Please wait a minute...
Journal of Integrative Agriculture  2024, Vol. 23 Issue (7): 2446-2457    DOI: 10.1016/j.jia.2023.11.018
Agro-ecosystem & Environment Advanced Online Publication | Current Issue | Archive | Adv Search |
Nitrogen rhizodeposition from corn and soybean, and its contribution to the subsequent wheat crops
Sainan Geng, Lantao Li, Yuhong Miao, Yinjie Zhang, Xiaona Yu, Duo Zhang, Qirui Yang, Xiao Zhang, Yilun Wang#
College of Resources and Environment, Henan Agricultural University, Zhengzhou 450002, China
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

与前茬禾本科作物相比,氮是前茬豆科作物对后茬谷物作物产生重要影响的一个关键因素,其中不可回收的根际沉积氮发挥了重要作用。然而,目前缺乏对豆科作物和禾本科作物根际沉积氮差异的定量评估,也缺乏其对后茬谷物贡献的对比研究。在此,基于全球发表的34项观察结果,我们对豆科和禾本科作物的根际沉积氮进行了荟萃分析。此外,通过盆栽试验,采用棉芯标记法研究了中国小麦主产区,两种主要小麦前茬作物玉米和大豆的根际沉积氮量和分布特性及其对后茬谷物的贡献差异。荟萃分析结果显示,豆科作物的根际沉积氮较禾本科作物显著提高了138.93%。在盆栽试验中,玉米和大豆的根际沉积氮量分别为502.32944.12 mg/pot,大豆也显著高于玉米,分别占植株地下氮的76.91%84.15%。在不同团聚体粒径中,根际沉积氮主要富集于大团聚体(>2 mm),其次是小团聚体(0.25-2 mm)。在>0.25 mm团聚体粒径中,大豆根际沉积氮量和占比分别高达玉米的3.481.66倍,这表明大豆根际沉积氮具有较高的利用潜力。在后茬小麦的氮素积累中,大豆根际沉积氮对其贡献量高达玉米的近3倍,分别占小麦总吸氮量的8.37%4.04%。综上,大豆根际沉积氮在>0.25 mm团聚体粒径中的分布数量和占比均优于玉米。在今后的田间生产中,应将豆科作物的根际沉积氮纳入后茬作物可吸收利用的氮库中,以充分发挥豆科作物在轮作系统中作为氮源提供者的作用和潜力。



Abstract  

Nitrogen (N) is a key factor in the positive response of cereal crops that follow leguminous crops when compared to gramineous crops in rotations, with the nonrecyclable rhizosphere-derived N playing an important role.  However, quantitative assessments of differences in the N derived from rhizodeposition (NdfR) between legumes and gramineous crops are lacking, and comparative studies on their contributions to the subsequent cereals are scarce.  In this study, we conducted a meta-analysis of NdfR from leguminous and gramineous crops based on 34 observations published worldwide.  In addition, pot experiments were conducted to study the differences in the NdfR amounts, distributions and subsequent effects of two major wheat (Triticum aestivum L.)-preceding crops, corn (Zea mays L.) and soybean (Glycine max L.), by the cotton wick-labelling method in the main wheat-producing areas of China.  The meta-analysis results showed that the NdfR of legumes was significantly greater by 138.93% compared to gramineous crops.  In our pot experiment, the NdfR values from corn and soybean were 502.32 and 944.12 mg/pot, respectively, and soybean was also significantly higher than corn, accounting for 76.91 and 84.15% of the total belowground nitrogen of the plants, respectively.  Moreover, in different soil particle sizes, NdfR was mainly enriched in the large macro-aggregates (>2 mm), followed by the small macro-aggregates (2–0.25 mm).  The amount and proportion of NdfR in the macro-aggregates (>0.25 mm) of soybean were 3.48 and 1.66 times higher than those of corn, respectively, indicating the high utilization potential of soybean NdfR.  Regarding the N accumulation of subsequent wheat, the contribution of soybean NdfR to wheat was approximately 3 times that of corn, accounting for 8.37 and 4.04% of the total N uptake of wheat, respectively.  In conclusion, soybean NdfR is superior to corn in terms of the quantity and distribution ratio of soil macro-aggregates.  In future field production, legume NdfR should be included in the nitrogen pool that can be absorbed and utilized by subsequent crops, and the role and potential of leguminous plants as nitrogen source providers in crop rotation systems should be fully utilized.

Keywords:  crop rotation        nitrogen rhizodeposition        meta-analysis        soil aggregates        nitrogen transfer  
Received: 05 July 2023   Accepted: 17 October 2023
Fund: 
This work was financially supported by the National Key Technology Research and Development Program of China (2021YFD1901001-08), and the Key Scientific and Technological Project of Henan Provincial Education Department, China (232102111119).
About author:  Sainan Geng, E-mail:gsn15638275642@126.com; #Correspondence Yilun Wang, Tel: +86-371-68555202, E-mail: wangyilunrl@163.com

Cite this article: 

Sainan Geng, Lantao Li, Yuhong Miao, Yinjie Zhang, Xiaona Yu, Duo Zhang, Qirui Yang, Xiao Zhang, Yilun Wang. 2024. Nitrogen rhizodeposition from corn and soybean, and its contribution to the subsequent wheat crops. Journal of Integrative Agriculture, 23(7): 2446-2457.

Aita C, Recous S, Angers D A. 1997. Short-term kinetics of residual wheat straw C and N under field conditions: Characterization by 13C15N tracing and soil particle size fiactionation. European Journal of Soil Science48, 283–294.

Arcand M M, Lemke R, Farrell R E, Knight J D. 2013. Nitrogen supply from belowground residues of lentil and wheat to a subsequent wheat crop. Biology and Fertility of Soils50, 507–515.

Bado B V, Bationo A, Cescas M P. 2006. Assessment of cowpea and groundnut contributions to soil fertility and succeeding sorghum yields in the Guinean savannah zone of Burkina Faso (West Africa). Biology and Fertility of Soils, 43, 171–176.

Bao S D. 2000. Soil and Agricultural Chemistry Analysis. Chinese Agriculture Publishing House, China. pp. 33–93. (in Chinese)

Cambardella C A, Elliott E T. 1993. Methods for physical separation and characterization of soil organic matter fractions. Geoderma56, 449–457.

Chalk P M. 1998. Dynamics of biologically fixed N in legume–cereal rotation: A review. Australian Journal of Agricultural Research49, 303–316.

Clivot H, Mary B, Valé M, Cohan J, Champolivier L, Piraux F, Laurent F, Justes E. 2017. Quantifying in situ and modeling net nitrogen mineralization from soil organic matter in arable cropping systems. Soil Biology and Biochemistry111, 44–59.

Dhamala N R, Rasmussen J, Carlsson G, Søegaard K, Eriksen J. 2016. N transfer in three-species grass-clover mixtures with chicory, ribwort plantain or caraway. Plant and Soil413, 217–230.

Dong W, Hu C, Chen S, Zhang Y. 2009. Tillage and residue management effects on soil carbon and CO2 emission in a wheat–corn double-cropping system. Nutrient Cycling in Agroecosystems83, 27–37.

Egger M. 1997 Bias in meta-analysis detected by a simple, graphical test. BMJ British Medical Journal315, 629–634.

Espinoza S, Ovalle C, Pozo A D. 2020. The contribution of nitrogen fixed by annual legume pastures to the productivity of wheat in two contrasting Mediterranean environments in central Chile. Field Crops Research249, 107709.

Fernández F G, Fabrizzi K P, Naeve S L. 2016. Corn and soybean’s season-long in-situ nitrogen mineralization in drained and undrained soils. Nutrient Cycling in Agroecosystems107, 33–47.

Gupta V V S R, Germida J J. 2014. Soil aggregation: influence on microbial biomass and implications for biological processes. Soil Biology and Biochemistry80, A3–A9.

Hedges L V, Gurevitch J, Curtis P S. 1999. The meta-analysis of response ratios in experimental ecology. Ecology80, 1150–1156.

Hirte J, Leifeld J, Abiven S, Mayer J. 2018. Maize and wheat root biomass, vertical distribution, and size class as affected by fertilization intensity in two long-term field trials. Field Crops Research216, 197–208.

Høgh-Jensen H, Schjoerring J K. 2001. Rhizodeposition of nitrogen by red clover, white clover and ryegrass leys. Soil Biology and Biochemistry, 33, 439–448.

IUSS Working Group WRB. 2015. International soil classification system for naming soils and creating legends for soil maps. In: World Soil Resources Report. Food and Agriculture Organization of the United Nations, Italy. p. 188.

Janzen H H. 1990. Deposition of nitrogen into the rhizosphere by wheat roots. Soil Biology and Biochemistry22, 1155–1160.

Janzen H H, Bruinsma Y. 1989. Methodology for the quantification of root and rhizosphere nitrogen dynamics by exposure of shoots to 15N-labelled ammonia. Soil Biology and Biochemistry21, 189–196.

Jensen E S. 1996. Rhizodeposition of N by pea and barley and its effect on soil N dynamics. Soil Biology and Biochemistry28, 65–71.

Jiang Y, Qian H, Wang X, Chen L, Liu M, Li H, Sun B. 2018. Nematodes and microbial community affect the sizes and turnover rates of organic carbon pools in soil aggregates. Soil Biology and Biochemistry119, 22–31.

Koricheva J, Gurevitch J, Mengersen K. 2013. Handbook of Meta-Analysis in Ecology and Evolution. Princeton University Press, USA.

Laberge G, Franke A C, Ambus P, Høgh-Jensen H. 2009. Nitrogen rhizodeposition from soybean (Glycine max) and its impact on nutrient budgets in two contrasting environments of the Guinean savannah zone of Nigeria. Nutrient Cycling in Agroecosystems84, 49–58.

Laberge G, Haussmann B I G, Ambus P, Høgh-Jensen H. 2011. Cowpea N rhizodeposition and its below-ground transfer to a co-existing and to a subsequent millet crop on a sandy soil of the Sudano-Sahelian eco-zone. Plant and Soil, 340, 369–382.

Li N, Li Y T, Sun J W, Sui X Y, Yu Y C, Dong C H. 2022. Generation of high iron content wheat mutants and expression analysis of the genes involved in iron accumulation and ethylene response. Plant Growth Regulation100, 509–518.

Luo Y, Zhu Z K, Liu S L, Peng P Q, Xu J M, Brookes P, Ge T, Wu J S. 2018. Nitrogen fertilization increases rice rhizodeposition and its stabilization in soil aggregates and the humus fraction. Plant and Soil445, 125–135.

Mayer J, Buegger F, Jensen E S, Schloter M, Heß J. 2003. Estimating N rhizodeposition of grain legumes using a 15in situ stem labelling method. Soil Biology and Biochemistry35, 21–28.

Mayer J, Buegger F, Jensen E S, Schloter M, Heß J. 2004. Turnover of grain legume N rhizodeposits and effect of rhizodeposition on the turnover of crop residues. Biology and Fertility of Soils39, 153–164.

Mhlanga B, Cheesman S, Maasdorp B, Mupangwa W, Thierfelder C. 2015. Contribution of cover crops to the productivity of maize-based conservation agriculture systems in Zimbabwe. Crop Science, 55, 1791–1805.

Ordóñez R A, Archontoulis S V, Martinez-Feria R, Hatfield J L, Wright E E, Castellano M J. 2020. Root to shoot and carbon to nitrogen ratios of maize and soybean crops in the US Midwest. European Journal of Agronomy, 120, 126130.

Philibert A, Loyce C, Makowski D. 2014. Assessment of the quality of meta-analysis in agronomy. Agriculture, Ecosystems & Environment148, 72–82.

Rasmussen J, Dresbøll D B, Enggrob K L, Peixoto L. 2021. A novel 15N vertical split-root method for in situ estimation of N rhizodeposition. Geoderma383, 114782.

Rosenberg M S, Adams D C, Gurevitch J. 2000. MetaWin: Statistical Software for Meta-Analysis. Version 2.0. Sinauer Associates, Sunderland, MA.

Russell C A, Fillery I R P. 1996. In situ 15N labelling of lupin below-ground biomass. Australian Journal of Agricultural Research47, 1035–1046.

Seufert V, Ramankutty N, Foley J A, 2012. Comparing the yields of organic and conventional agriculture. Nature485, 229–232.

Shi X Z, Yang G X, Yu D S, Xu S X, Warner E D, Petersen G W, Sun W X, Zhao Y C, Easterling W E, Wang H J. 2010. A WebGIS system for relating genetic soil classification of China to soil taxonomy. Computers & Geosciences, 36, 768–775.

Six J, Elliott E T, Paustian K. 2000. Soil macroaggregate turnover and microaggregate formation: a mechanism for C sequestration under no-tillage agriculture. Soil Biology and Biochemistry32, 2099–2103.

Smith A P, Marín-Spiotta E, De Graaff M A, Balser T C. 2014. Microbial community structure varies across soil organic matter aggregate pools during tropical land cover change. Soil Biology and Biochemistry, 77, 292–303.

Sterne J, Egger M. 2006. Regression methods to detect publication and other bias in meta-analysis. In: Rothstein H R, Sutton A J, Borenstein M, eds., Publication Bias in Meta-Analysis. Wiley, Chichester, West Sussex, UK. pp. 99–110.

Wang R, Wu H, Sardans J, Li T P, Liu H Y, Peñuelas J, Dijkstra F A, Jiang Y. 2020. Carbon storage and plant–soil linkages among soil aggregates as affected by nitrogen enrichment and mowing management in a meadow grassland. Plant and Soil457, 407–420.

Wang S, Huang Y, Sun W J, Yu L F. 2018. Mapping the vertical distribution of maize roots in China in relation to climate and soil texture. Journal of Plant Ecology11, 899–908.

Wang X, Yost R S, Linquist B A. 2001. Soil aggregate size affects phosphorus desorption from highly weathered soils and plant growth. Soil Science Society of America Journal65, 139–146.

Wang X Q, Yang Y D, Pei K, Zhou J, Peixoto L, Gunina A, Zeng Z H, Zang H D, Rasmussen J, Kuzyakov Y. 2020. Nitrogen rhizodeposition of legumes and its fate in agroecosystems: Field study and literature review. Land Degradation & Development32, 410–419.

Wichern F, Eberhardt E, Mayer J, Joergensen R G, Müller T. 2008. Nitrogen rhizodeposition in agricultural crop methods, estimates and future prospects. Soil Biology and Biochemistry40, 30–48.

Wichern F, Mayer J, Joergensen R G, Müller T. 2007a. Rhizodeposition of C and N in peas and oats after 13C–15N double labelling under field conditions. Soil Biology and Biochemistry39, 2527–2537.

Wichern F, Mayer J, Joergensen R G, Müller T. 2007b. Release of C and N from roots of peas and oats and their availability to soil microorganisms. Soil Biology and Biochemistry, 39, 2829–2839.

Zang H, Qian X, Wen Y, Hu Y, Ren C, Zeng Z, Guo L, Wang C. 2018. Contrasting carbon and nitrogen rhizodeposition patterns of soya bean (Glycine max L.) and oat (Avena nuda L.). European Journal of Soil Science69, 625–633.

Zang H D, Yang X C, Feng X M, Qian X, Hu Y G, Ren C Z, Zeng Z H. 2015. Rhizodeposition of nitrogen and carbon by mungbean (Vigna radiata L.) and its contribution to intercropped oats (Avena nuda L.). PLoS ONE10, e0121132.

Zapata F, Danso S K A, Hardarson G, Fried M. 1987. Time course of nitrogen fixation in field-grown soybean using nitrogen-15 methodology. Agronomy Journal79, 172–176.

Zhang K, Zhao J, Wang X Q, Xu H S, Zang H D, Liu J N, Hu Y G, Zeng Z H. 2019. Estimates on nitrogen uptake in the subsequent wheat by above ground and root residue and rhizodeposition of using peanut labeled with 15N isotope on the North China Plain. Journal of Integrative Agriculture18, 571–579.

Zhao R F, Chen X P, Zhang F S, Zhang H, Schroder J, Römheld V. 2006. Fertilization and nitrogen balance in a wheat–maize rotation system in North China. Agronomy Journal98, 938–945.

Zou C M, Li Y, Huang W, Zhao G K, Pu G R, Su J E, Coyne M S, Chen Y, Wang L C, Hu X D, Jin Y. 2018. Rotation and manure amendment increase soil macro-aggregates and associated carbon and nitrogen stocks in flue-cured tobacco production. Geoderma325, 49–58.

[1] Haiqing Gong, Yue Xiang, Jiechen Wu, Laichao Luo, Xiaohui Chen, Xiaoqiang Jiao, Chen Chen.

Integrating phosphorus management and cropping technology for sustainable maize production [J]. >Journal of Integrative Agriculture, 2024, 23(4): 1369-1380.

[2] Changqin Yang, Xiaojing Wang, Jianan Li, Guowei Zhang, Hongmei Shu, Wei Hu, Huanyong Han, Ruixian Liu, Zichun Guo.

Straw return increases crop production by improving soil organic carbon sequestration and soil aggregation in a long-term wheat–cotton cropping system [J]. >Journal of Integrative Agriculture, 2024, 23(2): 669-679.

No Suggested Reading articles found!