Please wait a minute...
Journal of Integrative Agriculture  2013, Vol. 12 Issue (6): 1079-1086    DOI: 10.1016/S2095-3119(13)60327-5
Soil & Fertilization · Irrigation · Agro-Ecology & Environment Advanced Online Publication | Current Issue | Archive | Adv Search |
Single and Combined Effects of As (III) and Acetochlor on Phosphatase Activity in Soil
 ZHANG Yun, ZHANG Feng, ZHANG Guan-cai , GUAN Lian-zhu
1 College of Land and Environment, Shenyang Agriculture University, Shenyang 110866, P.R.China
2 The Center for Agriculture Quantity and Safe, Ministry of Agriculture, Beijing 100081, P.R.China
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  The actions and interactions of acetochlor and As on the soil phosphatase activity were investigated after 1, 3, 6, 10, 15, 30 and 60 d of exposure under control conditions. The soils were exposed to various concentrations of acetochlor and As individually and simultaneously. The results showed that acetochlor, As only, and combined pollution all clearly inhibited soil phosphatase activity. The maximum inhibition ratios of soil phosphatase activity by acetochlor, As only and combined pollution were 36.44, 74.12 and 61.29%, respectively. Two kinetic models, ν=c/(1+bi) (model 1) and ν=c(1+ai)/(l+bi) (model 2), were used to describe the relationship between the concentrations of As and acetochlor and the activity of soil phosphatase. The semi-effect dose (ED50) values induced by As and acetochlor stress based on the inhibition of soil phosphatase were 18.1 and 33.11 mg kg-1, respectively, according to calculation by model 1. The interactive effect of acetochlor with As on soil phosphatase primarily consisted of significant antagonism effects at the higher concentrations tested. The step regression results show that the toxicity order was As (III)>acetochlor>As (III)×acetochlor throughout the incubation period.

Abstract  The actions and interactions of acetochlor and As on the soil phosphatase activity were investigated after 1, 3, 6, 10, 15, 30 and 60 d of exposure under control conditions. The soils were exposed to various concentrations of acetochlor and As individually and simultaneously. The results showed that acetochlor, As only, and combined pollution all clearly inhibited soil phosphatase activity. The maximum inhibition ratios of soil phosphatase activity by acetochlor, As only and combined pollution were 36.44, 74.12 and 61.29%, respectively. Two kinetic models, ν=c/(1+bi) (model 1) and ν=c(1+ai)/(l+bi) (model 2), were used to describe the relationship between the concentrations of As and acetochlor and the activity of soil phosphatase. The semi-effect dose (ED50) values induced by As and acetochlor stress based on the inhibition of soil phosphatase were 18.1 and 33.11 mg kg-1, respectively, according to calculation by model 1. The interactive effect of acetochlor with As on soil phosphatase primarily consisted of significant antagonism effects at the higher concentrations tested. The step regression results show that the toxicity order was As (III)>acetochlor>As (III)×acetochlor throughout the incubation period.
Keywords:  As       acetochlor       soil phosphatase       single and combined pollution  
Received: 30 October 2012   Accepted:
Fund: 

This study was supported by the National Natural Science Foundation of China (41101455).

Corresponding Authors:  Correspondence GUAN Lian-zhu, Tel: +86-24-88493104, E-mail: guanlianzhu1960@163.com      E-mail:  guanlianzhu1960@163.com
About author:  ZHANG Yun, Tel: +86-24-88493104, E-mail: xingyun92757@163.com

Cite this article: 

ZHANG Yun, ZHANG Feng, ZHANG Guan-cai , GUAN Lian-zhu. 2013. Single and Combined Effects of As (III) and Acetochlor on Phosphatase Activity in Soil. Journal of Integrative Agriculture, 12(6): 1079-1086.

[1]Bhattacharya P, Welch A H, Stollenwerk K G, McLaughlinM S, Bundschunh J, Panaullah G. 2007. Arsenic in theenvironment: biology and chemistry. Science of theTotal Environment, 379, 109-120

[2]Bhattacharyya P, Tripathy S, Kim K, Kim S H. 2008. Arsenicfractions and enzyme activities in arsenic-contaminatedsoils by groundwater irrigation in West Bengal.Ecotoxicology and Environmental Safety, 71, 149-156

[3]Cao H, Sun H, Yang H, Sun B, Zhao Q G. 2003. A review:soil enzyme activity and its indication for soil quality.Chinese Journal of Applied & Environmental Biology,9, 105-109

[4](in Chinese)Dagnac T, Jeannot R, Mouvet C, Baran N. 2002.Determination of oxanilic and sulfonic acid metabolitesof acetochlor in soils by liquid chromatographyelectrosprayionization mass spectrometry. Journalof Chromatography, 957, 69-77

[5]Dick R P. 1994. Soil enzyme activities as indicators of soilquality. In: Doran J W, Coleman D C, Bezdicek D F,Stewart B A, eds., Defining Soil Quality for aSustainable Environment. SSSA Special Publication35. Soil Science Society of America, Madison. pp. 107-124

[6]Dick R P. 1997. Soil enzyme activities as integrativeindicators of soil health. In: Pankhurst C E, Doube B M,Gupta V V S R, eds., Biological Indicators of SoilHealth. CAB International, Wallingford, New York. pp.121-156

[7]Dictor M C, Baran N, Gautier A, Mouvet C. 2008. Acetochlormineralization and fate of its two major metabolites intwo soils under laboratory conditions. Chemosphere,71, 663-670

[8]Feron V J, Groten J P. 2002. Toxicological evaluation ofchemical mixtures. Food and Chemical Toxicology, 40,825-839

[9]Gao Y, Zhou P, Mao L, Zhi Y, Zhang C H, Shi W J. 2010.Effects of plant species coexistence on soil enzymeactivities and soil microbial community structure underCd and Pb combined pollution. Journal ofEnvironmental Sciences, 22, 1040-1048

[10]Ghosh K, Bhattacharyya P, Pal R. 2004. Effect of arseniccontamination on microbial biomass and its activities.Environment International, 30, 491-499

[11]He W X, Ma A S, Wu Y J, Zhu M E. 2004. Effect of arsenico n s o i l u r e a s e a c t i v i t y . Chinese Journalof Applied Ecology, 15, 895-898 (in Chinese)

[12]Irha N, Slet J, Petersell V. 2003. Effect of heavy metals andPAH on soil assessed via dehydrogenase assay.Environment International, 28, 779-782

[13]Liu H J, Zhan X M, Liu W P. 2005. Influence of fouracetanilide herbicides on soil enzyme activity. ChinaEnvironmental Science, 25, 611-614 (in Chinese)

[14]Ma J, He R H, Jiang X Y. 2008. Effects of single and combinedpollution of chlorpyrifos and acetochlor on soil enzymeactivity and microbial biomass carbon. Journal ofEcology and Rural Environment, 24, 57-60

[15]Maliszewska-Kordybach B, Smreczak B. 2003. Habitatfunction of agricultural soils as affected by heavy metalsand polycyclic aromatic hydrocarbons contamination.Environment International, 28, 719-728

[16]Omar S A, Abdel-Sater M A. 2001. Microbial populationsand enzyme activities in soil treated with pesticides.Water, Air, & Soil Pollution, 127, 49-63

[17]Poorna V, Kulkarni P R. 1995. A study of inulinaseproduction in Aspergillus niger using fractional design.Bioresource Technology, 54, 315-320

[18]Shen G Q, Lu Y T, Hong J B. 2006. Combined effect ofheavy metals and polycyclic aromatic hydrocarbonson urease activity in soil. Ecotoxicology andEnvironmental Safety, 63, 474-480

[19]Shen G Q, Lu Y T, Zhou Q X, Hong J B. 2005. Interaction ofpolycyclic aromatic hydrocarbons and heavy metalson soil enzyme. Chemosphere, 61, 1175-1182

[20]Sikkema J, de Bont J A M, Poolman B. 1995. Mechanisms ofmembrane toxicity of hydrocarbons. MicrobiologicalReview, 59, 201-222

[21]Speir T W, Kettles H A, Parshotam A, Searle P L, Vlaar L NC. 1995. A simply kinetic approach to derive theecological dose value, ED50, for the assessment of Cr(V1) toxicity to soil biological properties. Soil Biology& Biochemistry, 27, 801-810

[22]Speir T W, Kettles H A, Parshotam A, Searle P L, Vlaar L NC. 1999. Simply kinetic approach to determine thetoxicity of As (V) to soil biological properties. SoilBiology & Biochemistry, 31, 705-713

[23]Sukul P. 2006. Enzymatic activities and microbial biomassin soil as influenced by metalaxyl residues. Soil Biologyand Biochemistry, 38, 320-326

[24]Tamaki S, Frankenberger J W T. 1992. Environmentalbiogeochemistry of arsenic. Reviews of EnvironmentalContamination and Toxicology, 24, 79-110

[25]Tejada M. 2009. Evolution of soil biological properties afteraddition of glyphosate, diflufenican and glyphosatediflufenican herbicides. Chemosphere, 76, 365-373

[26]Tejada M, Parrado J, Hernández T, García C. 2011. Thebiochemical response to different Cr and Cdconcentrations in soils amended with organic wastes.Journal of Hazardous Materials, 185, 204-211

[27]Wang S, Mulligan C N. 2006. Occurrence of arseniccontamination in Canada: sources, behavior anddistribution. Science of the Total Environment, 366,701-721

[28]Weltje L. 1998. Mixture toxicity and tissues interactions ofCd, Cu, Pb and Zn in earthworms (Olignchaeta) inlaboratory and field soil: a critical evaluation of data.Chemosphere, 36, 2643-2660

[29]Xiao N W, Jing B B, Ge F, Liu X. 2006. The fate of herbicideacetochlor and its toxicity to Eisenia fetida underlaboratory conditions. Chemosphere, 62, 1366-1373

[30]Ye C. 2003. Environmental behavior of the herbicideacetochlor in soil. Bulletin of Environmental Contamination and Toxicology, 71, 919-923

[31]Yokley R A, Mayer L C, Huang S B, Vargo J D. 2002.Analytical method for the determination of metolachlor,acetochlor, alachlor, dimethenamid and theircorresponding ethanesulfonic and oxanillic aciddegradates in water using SPE and LC/ESI-MS/MS.Analytical Chemistry, 74, 3754-3759

[32]Zabaloy M C, Gómez M A. 2008. Microbial respiration insoils of the Argentine Pampas after metsulfuron-methyl,2,4-D and glyphosate treatments. Communications inSoil Science and Plant Analysis, 39, 370-385

[33]Zhan X H, Wu W Z, Zhou L X, Liang J, Jiang T. 2010.Interactive effect of dissolved organic matter andphenanthrene on soil enzymatic activities. Journal ofEnvironmental Sciences, 22, 607-614

[34]Zhang Y M, Wu N, Zhou G Y, Bao W K. 2005. Changes inenzyme activities of spruce (Picea balfouriana) forestsoil as related to burning in the eastern Qinghai-TibetanPlateau. Applied Soil Ecology, 30, 215-225.Zhou Q X. 2004. Ecology of Combined Pollution. ChinaEnvironmental Science Press, Beijing. (in Chinese)
[1] GUO Kai, GAO Wei, ZHANG Tao-rui, WANG Zu-ying, SUN Xiao-ting, YANG Peng, LONG Lu, LIU Xue-ying, WANG Wen-wen, TENG Zhong-hua, LIU Da-jun, LIU De-xin, TU Li-li, ZHANG Zheng-sheng. Comparative transcriptome and lipidome reveal that a low K+ signal effectively alleviates the effect induced by Ca2+ deficiency in cotton fibers[J]. >Journal of Integrative Agriculture, 2023, 22(8): 2306-2322.
[2] ZHANG Sheng-zhong, HU Xiao-hui, WANG Fei-fei, CHU Ye, YANG Wei-qiang, XU Sheng, WANG Song, WU Lan-rong, YU Hao-liang, MIAO Hua-rong, FU Chun, CHEN Jing. A stable and major QTL region on chromosome 2 conditions pod shape in cultivated peanut (Arachis hyopgaea L.)[J]. >Journal of Integrative Agriculture, 2023, 22(8): 2323-2334.
[3] GUO Bao-jian, SUN Hong-wei, QI Jiang, HUANG Xin-yu, HONG Yi, HOU Jian, LÜ Chao, WANG Yu-lin, WANG Fei-fei, ZHU Juan, GUO Gang-gang, XU Ru-gen. A single nucleotide substitution in the MATE transporter gene regulates plastochron and many noded dwarf phenotype in barley (Hordeum vulgare L.)[J]. >Journal of Integrative Agriculture, 2023, 22(8): 2295-2305.
[4] ZHANG Qiang-qiang, GAO Xi-xi, Nazir Muhammad ABDULLAHI, WANG Yue, HUO Xue-xi. Asset specificity and farmers’ intergenerational succession willingness of apple management[J]. >Journal of Integrative Agriculture, 2023, 22(8): 2553-2566.
[5] HUANG Hong-hao, LU Yi-xing, WU Su-juan, MA Zhen-bao, ZENG Dong-ping, ZENG Zhen-ling. Identification of blaIMI-mediated carbapenem-resistant Enterobacter from a duck farm in China[J]. >Journal of Integrative Agriculture, 2023, 22(8): 2500-2508.
[6] LI Dong-qing, ZHANG Ming-xue, LÜ Xin-xin, HOU Ling-ling. Does nature-based solution sustain grassland quality? Evidence from rotational grazing practice in China[J]. >Journal of Integrative Agriculture, 2023, 22(8): 2567-2576.
[7] DU Dan, HU Xin, SONG Xiao-mei, XIA Xiao-jiao, SUN Zhen-yu, LANG Min, PAN Yang-lu, ZHENG Yu, PAN Yu. SlTPP4 participates in ABA-mediated salt tolerance by enhancing root architecture in tomato[J]. >Journal of Integrative Agriculture, 2023, 22(8): 2384-2396.
[8] ZHANG Li-hua, ZHU Ling-cheng, XU Yu, LÜ Long, LI Xing-guo, LI Wen-hui, LIU Wan-da, MA Feng-wang, LI Ming-jun, HAN De-guo. Genome-wide identification and function analysis of the sucrose phosphate synthase MdSPS gene family in apple[J]. >Journal of Integrative Agriculture, 2023, 22(7): 2080-2093.
[9] SHI Shi-jie, ZHANG Gao-yu, CAO Cou-gui, JIANG Yang . Untargeted UHPLC–Q-Exactive-MS-based metabolomics reveals associations between pre- and post-cooked metabolites and the taste quality of geographical indication rice and regular rice[J]. >Journal of Integrative Agriculture, 2023, 22(7): 2271-2281.
[10] WANG Li-xin, WANG Lin-xia, ZHANG Meng-ling, QU Ying-yue, YUAN Ye, Ehsan SADEGHNEZHAD, GAO Meng-jiao, ZHAO Ruo-yu, QI Chao-feng, GUO Xiao-xue, ZHU Wen-hui, LI Rui-mei, DAI Li, LIU Meng-jun, LIU Zhi-guo. A cyclic effect of cAMP and calcium signaling contributes to jujube growth and development[J]. >Journal of Integrative Agriculture, 2023, 22(7): 2094-2110.
[11] LIU Yu-xin, LI Fan, GAO Liang, TU Zhang-li, ZHOU Fei, LIN Yong-jun. Advancing approach and toolbox in optimization of chloroplast genetic transformation technology[J]. >Journal of Integrative Agriculture, 2023, 22(7): 1951-1966.
[12] CHEN Guang-yi, PENG Li-gong, LI Cong-mei, TU Yun-biao, LAN Yan, WU Chao-yue, DUAN Qiang, ZHANG Qiu-qiu, YANG Hong, LI Tian. Effects of the potassium application rate on lipid synthesis and eating quality of two rice cultivars[J]. >Journal of Integrative Agriculture, 2023, 22(7): 2025-2040.
[13] CAO Song, SUN Dong-dong, LIU Yang, YANG Qing, WANG Gui-rong.

Mutagenesis of odorant coreceptor Orco reveals the distinct role of olfaction between sexes in Spodoptera frugiperda [J]. >Journal of Integrative Agriculture, 2023, 22(7): 2162-2172.

[14] LIU Dan, ZHAO De-hui, ZENG Jian-qi, Rabiu Sani SHAWAI, TONG Jing-yang, LI Ming, LI Fa-ji, ZHOU Shuo, HU Wen-li, XIA Xian-chun, TIAN Yu-bing, ZHU Qian, WANG Chun-ping, WANG De-sen, HE Zhong-hu, LIU Jin-dong, ZHANG Yong. Identification of genetic loci for grain yield‑related traits in the wheat population Zhongmai 578/Jimai 22[J]. >Journal of Integrative Agriculture, 2023, 22(7): 1985-1999.
[15] FAN Ting-lu, LI Shang-zhong, ZHAO Gang, WANG Shu-ying, ZHANG Jian-jun, WANG Lei, DANG Yi, CHENG Wan-li. Response of dryland crops to climate change and drought-resistant and water-suitable planting technology: A case of spring maize[J]. >Journal of Integrative Agriculture, 2023, 22(7): 2067-2079.
No Suggested Reading articles found!