26.
Kursa M B, Rudnicki W R. 2010. Feature selection with the Boruta package. Journal of Statistical Software, 36, 1–13.
Lagacherie P, McBratney A. 2006. Spatial Soil Information Systems and Spatial Soil Inference Systems: Perspectives for Digital Soil Mapping. vol. 31. Elsevier, USA. pp. 3–22.
Lal R. 2004. Soil carbon sequestration impacts on global climate change and food security. Science, 304, 1623–1627.
Liang D J, Lu X, Zhuang M H, Shi G, Hu C Y, Wang S X, Hao J M. 2021. China’s greenhouse gas emissions for cropping systems from 1978–2016. Scientific Data, 8, 171.
Liang Z Z, Chen S C, Yang Y Y, Zhao R Y, Shi Z, Viscarra Rossel R A. 2019. National digital soil map of organic matter in topsoil and its associated uncertainty in 1980’s China. Geoderma, 335, 47–56.
Liu E K, Yan C R, Mei X R, He W Q, Bing S H, Ding L P, Liu Q, Liu S, Fan T L. 2010. Long-term effect of chemical fertilizer, straw, and manure on soil chemical and biological properties in northwest China. Geoderma, 158, 173–180.
Liu F, Wu H Y, Zhao Y G, Li D C, Yang J L, Song X D, Shi Z, Zhu A X, Zhang G L. 2022. Mapping high resolution National Soil Information Grids of China. Science Bulletin, 67, 328–340.
Liu Y, Chen S C, Yu Q Y, Cai Z J, Zhou Q B, Bellingrath-Kimura S D, Wu W B. 2023. Improving digital mapping of soil organic matter in cropland by incorporating crop rotation. Geoderma, 438, 116620.
Luo C, Zhang X L, Wang Y H, Men Z B, Liu H J. 2022. Regional soil organic matter mapping models based on the optimal time window, feature selection algorithm and Google Earth Engine. Soil and Tillage Research, 219, 105325.
Malone B P, McBratney A B, Minasny B. 2011. Empirical estimates of uncertainty for mapping continuous depth functions of soil attributes. Geoderma, 160, 614–626.
Malone B P, Minasny B, Odgers N P, McBratney A B. 2014. Using model averaging to combine soil property rasters from legacy soil maps and from point data. Geoderma, 232, 34–44.
McBratney A B, Santos M L M, Minasny B. 2003. On digital soil mapping. Geoderma, 117, 3–52.
Møller A B, Beucher A M, Pouladi N, Greve M H. 2020. Oblique geographic coordinates as covariates for digital soil mapping. Soil, 6, 269–289.
Myneni R, Knyazikhin Y, Park T. 2021. MODIS/terra+aqua leaf area index/fpar 4-day l4 global 500m SIN grid v061 [data set], NASA EOSDIS land processes DAAC. [2023-1-08]. https://doi.org/10.5067/MODIS/MCD15A3H.061
Pearson K. 1895. VII. Note on regression and inheritance in the case of two parents. Proceedings of the Royal Society of London, 58, 240–242.
Poggio L, de Sousa L M, Batjes N H, Heuvelink G B M, Kempen B, Ribeiro E, Rossiter D. 2021. SoilGrids 2.0: Producing soil information for the globe with quantified spatial uncertainty. Soil, 7, 217–240.
Quinlan J R. 1993. Combining instance-based and model-based learning. In: Proceedings of the Tenth International Conference on Machine Learning. University of Massachusetts, Amherst, The United States of America. 236–243.
Richardson A D, Braswell B H, Hollinger D Y, Jenkins J P, Ollinger S V. 2009. Near-surface remote sensing of spatial and temporal variation in canopy phenology. Ecological Applications, 19, 1417–1428.
Richardson A J, Wiegand C. 1977. Distinguishing vegetation from soil background information. Photogrammetric Engineering and Remote Sensing, 43, 1541–1552.
Rouse Jr J W, Haas R H, Deering D, Schell J, Harlan J C. 1974. Monitoring the Vernal Advancement and Retrogradation (Green Wave Effect) of Natural Vegetation. Remote Sensing Center Texas A&M University College Station, Texas.
R Core Team. 2019. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria.
Running S, Mu Q Z, Zhao M S. 2015. MOD17A2H MODIS/terra gross primary productivity 8-Day L4 global 500m SIN grid V006 [dataset], NASA EOSDIS land processes DAAC. [2022-11-1]. https://doi.org/10.5067/MODIS/MOD17A2H.006
Running S, Mu Q Z, Zhao M S. 2017. MOD16A2 MODIS/terra net evapotranspiration 8-day L4 global 500m sin grid V006 [dataset], NASA EOSDIS land processes DAAC. [2022-10-15]. https://doi.org/10.5067/MODIS/MOD16A2.006
Sreenivas K, Dadhwal V K, Kumar S, Harsha G S, Mitran T, Sujatha G, Suresh G J R, Fyzee M A, Ravisankar T. 2016. Digital mapping of soil organic and inorganic carbon status in India. Geoderma, 269, 160–173.
Teng H F, Hu J, Zhou Y, Zhou L Q, Shi Z. 2019. Modelling and mapping soil erosion potential in China. Journal of Integrative Agriculture, 18, 251–264.
Tilman D, Balzer C, Hill J, Befort B L. 2011. Global food demand and the sustainable intensification of agriculture. Proceedings of the National Academy of Sciences of the United States of America, 108, 20260–20264.
Tucker C J. 1979. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sensing of Environment, 8, 127–150.
Vescovo L, Gianelle D. 2008. Using the MIR bands in vegetation indices for the estimation of grassland biophysical parameters from satellite remote sensing in the Alps region of Trentino (Italy). Advances in Space Research, 41, 1764–1772.
Vijith H, Dodge-Wan D. 2020. Applicability of MODIS land cover and Enhanced Vegetation Index (EVI) for the assessment of spatial and temporal changes in strength of vegetation in tropical rainforest region of Borneo. Remote Sensing Applications (Society and Environment), 18, 100311.
Wang N, Peng J, Xue J, Zhang X, Huang J, Biswas A, He Y, Shi Z. 2022. A framework for determining the total salt content of soil profiles using time-series Sentinel-2 images and a random forest-temporal convolution network. Geoderma, 409, 115656.
Wan Z, Hook S, Hulley G. 2015. MOD11A1 MODIS/terra land surface temperature/emissivity daily L3 global 1km SIN grid v006 [dataset], NASA EOSDIS land processes DAAC. [2022-12-3]. https://doi.org/10.5067/MODIS/MOD11A1
Wiesmeier M, Urbanski L, Hobley E, Lang B, von Lützow M, Marin-Spiotta E, van Wesemael B, Rabot E, Ließ M, Garcia-Franco N, Wollschläger U, Vogel H J, Kögel-Knabner I. 2019. Soil organic carbon storage as a key function of soils - A review of drivers and indicators at various scales. Geoderma, 333, 149–162.
Wilding L P. 1985. Spatial variability: Its documentation, accommodation and implication to soil surveys. In: Soil Spatial Variability Workshop. Wageningen, The Netherlands. pp. 166–194.
IUSS WRB. 2015. World reference base for soil resources 2014. Update 2015 International Soil Classification System for Naming Soils and Creating Legends for Soil Maps. Technical Report 106. FAO, Rome.
Xiao Y, Xue J, Zhang X L, Wang N, Hong Y S, Jiang Y F, Zhou Y, Teng H F, Hu B F, Lugato E, Richer-de-Forges A C, Arrouays D, Shi Z, Chen S C. 2022. Improving pedotransfer functions for predicting soil mineral associated organic carbon by ensemble machine learning. Geoderma, 428, 116208.
Xiong X, Grunwald S, Myers D B, Kim J, Harris W G, Comerford, N B. 2014. Holistic environmental soil-landscape modeling of soil organic carbon. Environmental Modelling & Software, 57, 202–215.
Xue J, Wang Y Y, Teng H F, Wang N, Li D L, Peng J, Biswas A, Shi Z. 2021. Dynamics of vegetation greenness and its response to climate change in Xinjiang over the past two decades. Remote Sensing, 13, 4063.
Xue J, Zhang X L, Chen S C, Hu B F, Wang N, Shi Z. 2024. Quantifying the agreement and accuracy characteristics of four satellite-based LULC products for cropland classification in China. Journal of Integrative Agriculture, 23, 283–297.
Xue J, Zhang X L, Chen S C, Lu R, Wang Z, Wang N, Hong Y S, Chen X Y, Xiao Y, Ma Y X, Shi Z. 2023. The validity domain of sensor fusion in sensing soil quality indicators. Geoderma, 438, 116657.
Yang L, Song M, Zhu A X, Qin C Z, Zhou C H, Qi F, Li X M, Chen Z Y, Gao B B. 2019. Predicting soil organic carbon content in croplands using crop rotation and Fourier transform decomposed variables. Geoderma, 340, 289–302.
Yao Y Q, Wang H Y. 2021. A review on optimal subsampling methods for massive datasets. Journal of Data Science, 19, 151–172.
Zeng Y L, Hao D L, Huete A, Dechant B, Berry J, Chen J M, Joiner J, Frankenberg C, Bond-Lamberty B, Ryu Y, Xiao J F, Asrar G R, Chen M. 2022. Optical vegetation indices for monitoring terrestrial ecosystems globally. Nature Reviews Earth & Environment, 3, 477–493.
Zhang G L, Liu F, Song X D. 2017. Recent progress and future prospect of digital soil mapping: A review. Journal of Integrative Agriculture, 16, 2871–2885.
Zhang X L, Chen S C, Xue J, Wang N, Xiao Y, Chen Q Q, Hong Y S, Zhou Y, Teng H F, Hu B F, Zhuo Z Q, Ji W J, Huang Y F, Gou Y X, Richer-de-Forges A C, Arrouays D, Shi Z. 2023a. Improving model parsimony and accuracy by modified greedy feature selection in digital soil mapping. Geoderma, 432, 116383.
Zhang X L, Xue J, Chen S C, Wang N, Shi Z, Huang Y F, Zhuo Z Q. 2022. Digital mapping of soil organic carbon with machine learning in dryland of northeast and North Plain China. Remote Sensing, 14, 2504.
Zhang X L, Xue J, Xiao Y, Shi Z, Chen S C. 2023b. Towards optimal variable selection methods for soil property prediction using a regional soil Vis-NIR spectral library. Remote Sensing, 15, 465.
Zhou T, Geng Y, Chen J, Pan J, Haase D, Lausch A. 2020. High-resolution digital mapping of soil organic carbon and soil total nitrogen using DEM derivatives, Sentinel-1 and Sentinel-2 data based on machine learning algorithms. Science of the Total Environment, 729, 138244.
Zhou Y, Chartin C, Van Oost K, van Wesemael B. 2022. High-resolution soil organic carbon mapping at the field scale in Southern Belgium (Wallonia). Geoderma, 422, 115929.
Zhou Y, Webster R, Viscarra Rossel R A, Shi Z, Chen S C. 2019a. Baseline map of soil organic carbon in Tibet and its uncertainty in the 1980s. Geoderma, 334, 124–133.
Zhou Y, Xue J, Chen S C, Zhou Y, Liang Z Z, Wang N, Shi Z. 2019b. Fine-resolution mapping of soil total nitrogen across China based on weighted model averaging. Remote Sensing, 12, 85.
|