Please wait a minute...
Journal of Integrative Agriculture  2024, Vol. 23 Issue (8): 2820-2841    DOI: 10.1016/j.jia.2024.01.015
Agro-ecosystem & Environment Advanced Online Publication | Current Issue | Archive | Adv Search |
Improving model performance in mapping cropland soil organic matter using time-series remote sensing data
Xianglin Zhang1, Jie Xue2, Songchao Chen1, 3, Zhiqing Zhuo4, Zheng Wang1, Xueyao Chen1, Yi Xiao1, Zhou Shi1, 5#
1 Institute of Applied Remote Sensing and Information Technology, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
2 Department of Land Management, Zhejiang University, Hangzhou 310058, China
3 ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China
4 Institute of Digital Agriculture, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
5 Key Laboratory of Spectroscopy Sensing, Ministry of Agriculture and Rural Affairs, Hangzhou 310058, China
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  
面对日益严重的全球土壤退化问题,明确农田土壤有机质的空间分布格局对于土壤碳库核算、农田质量评价和制定有效的管理政策具有重要意义。作为一种空间信息预测技术,数字土壤制图已被广泛应用于不同区域尺度的土壤信息空间制图上。然而,由于精确量化人为干扰因素存在较大的难度,针对农田尺度的土壤有机质制图反演模型的精度往往低于其它土地覆被类型。为解决该问题,本研究使用2021年广州采集的462个农田土壤样本系统评估“信息提取-特征选择-模型融合”框架在提升农田土壤有机质反演精度的潜力。本研究证明“信息提取-特征选择-模型融合”框架可以在有效提升最终反演结果的精度(R2:从0.48到0.53)并且不会对模型不确定性造成显著的负面影响。量化环境动态变化信息是一种产生与土壤有机质线性和非线性相关协变量的有效方法。应用该方法产生的环境协变量可将随机森林模型的R2从0.44提高到0.48,将极端梯度提升模型的R2从0.37提高到0.43。当环境协变量较少(< 200)时推荐使用前向递归特征筛选算法,当环境协变量较(> 500)时推荐使用Boruta特征筛选算法。Granger-Ramanathan模型融合方法可以组合不同初始预测模型的优势以提高预测结果精度并平均不确定性。当初始预测模型结构相似时,参与融合的初始预测模型数量的增加对最终预测没有显著的影响。鉴于上述优势,“信息提取-特征选择-模型融合”框架对提高不同区域尺度数字土壤制图精度方面具有较高的潜力,其制图结果可以为土壤保护政策的制定提供有效参考。


Abstract  
Faced with increasing global soil degradation, spatially explicit data on cropland soil organic matter (SOM) provides crucial data for soil carbon pool accounting, cropland quality assessment and the formulation of effective management policies.  As a spatial information prediction technique, digital soil mapping (DSM) has been widely used to spatially map soil information at different scales.  However, the accuracy of digital SOM maps for cropland is typically lower than for other land cover types due to the inherent difficulty in precisely quantifying human disturbance.  To overcome this limitation, this study systematically assessed a framework of “information extraction-feature selection-model averaging” for improving model performance in mapping cropland SOM using 462 cropland soil samples collected in Guangzhou, China in 2021.  The results showed that using the framework of dynamic information extraction, feature selection and model averaging could efficiently improve the accuracy of the final predictions (R2: 0.48 to 0.53) without having obviously negative impacts on uncertainty.  Quantifying the dynamic information of the environment was an efficient way to generate covariates that are linearly and nonlinearly related to SOM, which improved the R2 of random forest from 0.44 to 0.48 and the R2 of extreme gradient boosting from 0.37 to 0.43.  Forward recursive feature selection (FRFS) is recommended when there are relatively few environmental covariates (<200), whereas Boruta is recommended when there are many environmental covariates (>500).  The Granger-Ramanathan model averaging approach could improve the prediction accuracy and average uncertainty.  When the structures of initial prediction models are similar, increasing in the number of averaging models did not have significantly positive effects on the final predictions.  Given the advantages of these selected strategies over information extraction, feature selection and model averaging have a great potential for high-accuracy soil mapping at any scales, so this approach can provide more reliable references for soil conservation policy-making.


Keywords:  cropland       soil organic matter        digital soil mapping        machine learning        feature selection        model averaging  
Received: 25 July 2023   Accepted: 17 October 2023
Fund: 
This study was supported by the National Natural Science Foundation of China (U1901601) and the National Key Research and Development Program of China (2022YFB3903503). 
About author:  Xianglin Zhang, E-mail: zhangxianglin@zju.edu.cn; #Correspondence Zhou Shi, E-mail: shizhou@zju.edu.cn

Cite this article: 

Xianglin Zhang, Jie Xue, Songchao Chen, Zhiqing Zhuo, Zheng Wang, Xueyao Chen, Yi Xiao, Zhou Shi. 2024. Improving model performance in mapping cropland soil organic matter using time-series remote sensing data. Journal of Integrative Agriculture, 23(8): 2820-2841.

Adhikari K, Hartemink A E. 2016. Linking soils to ecosystem services - A global review. Geoderma262, 101–111.

Badgley G, Field C B, Berry J A. 2017. Canopy near-infrared reflectance and terrestrial photosynthesis. Science Advances3, e1602244.

Bannari A, Morin D, Bonn F, Huete A. 1995. A review of vegetation indices. Remote Sensing Reviews13, 95–120.

Bao S D. 2000. Soil Agrochemical Analysis. 3rd ed. China Agriculture Press, China. pp. 30–107. (in Chinese)

Breiman L. 2001. Random forests. Machine Learning45, 5–32.

Caubet M, Dobarco M R, Arrouays D, Minasny B, Saby N P A. 2019. Merging country, continental and global predictions of soil texture: Lessons from ensemble modelling in France. Geoderma337, 99–110.

Chen J M, Cihlar J. 1996. Retrieving leaf area index of boreal conifer forests using Landsat TM images. Remote Sensing of Environment55, 153–162.

Chen S C, Arrouays D, Leatitia Mulder V, Poggio L, Minasny B, Roudier P, Libohova Z, Lagacherie P, Shi Z, Hannam J, Meersmans J, Richer-de-Forges A C, Walter C. 2022. Digital mapping of GlobalSoilMap soil properties at a broad scale: A review. Geoderma409, 115567.

Chen S C, Liang Z Z, Webster R, Zhang G L, Zhou Y, Teng H F, Hu B F, Arrouays D, Shi Z. 2019. A high-resolution map of soil pH in China made by hybrid modelling of sparse soil data and environmental covariates and its implications for pollution. Science of the Total Environment655, 273–283.

Chen S C, Mulder V L, Heuvelink G B, Poggio L, Caubet M, Dobarco M R, Walter C, Arrouays D. 2020. Model averaging for mapping topsoil organic carbon in France. Geoderma366, 114237.

Chen S C, Xue J, Shi Z. 2023. Spectral-guided ensemble modelling for soil spectroscopic prediction. Geoderma437, 116594.

Chen Y, Ma L X, Yu D S, Zhang H D, Feng K Y, Wang X, Song J. 2022. Comparison of feature selection methods for mapping soil organic matter in subtropical restored forests. Ecological Indicators135, 108545.

Conrad O, Bechtel B, Bock M, Dietrich H, Fischer E, Gerlitz L, Wehberg J, Wichmann V, Böhner J. 2015. System for automated geoscientific analyses (SAGA) v. 2.1.4. Geoscientific Model Development8, 1991–2007.

Dobarco M R, Arrouays D, Lagacherie P, Ciampalini R, Saby N P A. 2017. Prediction of topsoil texture for Region Centre (France) applying model ensemble methods. Geoderma298, 67–77.

Drusch M, Del Bello U, Carlier S, Colin O, Fernandez V, Gascon F, Hoersch B, Isola C, Laberinti P, Martimort P, Meygret A, Spoto F, Sy O, Marchese F, Bargellini P. 2012. Sentinel-2: ESA’s optical high-resolution mission for GMES operational services. Remote Sensing of Environment120, 25–36.

Farr T G, Rosen P A, Caro E, Crippen R, Duren R, Hensley S, Kobrick M, Paller M, Rodriguez E, Roth L, Seal D, Shaffer S, Shimada J, Umland J, Werner M, Oskin M, Burbank D, Alsdorf D. 2007. The shuttle radar topography mission. Reviews of Geophysics45doi: 10.1029/2005RG000183.

Fick S E, Hijmans R J. 2017. WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. International Journal of Climatology37, 4302–4315.

Friedman J H. 2001. Greedy function approximation: A gradient boosting machine. Annals of Statistics29, 1189–1232.

Gao B C. 1996. NDWI - A normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sensing of Environment58, 257–266.

Gitelson A A, Kaufman Y J, Merzlyak M N. 1996. Use of a green channel in remote sensing of global vegetation from EOS-MODIS. Remote Sensing of Environment58, 289–298.

Goldstein A, Turner W R, Spawn S A, Anderson-Teixeira K J, Cook-Patton S, Fargione J, Gibbs H K, Griscom B, Hewson J H, Howard J F, Ledezma J C, Page S, Koh L P, Rockström J, Sanderman J, Hole D G. 2020. Protecting irrecoverable carbon in Earth’s ecosystems. Nature Climate Change10, 287–295.

Gomes L C, Faria R M, de Souza E, Veloso G V, Schaefer C E G R, Filho E I F. 2019. Modelling and mapping soil organic carbon stocks in Brazil. Geoderma340, 337–350.

Gorelick N, Hancher M, Dixon M, Ilyushchenko S, Thau D, Moore R. 2017. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sensing of Environment202, 18–27.

Granger C W, Ramanathan R. 1984. Improved methods of combining forecasts. Journal of Forecasting3, 197–204.

Guyon I, Weston J, Barnhill S, Vapnik V. 2002. Gene selection for cancer classification using support vector machines. Machine Learning46, 389–422.

He X L, Yang L, Li A Q, Zhang L, Shen F X, Cai Y Y, Zhou C H. 2021. Soil organic carbon prediction using phenological parameters and remote sensing variables generated from Sentinel-2 images. Catena205, 105442.

Huete A, Didan K, Miura T, Rodriguez E P, Gao X, Ferreira L G. 2002. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sensing of Environment83, 195–213.

Huete A R. 1988. A soil-adjusted vegetation index (SAVI). Remote Sensing of Environment25, 295–309.

Jiang Z Y, Huete A R, Didan K, Miura T. 2008. Development of a two-band enhanced vegetation index without a blue band. Remote sensing of Environment112, 3833–3845.

Keesstra S D, Bouma J, Wallinga J, Tittonell P, Smith P, Cerdà A, Montanarella L, Quinton J N, Pachepsky Y, van der Putten W H, Bardgett R D, Moolenaar S, Mol G, Jansen B, Fresco L O. 2016. The significance of soils and soil science towards realization of the United Nations Sustainable Development Goals. Soil2, 111–128.

Keskin H, Grunwald S, Harris W G. 2019. Digital mapping of soil carbon fractions with machine learning. Geoderma339, 40–58.

Kuhn M. 2008. ‘Caret’, Classification and Regression Training. Journal of Statistical Software28, 1–26.

Kursa M B, Rudnicki W R. 2010. Feature selection with the Boruta package. Journal of Statistical Software36, 1–13.

Lagacherie P, McBratney A. 2006. Spatial Soil Information Systems and Spatial Soil Inference Systems: Perspectives for Digital Soil Mapping. vol. 31. Elsevier, USA. pp. 3–22.

Lal R. 2004. Soil carbon sequestration impacts on global climate change and food security. Science304, 1623–1627.

Liang D J, Lu X, Zhuang M H, Shi G, Hu C Y, Wang S X, Hao J M. 2021. China’s greenhouse gas emissions for cropping systems from 1978–2016. Scientific Data8, 171.

Liang Z Z, Chen S C, Yang Y Y, Zhao R Y, Shi Z, Viscarra Rossel R A. 2019. National digital soil map of organic matter in topsoil and its associated uncertainty in 1980’s China. Geoderma335, 47–56.

Liu E K, Yan C R, Mei X R, He W Q, Bing S H, Ding L P, Liu Q, Liu S, Fan T L. 2010. Long-term effect of chemical fertilizer, straw, and manure on soil chemical and biological properties in northwest China. Geoderma158, 173–180.

Liu F, Wu H Y, Zhao Y G, Li D C, Yang J L, Song X D, Shi Z, Zhu A X, Zhang G L. 2022. Mapping high resolution National Soil Information Grids of China. Science Bulletin, 67, 328–340.

Liu Y, Chen S C, Yu Q Y, Cai Z J, Zhou Q B, Bellingrath-Kimura S D, Wu W B. 2023. Improving digital mapping of soil organic matter in cropland by incorporating crop rotation. Geoderma438, 116620.

Luo C, Zhang X L, Wang Y H, Men Z B, Liu H J. 2022. Regional soil organic matter mapping models based on the optimal time window, feature selection algorithm and Google Earth Engine. Soil and Tillage Research219, 105325.

Malone B P, McBratney A B, Minasny B. 2011. Empirical estimates of uncertainty for mapping continuous depth functions of soil attributes. Geoderma160, 614–626.

Malone B P, Minasny B, Odgers N P, McBratney A B. 2014. Using model averaging to combine soil property rasters from legacy soil maps and from point data. Geoderma232, 34–44.

McBratney A B, Santos M L M, Minasny B. 2003. On digital soil mapping. Geoderma117, 3–52.

Møller A B, Beucher A M, Pouladi N, Greve M H. 2020. Oblique geographic coordinates as covariates for digital soil mapping. Soil6, 269–289.

Myneni R, Knyazikhin Y, Park T. 2021. MODIS/terra+aqua leaf area index/fpar 4-day l4 global 500m SIN grid v061 [data set], NASA EOSDIS land processes DAAC. [2023-1-08]. https://doi.org/10.5067/MODIS/MCD15A3H.061

Pearson K. 1895. VII. Note on regression and inheritance in the case of two parents. Proceedings of the Royal Society of London58, 240–242.

Poggio L, de Sousa L M, Batjes N H, Heuvelink G B M, Kempen B, Ribeiro E, Rossiter D. 2021. SoilGrids 2.0: Producing soil information for the globe with quantified spatial uncertainty. Soil7, 217–240.

Quinlan J R. 1993. Combining instance-based and model-based learning. In: Proceedings of the Tenth International Conference on Machine Learning. University of Massachusetts, Amherst, The United States of America. 236–243.

Richardson A D, Braswell B H, Hollinger D Y, Jenkins J P, Ollinger S V. 2009. Near-surface remote sensing of spatial and temporal variation in canopy phenology. Ecological Applications19, 1417–1428.

Richardson A J, Wiegand C. 1977. Distinguishing vegetation from soil background information. Photogrammetric Engineering and Remote Sensing43, 1541–1552.

Rouse Jr J W, Haas R H, Deering D, Schell J, Harlan J C. 1974. Monitoring the Vernal Advancement and Retrogradation (Green Wave Effect) of Natural Vegetation. Remote Sensing Center Texas A&M University College Station, Texas.

R Core Team. 2019. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria.

Running S, Mu Q Z, Zhao M S. 2015. MOD17A2H MODIS/terra gross primary productivity 8-Day L4 global 500m SIN grid V006 [dataset], NASA EOSDIS land processes DAAC. [2022-11-1]. https://doi.org/10.5067/MODIS/MOD17A2H.006

Running S, Mu Q Z, Zhao M S. 2017. MOD16A2 MODIS/terra net evapotranspiration 8-day L4 global 500m sin grid V006 [dataset], NASA EOSDIS land processes DAAC. [2022-10-15]. https://doi.org/10.5067/MODIS/MOD16A2.006

Sreenivas K, Dadhwal V K, Kumar S, Harsha G S, Mitran T, Sujatha G, Suresh G J R, Fyzee M A, Ravisankar T. 2016. Digital mapping of soil organic and inorganic carbon status in India. Geoderma269, 160–173.

Teng H F, Hu J, Zhou Y, Zhou L Q, Shi Z. 2019. Modelling and mapping soil erosion potential in China. Journal of Integrative Agriculture18, 251–264.

Tilman D, Balzer C, Hill J, Befort B L. 2011. Global food demand and the sustainable intensification of agriculture. Proceedings of the National Academy of Sciences of the United States of America108, 20260–20264.

Tucker C J. 1979. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sensing of Environment8, 127–150.

Vescovo L, Gianelle D. 2008. Using the MIR bands in vegetation indices for the estimation of grassland biophysical parameters from satellite remote sensing in the Alps region of Trentino (Italy). Advances in Space Research, 41, 1764–1772.

Vijith H, Dodge-Wan D. 2020. Applicability of MODIS land cover and Enhanced Vegetation Index (EVI) for the assessment of spatial and temporal changes in strength of vegetation in tropical rainforest region of Borneo. Remote Sensing Applications (Society and Environment), 18, 100311.

Wang N, Peng J, Xue J, Zhang X, Huang J, Biswas A, He Y, Shi Z. 2022. A framework for determining the total salt content of soil profiles using time-series Sentinel-2 images and a random forest-temporal convolution network. Geoderma409, 115656.

Wan Z, Hook S, Hulley G. 2015. MOD11A1 MODIS/terra land surface temperature/emissivity daily L3 global 1km SIN grid v006 [dataset], NASA EOSDIS land processes DAAC. [2022-12-3]. https://doi.org/10.5067/MODIS/MOD11A1

Wiesmeier M, Urbanski L, Hobley E, Lang B, von Lützow M, Marin-Spiotta E, van Wesemael B, Rabot E, Ließ M, Garcia-Franco N, Wollschläger U, Vogel H J, Kögel-Knabner I. 2019. Soil organic carbon storage as a key function of soils - A review of drivers and indicators at various scales. Geoderma333, 149–162.

Wilding L P. 1985. Spatial variability: Its documentation, accommodation and implication to soil surveys. In: Soil Spatial Variability Workshop. Wageningen, The Netherlands. pp. 166–194.

IUSS WRB. 2015. World reference base for soil resources 2014. Update 2015 International Soil Classification System for Naming Soils and Creating Legends for Soil Maps. Technical Report 106. FAO, Rome.

Xiao Y, Xue J, Zhang X L, Wang N, Hong Y S, Jiang Y F, Zhou Y, Teng H F, Hu B F, Lugato E, Richer-de-Forges A C, Arrouays D, Shi Z, Chen S C. 2022. Improving pedotransfer functions for predicting soil mineral associated organic carbon by ensemble machine learning. Geoderma428, 116208.

Xiong X, Grunwald S, Myers D B, Kim J, Harris W G, Comerford, N B. 2014. Holistic environmental soil-landscape modeling of soil organic carbon. Environmental Modelling & Software57, 202–215.

Xue J, Wang Y Y, Teng H F, Wang N, Li D L, Peng J, Biswas A, Shi Z. 2021. Dynamics of vegetation greenness and its response to climate change in Xinjiang over the past two decades. Remote Sensing13, 4063.

Xue J, Zhang X L, Chen S C, Hu B F, Wang N, Shi Z. 2024. Quantifying the agreement and accuracy characteristics of four satellite-based LULC products for cropland classification in China. Journal of Integrative Agriculture23, 283–297.

Xue J, Zhang X L, Chen S C, Lu R, Wang Z, Wang N, Hong Y S, Chen X Y, Xiao Y, Ma Y X, Shi Z. 2023. The validity domain of sensor fusion in sensing soil quality indicators. Geoderma438, 116657.

Yang L, Song M, Zhu A X, Qin C Z, Zhou C H, Qi F, Li X M, Chen Z Y, Gao B B. 2019. Predicting soil organic carbon content in croplands using crop rotation and Fourier transform decomposed variables. Geoderma340, 289–302.

Yao Y Q, Wang H Y. 2021. A review on optimal subsampling methods for massive datasets. Journal of Data Science19, 151–172.

Zeng Y L, Hao D L, Huete A, Dechant B, Berry J, Chen J M, Joiner J, Frankenberg C, Bond-Lamberty B, Ryu Y, Xiao J F, Asrar G R, Chen M. 2022. Optical vegetation indices for monitoring terrestrial ecosystems globally. Nature Reviews Earth & Environment3, 477–493.

Zhang G L, Liu F, Song X D. 2017. Recent progress and future prospect of digital soil mapping: A review. Journal of Integrative Agriculture16, 2871–2885.

Zhang X L, Chen S C, Xue J, Wang N, Xiao Y, Chen Q Q, Hong Y S, Zhou Y, Teng H F, Hu B F, Zhuo Z Q, Ji W J, Huang Y F, Gou Y X, Richer-de-Forges A C, Arrouays D, Shi Z. 2023a. Improving model parsimony and accuracy by modified greedy feature selection in digital soil mapping. Geoderma432, 116383.

Zhang X L, Xue J, Chen S C, Wang N, Shi Z, Huang Y F, Zhuo Z Q. 2022. Digital mapping of soil organic carbon with machine learning in dryland of northeast and North Plain China. Remote Sensing14, 2504.

Zhang X L, Xue J, Xiao Y, Shi Z, Chen S C. 2023b. Towards optimal variable selection methods for soil property prediction using a regional soil Vis-NIR spectral library. Remote Sensing15, 465.

Zhou T, Geng Y, Chen J, Pan J, Haase D, Lausch A. 2020. High-resolution digital mapping of soil organic carbon and soil total nitrogen using DEM derivatives, Sentinel-1 and Sentinel-2 data based on machine learning algorithms. Science of the Total Environment729, 138244.

Zhou Y, Chartin C, Van Oost K, van Wesemael B. 2022. High-resolution soil organic carbon mapping at the field scale in Southern Belgium (Wallonia). Geoderma422, 115929.

Zhou Y, Webster R, Viscarra Rossel R A, Shi Z, Chen S C. 2019a. Baseline map of soil organic carbon in Tibet and its uncertainty in the 1980s. Geoderma334, 124–133.

Zhou Y, Xue J, Chen S C, Zhou Y, Liang Z Z, Wang N, Shi Z. 2019b. Fine-resolution mapping of soil total nitrogen across China based on weighted model averaging. Remote Sensing12, 85.

[1] Hui Chen, Hongxing Chen, Song Zhang, Shengxi Chen, Fulang Cen, Quanzhi Zhao, Xiaoyun Huang, Tengbing He, Zhenran Gao. Comparison of CWSI and Ts-Ta-VIs in moisture monitoring of dryland crops (sorghum and maize) based on UAV remote sensing[J]. >Journal of Integrative Agriculture, 2024, 23(7): 2458-2475.
[2] Jie Xue, Xianglin Zhang, Songchao Chen, Bifeng Hu, Nan Wang, Zhou Shi.

Quantifying the agreement and accuracy characteristics of four satellite-based LULC products for cropland classification in China [J]. >Journal of Integrative Agriculture, 2024, 23(1): 283-297.

[3] LI Qian-chuan, XU Shi-wei, ZHUANG Jia-yu, LIU Jia-jia, ZHOU Yi, ZHANG Ze-xi. Ensemble learning prediction of soybean yields in China based on meteorological data[J]. >Journal of Integrative Agriculture, 2023, 22(6): 1909-1927.
[4] LIU Chang-an, CHEN Zhong-xin, SHAO Yun, CHEN Jin-song, Tuya Hasi, PAN Hai-zhu. Research advances of SAR remote sensing for agriculture applications: A review[J]. >Journal of Integrative Agriculture, 2019, 18(3): 506-525.
[5] LI Zi-chuan, SONG Zhao-liang, YANG Xiao-min, SONG A-lin, YU Chang-xun, WANG Tao, XIA Shaopan, LIANG Yong-chao. Impacts of silicon on biogeochemical cycles of carbon and nutrients in croplands[J]. >Journal of Integrative Agriculture, 2018, 17(10): 2182-2195.
[6] CHEN Xiao-yu, LIN Ya, ZHANG Min, YU Le, LI Hao-chuan, BAI Yu-qi. Assessment of the cropland classifications in four global land cover datasets: A case study of Shaanxi Province, China[J]. >Journal of Integrative Agriculture, 2017, 16(02): 298-311.
[7] Claire G. Boryan, Zhengwei Yang, Patrick Willis, Liping Di. Developing crop specific area frame stratifications based on geospatial crop frequency and cultivation data layers[J]. >Journal of Integrative Agriculture, 2017, 16(02): 312-323.
[8] XIE Jun-yu, XU Ming-gang, Qiangjiu Ciren, YANG Yang, ZHANG Shu-lan, SUN Ben-hua, YANG Xue-yun. Soil aggregation and aggregate associated organic carbon and total nitrogen under long-term contrasting soil management regimes in loess soil[J]. >Journal of Integrative Agriculture, 2015, 14(12): 2405-2416.
[9] ZHANG Juan, WANG Xiu-jun, WANG Jia-ping, WANG Wei-xia. Carbon and Nitrogen Contents in Typical Plants and Soil Profiles in Yanqi Basin of Northwest China[J]. >Journal of Integrative Agriculture, 2014, 13(3): 648-656.
[10] XIAO Lie, LIU Guo-bin, XUE Sha,ZHANG Chao. Soil Microbial Community Composition During Natural Recovery in the Loess Plateau, China[J]. >Journal of Integrative Agriculture, 2013, 12(10): 1872-1883.
No Suggested Reading articles found!