Akpa S I C, Odeh I O A, Bishop T F A, Hartemink A E,
Amapu I Y. 2016. Total soil organic carbon and carbon sequestration potential
in Nigeria. Geoderma, 271, 202–215.
Baumgardner M F, Silva L F, Biehl L L, Stoner E R. 1986.
Reflectance properties of soils. Advances in Agronomy, 38,
1–44.
Ben-Dor E, Inbar Y, Chen Y. 1997. The reflectance
spectra of organic matter in the visible near-infrared and short wave infrared
region (400–2500 nm) during a controlled decomposition process. Remote Sensing of Environment, 61, 1–15.
Bolton D K, Friedl M A. 2013. Forecasting crop yield
using remotely sensed vegetation indices and crop phenology metrics. Agricultural and Forest Meteorology, 173, 74–84.
Breiman L. 2001. Random forests. Machine Learning, 45, 5–32.
Castaldi F, Chabrillat S, Don A, Van Wesemael B. 2019.
Soil organic carbon mapping using LUCAS topsoil database and Sentinel-2 data:
An approach to reduce soil moisture and crop residue effects. Remote Sensing, 11, 2121.
Chabrillat S, Ben-Dor E, Cierniewski J, Gomez C, Schmid
T, van Wesemael B. 2019. Imaging spectroscopy for soil mapping and monitoring. Surveys in Geophysics, 40, 361–399.
Chai L, Wang Y H, Wang X, Ma L, Cheng Z X, Su L M. 2021.
Pollution characteristics, spatial distributions, and source apportionment of
heavy metals in cultivated soil in Lanzhou, China. Ecological Indicators,125,
107507.
Chang C W, Laird D A, Mausbach M J, Hurburgh C R. 2001.
Near-infrared reflectance spectroscopy–principal components regression analyses
of soil properties. Soil Science Society of America Journal, 65, 480–490.
Chen D, Chang N J, Xiao J F, Zhou Q B, Wu W B. 2019.
Mapping dynamics of soil organic matter in croplands with MODIS data and
machine learning algorithms. Science of the Total Environment, 669, 844–855.
Chen G S, Lu H L, Zou W T, Li L H, Emam M, Chen X B,
Jing W P, Wang J, Li C. 2023. Spatiotemporal fusion for spectral remote
sensing: A statistical analysis and review. Journal of King Saud University (Computer and Information Sciences), 35,
259–273.
Chen Y, Ma L X, Yu D S, Zhang H D, Feng K Y, Wang X,
Song J. 2022. Comparison of feature selection methods for mapping soil organic
matter in subtropical restored forests. Ecological Indicators, 135,
108545.
Cortes C, Vapnik V. 1995. Support-vector networks. Machine Learning, 20, 273–297.
Dian R W, Li S T, Sun B, Guo A J. 2021. Recent advances
and new guidelines on hyperspectral and multispectral image fusion. Information Fusion, 69, 40–51.
Dou X, Wang X, Liu H J, Zhang X L, Meng L H, Pan Y, Yu Z
Y, Cui Y. 2019. Prediction of soil organic matter using multi-temporal
satellite images in the Songnen Plain, China. Geoderma, 356,
113896.
Dutta D, Kumar P. 2019. A framework for global
characterization of soil properties using repeat hyperspectral satellite data. IEEE Transactions on Geoscience and Remote Sensing, 57, 3308–3323.
Emadi M, Taghizadeh-Mehrjardi R, Cherati A, Danesh M,
Mosavi A, Scholten T. 2020. Predicting and mapping of soil organic carbon using
machine learning algorithms in northern Iran. Remote Sensing, 12, 2234.
Fathizad H, Taghizadeh-Mehrjardi R, Hakimzadeh Ardakani
M A, Zeraatpisheh M, Heung B, Scholten T. 2022. Spatiotemporal assessment of
soil organic carbon change using machine-learning in arid regions. Agronomy, 12, 628.
Fathololoumi S, Vaezi A R, Alavipanah S K, Ghorbani A,
Saurette D, Biswas A. 2020. Improved digital soil mapping with multitemporal
remotely sensed satellite data fusion: A case study in Iran. Science of the Total Environment, 721, 137703.
Fisher A, Rudin C, Dominici F, 2019. All models are
wrong, but many are useful: learning a variable’s importance by studying an
entire class of prediction models simultaneously. Journal of Machine Learning Research, 20,
1–81.
Forkuor G, Hounkpatin O K L, Welp G, Thiel M. 2017. High
resolution mapping of soil properties using remote sensing variables in
South-Western Burkina Faso: A comparison of machine learning and multiple
linear regression models. PLoS ONE, 12, e0170478.
Friedman J H. 2001. Greedy function approximation: A
gradient boosting machine. Annals of Statistics, 29,
1189–1232.
Gatti A, Bertolini A. 2015. Sentinel-2 products
specification document. [2022-2-23]. https://earth.esa.int/documents/247904/685211/Sentinel-2-Products-Specification-Document
Ge X Y, Ding J L, Teng D X, Wang J Z, Huo T C, Jin X Y,
Wang J J, He B Z, Han L J. 2022. Updated soil salinity with fine spatial
resolution and high accuracy: The synergy of Sentinel-2 MSI, environmental
covariates and hybrid machine learning approaches. Catena, 212,
106054.
Gelsleichter Y A, Costa E M, Anjos L H C D, Marcondes R
A T. 2023. Enhancing soil mapping with hyperspectral subsurface images
generated from soil lab Vis-SWIR spectra tested in southern Brazil. Geoderma Regional, 33, e00641.
Gong Z T, Chen Z C, Zhao W J, Shi H. 2000.
Classification of ferrallitic soils in Chinese soil taxonomy. Pedosphere, 10, 125–133.
Gorelick N, Hancher M, Dixon M, Ilyushchenko S, Thau D,
Moore R. 2017. Google Earth Engine: planetary-scale geospatial analysis for
everyone. Remote Sensing of Environment, 202,
18–27.
Guo L, Fu P, Shi T Z, Chen Y Y, Zeng C, Zhang H T, Wang
S Q. 2021. Exploring influence factors in mapping soil organic carbon on
low-relief agricultural lands using time series of remote sensing data. Soil and Tillage Research, 210, 104982.
Hamzehpour N, Shafizadeh-Moghadam H, Valavi R. 2019.
Exploring the driving forces and digital mapping of soil organic carbon using
remote sensing and soil texture. Catena, 182,104141.
He X L, Yang L, Li A Q, Zhang L, Shen F X, Cai Y Y, Zhou
C H. 2021. Soil organic carbon prediction using phenological parameters and
remote sensing variables generated from Sentinel-2 images. Catena, 205,
105442.
Huete A, Didan K, Miura T, Rodriguez E P, Gao X,
Ferreira L G. 2002. Overview of the radiometric and biophysical performance of
the MODIS vegetation indices. Remote Sensing of Environment, 83, 195–213.
John K, Abraham Isong I, Michael Kebonye N, Okon Ayito
E, Chapman Agyeman P, Marcus Afu S. 2020. Using machine learning algorithms to
estimate soil organic carbon variability with environmental variables and soil
nutrient indicators in an alluvial soil. Land, 9, 487.
Kaya F, Başayiğit L, Keshavarzi A, Francaviglia R. 2022.
Digital mapping for soil texture class prediction in northwestern Türkiye by
different machine learning algorithms. Geoderma Regional, 31,
e00584.
Keskin H, Grunwald S, Harris W G. 2019. Digital mapping
of soil carbon fractions with machine learning. Geoderma, 339,
40–58.
Khanal S, Fulton J, Klopfenstein A, Douridas N, Shearer
S. 2018. Integration of high resolution remotely sensed data and machine
learning techniques for spatial prediction of soil properties and corn yield. Computers and Electronics in Agriculture, 153,
213–225.
Lai Y Q, Wang H L, Sun X L. 2021. A comparison of
importance of modelling method and sample size for mapping soil organic matter
in Guangdong, China. Ecological Indicators, 126, 107618.
Lausch A, Bannehr L, Beckmann M, Boehm C, Feilhauer H,
Hacker J M, Heurich M, Jung A, Klenke R, Neumann C, Pause M, Rocchini D,
Schaepman M E, Schmidtlein S, Schulz K, Selsam P, Settele J, Skidmore A K, Cord
A F. 2016. Linking earth observation and taxonomic, structural and functional
biodiversity: Local to ecosystem perspectives. Ecological Indicators, 70, 317–339.
Luo C, Zhang X L, Meng X T, Zhu H W, Ni C P, Chen M H,
Liu H J. 2022. Regional mapping of soil organic matter content using
multitemporal synthetic Landsat 8 images in Google Earth Engine. Catena, 209 (Part 1), 105842.
Mahmoudzadeh H, Matinfar H R, Taghizadeh-Mehrjardi R,
Kerry R. 2020. Spatial prediction of soil organic carbon using machine learning
techniques in western Iran. Geoderma Regional, 21, e00260.
Meng X Y, Gao X, Li S, Li S Y, Lei J Q. 2021. Monitoring
desertification in mongolia based on landsat images and google earth engine
from 1990 to 2020. Ecological Indicators, 129, 107908.
Minhoni R T D A, Scudiero E, Zaccaria D, Saad J C C. 2021.
Multitemporal satellite imagery analysis for soil organic carbon assessment in
an agricultural farm in southeastern Brazil. Science of the Total Environment, 784, 147216.
Molnar C. 2018. Interpretable Machine Learning: A Guide
For Making Black Box Models Explainable. 2nd ed. e-book, Leanpub.
https://christophm.github.io/interpretable-ml-book/.
Munnaf M A, Mouazen A M. 2022. Removal of external
influences from on-line vis-NIR spectra for predicting soil organic carbon
using machine learning. Catena, 211, 106015.
Ndepete C P, Sert S, Beycioğlu A, Katanalp B Y, Eren E,
Bağrıaçık B, Topolinski S. 2022. Exploring the effect of basalt fibers on
maximum deviator stress and failure deformation of silty soils using ANN, SVM
and FL supported by experimental data. Advances in Engineering Software, 172, 103211.
Nelson D W, Sommers L E. 1996. Total carbon, organic
carbon, and organic matter. In: Methods of Soil Analysis: Part 3.
Chemical Methods. Soil Science Society of America, Madison. pp. 961–1010.
Padarian J, Minasny B, McBratney A B. 2020. Machine
learning and soil sciences: A review aided by machine learning tools. Soil, 6, 35–52.
Peng D L, Wu C Y, Li C J, Zhang X Y, Liu Z J, Ye H C,
Luo S Z, Liu X J, Hu Y, Fang B. 2017. Spring green-up phenology products
derived from MODIS NDVI and EVI: intercomparison, interpretation and validation
using national phenology network and AmeriFlux observations. Ecological Indicators, 77, 323–336.
Qi J, Kerr Y, Chehbouni A. 1994. External factor
consideration in vegetation index development. In: Proceeding of
International Symposium on Physical Measurements and Signatures in Remote
Sensing. Val D’Isere, France.
R Development Core Team. 2021. R: A language and
environment for statistical computing. R Foundation for Statistical Computing,
Vienna, Austria. [2021-10-20]. https://www.R-project.org/
Rogge D, Bauer A, Zeidler J, Mueller A, Esch T, Heiden
U. 2018. Building an exposed soil composite processor (SCMaP) for mapping
spatial and temporal characteristics of soils with Landsat imagery (1984–2014). Remote Sensing of Environment, 205, 1–17.
Seely B, Welham C, Blanco J A. 2010. Towards the
application of soil organic matter as an indicator of forest ecosystem
productivity: Deriving thresholds, developing monitoring systems, and evaluating
practices. Ecological Indicators, 10, 999–1008.
Shonk J, Gaultney L D, Schulze D G, Van Scoyoc G E.
1991. Spectroscopic sensing of soil organic matter content. Transactions of the ASAE, 34, 1978–1984.
Silvero N E Q, Demattê J A M, Amorim M T A, dos Santos N
V, Rizzo R, Safanelli J L, Poppiel R R, Mendes W D S, Bonfatti B R. 2021. Soil
variability and quantification based on Sentinel-2 and Landsat-8 bare soil
images: A comparison. Remote Sensing of Environment, 252, 112117.
Swain S R, Chakraborty P, Panigrahi N, Vasava H B, Reddy
N N, Roy S, Majeed I, Das B S. 2021. Estimation of soil texture using
Sentinel-2 multispectral imaging data: An ensemble modeling approach. Soil and Tillage Research, 213, 105134.
Tucker C J. 1979. Red and photographic infrared linear
combinations for monitoring vegetation. Remote Sensing of Environment, 8, 127–150.
Vaudour E, Gomez C, Fouad Y, Lagacherie P. 2019.
Sentinel-2 image capacities to predict common topsoil properties of temperate
and Mediterranean agroecosystems. Remote Sensing of Environment, 223, 21–33.
Viscarra Rossel R A, Chappell A, de Caritat P, McKenzie
N J. 2011. On the soil information content of visible-near infrared reflectance
spectra. European Journal of Soil Science, 62,
442–453.
Wang S, Guan K Y, Zhang C H, Zhou Q, Wang S B, Wu X C,
Jiang C Y, Peng B, Mei W Y, Li K Y, Li Z Y, Yang Y, Zhou W, Huang Y Z, Ma Z W.
2023. Cross-scale sensing of field-level crop residue cover: Integrating field
photos, airborne hyperspectral imaging, and satellite data. Remote Sensing of Environment, 285, 113366.
Wang X, Wang L P, Li S J, Wang Z M, Zheng M, Song K S.
2022. Remote estimates of soil organic carbon using multi-temporal synthetic
images and the probability hybrid model. Geoderma, 425, 116066.
Wang X, Zhang Y H, Atkinson P M, Yao H Y. 2020.
Predicting soil organic carbon content in Spain by combining Landsat TM and
ALOS PALSAR images. International Journal of Applied Earth Observation and Geoinformation, 92,
102182.
Wang X P, Zhang F, Kung H T, Johnson V C. 2018. New
methods for improving the remote sensing estimation of soil organic matter
content (SOMC) in the Ebinur Lake Wetland National Nature Reserve (ELWNNR) in
northwest China. Remote Sensing of Environment, 218,
104–118.
Webster R, Oliver M A. 2010. Sample adequately to
estimate variograms of soil properties. Journal of Soil Science, 43, 177–192.
Yang J T, Li X S, Wu B, Wu J J, Sun B, Yan C Z, Gao Z H.
2021. High spatial resolution topsoil organic matter content mapping across
desertified land in northern China. Frontiers in Environmental Science, 9, 668912.
Yu G R, Chen Z, Piao S L, Peng C H, Ciais P, Wang Q F,
Li X R, Zhu X J. 2014. High carbon dioxide uptake by subtropical forest
ecosystems in the East Asian monsoon region. Proceedings of the National Academy of Sciences of the United
States of America, 111, 4910–4915.
Zeraatpisheh M, Garosi Y, Owliaie H R, Ayoubi S,
Taghizadeh-Mehrjardi R, Scholten T, Xu M. 2022. Improving the spatial
prediction of soil organic carbon using environmental covariates selection: A
comparison of a group of environmental covariates. Catena, 208,
105723.
Zhang Y C S, Guo L, Chen Y Y, Shi T Z, Luo M, Ju Q L,
Zhang H T, Wang S Q. 2019. Prediction of soil organic carbon based on Landsat 8
monthly NDVI data for the Jianghan Plain in Hubei Province, China. Remote Sensing, 11, 1683.
Zhou T, Geng Y J, Ji C, Xu X R, Wang H, Pan J J, Jan B,
Dagmar H, Angela L. 2021. Prediction of soil organic carbon and the C:N ratio
on a national scale using machine learning and satellite data: A comparison
between Sentinel-2, Sentinel-3 and Landsat-8 images. Science of the Total Environment, 755, 142661.
|