Please wait a minute...
Journal of Integrative Agriculture
Advanced Online Publication | Current Issue | Archive | Adv Search
The versatile plant probiotic bacterium Bacillus velezensis SF305 reduces red root rot disease severity in the rubber tree by degrading the mycelia of Ganoderma pseudoferreum

Min Tu1, 4*, Zhongfeng Zhu2, 5*, Xinyang Zhao3, Haibin Cai1, 4, Yikun Zhang2, 5, Yichao Yan2, 5, Ke Yin2, 5, Zhimin Sha2, Yi Zhou3, Gongyou Chen2, 5, Lifang Zou2, 5#

1 National Key Laboratory for Tropical Crop Breeding, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya 572024, China 
2 Shanghai Collaborative Innovation Center of Agri-Seeds/School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
3 School of Agriculture, Yangtze University, Jingzhou 434000, China
4 Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya 572020, China
5 State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai 200240, China
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

【目的】本研究旨在探索一种有效的防治橡胶树红根病生物防治策略。橡胶树红根病由橡胶灵芝菌(Ganoderma pseudoferreum)引起,对中国橡胶树产区构成较大的威胁。通过筛选具有抗真菌活性的细菌菌株,以期找到一种能够显著降低红根病严重程度的生防菌剂。【方法】我们从全国23个省份的248个根际土壤样本中分离出223株候选细菌菌株,并采用双重培养试验评估这些菌株对橡胶灵芝菌的拮抗作用。经过筛选,发现贝莱斯芽孢杆菌Bacillus velezensis)SF305菌株橡胶灵芝菌具有显著的拮抗活性。进一步,我们对SF305进行了基因组测序和比较基因组学分析,以确定其潜在的生防机制和植物促生长特性。此外,还通过预防和治疗试验,评估了SF305在橡胶树红根病防治上的实际应用效果。【结果】结果表明,在预防试验中,B. velezensis SF305对红根病的保护效果超过90%;而在治疗试验中,其防病效果接近70%。深入分析显示,SF305通过降解G. pseudoferreum的菌丝体来降低病害严重程度。基因组测序揭示,SF305含有15个与次生代谢产物合成相关的基因簇,其中两个为独特基因簇,分别预测为合成罗克霉素(locillomycin)和新型非核糖体肽合成酶的基因簇。另外SF305含有与运动性、趋化性、生物膜形成、抗逆性、产生挥发性有机化合物以及吲哚-3-乙酸合成相关的基因,表明其具定殖在植物根际和促进植物生长的潜力。【结论】本研究首次报道贝莱斯芽孢杆菌作为防治橡胶树红根病的潜力生防剂。创新性本研究为橡胶树红根病的生物防治提供了新的微生物资源防治策略,也扩展了贝莱斯芽孢杆菌在林业病害生物防治领域的应用范围B. velezensis SF305的鉴定具有重要的科学意义和应用价值。



Abstract  

Natural rubber is an indispensable material of strategic importance that has critical applications in industry and the military. However, the development of the natural rubber industry is impeded by the red root rot disease of rubber trees caused by Ganoderma pseudoferreum, which is one of the most devastating diseases in the rubber tree growing regions in China. To combat this disease, we screened the antifungal activity of 223 candidate bacterial strains against G. pseudoferreum, and found that Bacillus velezensis strain SF305 exhibited significant antifungal activity against G. pseudoferreum. B. velezensis SF305 had a nearly 70% efficacy against the red root rot disease of rubber trees with the therapeutic treatment (Tre), while it exhibited over 90% protection effectiveness with the preventive treatment (Pre). The underlying biocontrol mechanism revealed that B. velezensis SF305 could reduce the disease severity of red root rot by degrading the mycelia of G. pseudoferreum. An antiSMASH analysis revealed that B. velezensis SF305 contains 15 gene clusters related to secondary metabolite synthesis, 13 of which are conserved in species of B. velezensis, but surprisingly, B. velezensis SF305 possesses 2 unique secondary metabolite gene clusters. One is predicted to synthesize locillomycin, and the other is a novel nonribosomal peptides synthetase (NRPS) gene cluster. Genomic analysis showed that B. velezensis SF305 harbors genes involved in motility, chemotaxis, biofilm formation, stress resistance, volatile organic compounds (VOCs) and synthesis of the auxin indole-3-acetic acid (IAA), suggesting its plant growth-promoting rhizobacteria (PGPR) properties. B. velezensis SF305 can promote plant growth and efficiently antagonize some important phytopathogenic fungi and bacteria. This study indicates that B. velezensis SF305 is a versatile plant probiotic bacterium. To the best of our knowledge, this is the first time a B. velezensis strain has been reported as a promising biocontrol agent against the red root rot disease of rubber trees. 

Keywords:  Bacillus velezensis       Ganoderma pseudoferreum                    red root rot disease              rubber tree              biocontrol              comparative genomics  
Online: 26 September 2024  
Fund: 

This work was financially supported by the National Key Research and Development Program of China (2023YFD1200204 to Min Tu) and the Special Fund for Hainan Excellent Team “Rubber Genetics and Breeding” (20210203 to Min Tu).

About author:  Min Tu, E-mail: tm_tumin@163.com; Zhongfeng Zhu, E-mail: zhuzhongfeng@sjtu.edu.cn; #Correspondence Lifang Zou, E-mail: zoulifang202018@sjtu.edu.cn *These authors contributed equally to this study.

Cite this article: 

Min Tu, Zhongfeng Zhu , Xinyang Zhao, Haibin Cai, Yikun Zhang, Yichao Yan, Ke Yin, Zhimin Sha, Yi Zhou, Gongyou Chen, Lifang Zou. 2024. The versatile plant probiotic bacterium Bacillus velezensis SF305 reduces red root rot disease severity in the rubber tree by degrading the mycelia of Ganoderma pseudoferreum. Journal of Integrative Agriculture, Doi:10.1016/j.jia.2024.09.027

Armenteros J J A, Tsirigos K D, Sønderby C K, Petersen T N, Winther O, Brunak S, Heijne G V, Nielsen H. 2019. SignalP 5.0 improves signal peptide predictions using deep neural networks. Nature Biotechnology, 37, 420-423.

Beilen J B V, Poirier Y. 2007. Establishment of new crops for the production of natural rubber. Trends in Biotechnology, 25, 522-529.

Besemer J, Lomsadze A, Borodovsky M. 2001. GeneMarkS: a self-training method for prediction of gene starts in microbial genomes. Implications for finding sequence motifs in regulatory regions. Nucleic Acids Research, 29, 2607-2618.

Blin K, Shaw S, Augustijn H E, Reitz Z L, Biermann F, Alanjary M, Fetter A, Terlouw B R, Metcalf W W, Helfrich E J N, Wezel G P V, Medema M H, Weber T. 2023. antiSMASH 7.0: new and improved predictions for detection, regulation, chemical structures and visualisation. Nucleic Acids Research, 51, W46-W50.

Chen X Y, Zhang Y Y, Fu X C, Li Y, Wang Q. 2016. Isolation and characterization of Bacillus amyloliquefaciens PG12 for the biological control of apple ring rot. Postharvest Biology and Technology, 115, 113-121.

Chen Y J, Yu P, Luo J C, Jiang Y. 2003. Secreted protein prediction system combining CJ-SPHMM, TMHMM, and PSORT. Mammalian Genome, 14, 859-865.

Chun J, Bae K S. 2000. Phylogenetic analysis of Bacillus subtilis and related taxa based on partial gyrA gene sequences. Antonie Van Leeuwenhoek, 78, 123-127.

Cornish K. 2001. Similarities and differences in rubber biochemistry among plant species. Phytochemistry, 57, 1123-1134.

Darling A C E, Mau B, Blattner F R, Perna N T. 2004. Mauve: multiple alignment of conserved genomic sequence with rearrangements. Genome Research, 14, 1394-1403.

Desmyttere H, Deweer C, Muchembled J, Sahmer K, Jacquin J, Coutte F, Jacques P. 2019. Antifungal activities of Bacillus subtilis lipopeptides to two Venturia inaequalis strains possessing different tebuconazole sensitivity. Frontiers in Microbiology, 10, 2327.

Farzand A, Moosa A, Zubair M, Khan A R, Massawe V C, Tahir H A S, Sheikh T M M, Ayaz M, Gao X W. 2019. Suppression of Sclerotinia sclerotiorum by the induction of systemic resistance and regulation of antioxidant pathways in tomato using fengycin produced by Bacillus amyloliquefaciens FZB42. Biomolecules, 9, 613.

Gireesh T, Meenakumari T, Mydin K K. 2017. Fast track evaluation and selection of clones from a clonal nursery. Industrial Crops and Products, 103, 195-201.

Glick B R. 2012. Plant Growth-Promoting Bacteria: Mechanisms and Applications. Scientifica, 2012, 1-15.

Gu Q, Yang Y, Yuan Q M, Shi G M, Wu L M, Lou Z Y, Huo R, Wu H J, Borriss R, Gao X W. 2017. Bacillomycin D produced by Bacillus amyloliquefaciens is involved in the antagonistic interaction with the plant-pathogenic fungus Fusarium graminearum. Applied and Environmental Microbiology, 83, e01075-01017.

Hanif A, Zhang F, Li P P, Li C C, Xu Y J, Zubair M, Zhang M X, Jia D D, Zhao X Z, Liang J G, Majid T, Yan J Y, Farzand A, Wu H J, Gu Q, Gao X W. 2019. Fengycin produced by Bacillus amyloliquefaciens FZB42 inhibits Fusarium graminearum growth and mycotoxins biosynthesis. Toxins, 11, 295.

He C P, Rui L, Qiong L Y, Huai W W, Xing H, Gen X J, Long Z J, Xian Y K. 2019. Biological characteristics and toxicity test of pathogen strains causing rubber red root rot from different regions. Chinese Journal of Tropical Crops, 40, 522-529. (in Chinese)

Huang L, Li Q C, Hou Y, Li G Q, Yang J Y, Li D W, Ye J R. 2017. Bacillus velezensis strain HYEB5-6 as a potential biocontrol agent against anthracnose on Euonymus japonicus. Biocontrol Science and Technology, 27, 636-653.

Jakobsen I, Leggett M E, Richardson A E. 2015. Rhizosphere Microorganisms and Plant Phosphorus Uptake. In: Sims J T, Sharpley A N eds., Phosphorus: Agriculture and the Environment. ASA, CSSA, SSSA, Wisconsin, USA. pp. 437-494.

Jalani B S, Ramli O. 2003. PRODUCTION SYSTEMS AND AGRONOMY | Rubber. In: Thomas B ed., Encyclopedia of Applied Plant Sciences. Elsevier, Oxford. pp. 970-978.

Kaku H, Nishizawa Y, Ishii-Minami N, Akimoto-Tomiyama C, Dohmae N, Takio K, Minami E, Shibuya N. 2006. Plant cells recognize chitin fragments for defense signaling through a plasma membrane receptor. Proceedings of the National Academy of Sciences, 103, 11086-11091.

Kalvari I, Argasinska J, Quinones-Olvera N, Nawrocki E P, Rivas E, Eddy S R, Bateman A, Finn R D, Petrov A I. 2018. Rfam 13.0: shifting to a genome-centric resource for non-coding RNA families. Nucleic Acids Research, 46, D335-D342.

Koumoutsi A, Chen X H, Henne A, Liesegang H, Hitzeroth G, Franke P, Vater J, Borriss R. 2004. Structural and functional characterization of gene clusters directing nonribosomal synthesis of bioactive cyclic lipopeptides in Bacillus amyloliquefaciens strain FZB42. Journal of Bacteriology, 186, 1084-1096.

Krogh A, Brown M, Mian I S, Sjölander K, Haussler D. 1994. Hidden markov-models in computational biology: Applications to protein modeling. Journal of Molecular Biology, 235, 1501-1531.

Lee I, Kim Y O, Park S-C, Chun J. 2016. OrthoANI: An improved algorithm and software for calculating average nucleotide identity. International Journal of Systematic and Evolutionary Microbiology, 66, 1100-1103.

Li X J, Yao C X, Qiu R, Bai J K, Liu C, Chen Y G, Li S J. 2023. Isolation, identification, and evaluation of the biocontrol potential of a Bacillus velezensis strain against tobacco root rot caused by Fusarium oxysporum. Journal of applied microbiology, 134, 1-9.

Liang L Q, Fu Y J, Deng S S, Wu Y, Gao M Y. 2021. Genomic, antimicrobial, and aphicidal traits of Bacillus velezensis ATR2, and its biocontrol potential against ginger rhizome rot disease caused by Bacillus pumilus. Microorganisms, 10, 63.

Livak K J, Schmittgen T D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods, 25, 402-408.

López-Mondéjar R, Ros M, Pascual J A. 2011. Mycoparasitism-related genes expression of Trichoderma harzianum isolates to evaluate their efficacy as biological control agent. Biological Control, 56, 59-66.

Lowe T M, Eddy S R. 1997. tRNAscan-SE: A program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Research, 25, 955-964.

Mahyudin M M, Noran A S, Ismail M Z H, Ahmad K. 2023. Diseases of rubber trees: Malaysia as a case study. In: Asiegbu F O, Kovalchuk A eds., Forest Microbiology. Academic Press, Helsinki, Finland. pp. 401-414.

Meier-Kolthoff J P, Carbasse J S, Peinado-Olarte R L, Göker M. 2022. TYGS and LPSN: a database tandem for fast and reliable genome-based classification and nomenclature of prokaryotes. Nucleic Acids Research, 50, D801-D807.

Men X, Wang F, Chen G Q, Zhang H B, Xian M. 2018. Biosynthesis of natural rubber: current state and perspectives. International Journal of Molecular Sciences, 20, 50.

Özcengiz G, Öğülür İ. 2015. Biochemistry, genetics and regulation of bacilysin biosynthesis and its significance more than an antibiotic. New Biotechnology, 32, 612-619.

Peng J, He Z, Xin Z, Qiang Z H, Ji P J, Xiang Q Y, Xian X Y. 2014. Identification and phylogenetic analysis of pathogenic fungus causing rubber tree red root rot disease. Chinese Journal of Tropical Crops, 35, 1393-1397. (in Chinese)

Pérez-García A, Romero D, Vicente A D. 2011. Plant protection and growth stimulation by microorganisms: biotechnological applications of Bacilli in agriculture. Current Opinion in Biotechnology, 22, 187-193.

Qin Y X, Tu M, Yang M F, Qi J Y, Tang C R. 2015. Antagonistic effect of eight strains of Trichoderma on Ganoderma pseudoferreum causing red root rot of rubber tree. Chinese Journal of Tropical Agriculture, 35, 41-45+53. (in Chinese)

Rahma A A, Suryanti, Somowiyarjo S, Joko T. 2020. Induced disease resistance and promotion of shallot growth by Bacillus velezensis B-27. Pakistan Journal of Biological Sciences, 23, 1113-1121.

Saeid A, Chojnacka K. 2019. Fertlizers: Need for New Strategies. In: Chandran S, Unni M R, Thomas S eds., Organic Farming. Woodhead Publishing, Kerala, India. pp. 91-116.

Sawant S S, Song J, Seo H-J. 2022. Characterization of Bacillus velezensis RDA1 as a biological control agent against white root rot disease caused by Rosellinia necatrix. Plants, 11, 2486.

Shibuya N, Minami E. 2001. Oligosaccharide signalling for defence responses in plant. Physiological and Molecular Plant Pathology, 59, 223-233.

Shimizu T, Nakano T, Takamizawa D, Desaki Y, Ishii-Minami N, Nishizawa Y, Minami E, Okada K, Yamane H, Kaku H, Shibuya N. 2010. Two LysM receptor molecules, CEBiP and OsCERK1, cooperatively regulate chitin elicitor signaling in rice. Plant Journal, 64, 204-214.

Steyaert R L. 1972. Species of Ganoderma and related genera mainly of the Bogor and Leiden Herbaria. Persoonia - Molecular Phylogeny and Evolution of Fungi, 7, 55-118.

Sun J H, Lu F, Luo Y J, Bie L Z, Xu L, Wang Y. 2023. OrthoVenn3: an integrated platform for exploring and visualizing orthologous data across genomes. Nucleic Acids Research, 51, W397-W403.

Tamura K, Stecher G, Kumar S. 2021. MEGA11 Molecular evolutionary genetics analysis version 11. Molecular Biology and Evolution, 38, 3022-3027.

Walker B J, Abeel T, Shea T, Priest M, Abouelliel A, Sakthikumar S, Cuomo C A, Zeng Q D, Wortman J, Young S K, Earl A M. 2014. Pilon: An integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS One, 9, e112963.

Wang M Y, Zhang Y K, Cai H B, Zhao X Y, Zhu Z F, Yan Y C, Yin K, Cheng G Y, Li Y S, Chen G Y, Zou L F, Tu M. 2024. A new biocontrol agent Bacillus velezensis SF334 against rubber tree fungal leaf anthracnose and its genome analysis of versatile plant probiotic traits. Journal of Fungi, 10, 158.

Wong E, Hagen J. 2022. An evidence-based causal perspective of agrochemical pollution and its impact on health. Science Insights, 41, 691-695.

Xu T, Zhu T H, Li S J, Qiao T M. 2014. Fungus-inhibitory activity and gene cloning of β-glucanase from Bacillus velezensis YB15. Chinese Journal of Biological Control, 30, 276-281. (in Chinese)

Yang R H, Li S Z, Li Y L, Yan Y C, Fang Y, Zou L F, Chen G Y. 2021. Bactericidal effect of Pseudomonas oryziphila sp. nov., a novel Pseudomonas species against Xanthomonas oryzae reduces disease severity of bacterial leaf streak of rice. Frontiers in Microbiology, 12.

Yu C J, Chen H, Zhu L L, Song Y, Jiang Q F, Zhang Y M, Ali Q B, Gu Q, Gao X W, Borriss R, Dong S M, Wu H J. 2023a. Profiling of antimicrobial metabolites synthesized by the endophytic and genetically amenable biocontrol strain Bacillus velezensis DMW1. Microbiology Spectrum, 11, e00038-00023.

Yu C J, Qiao J Q, Ali Q, Jiang Q F, Song Y, Zhu L L, Gu Q, Borriss R, Dong S M, Gao X W, Wu H J. 2023b. degQ associated with the degS/degU two-component system regulates biofilm formation, antimicrobial metabolite production, and biocontrol activity in Bacillus velezensis DMW1. Molecular Plant Pathology, 24, 1510-1521.

Yu C J, Yang X H, Liang X L, Song Y, Zhu L L, Xing S Y, Yang Y, Gu Q, Borriss R, Dong S M, Gao X W, Wu H J. 2023c. Fusaricidin produced by the rhizobacterium Paenibacillus polymyxa NX20 is involved in the biocontrol of postharvest plant-pathogenic oomycete Phytophthora capsici. Postharvest Biology and Technology, 205, 112545.

Zhang D F, He W, Shao Z Z, Ahmed I, Zhang Y Q, Li W J, Zhao Z. 2023. EasyCGTree: a pipeline for prokaryotic phylogenomic analysis based on core gene sets. BMC Bioinformatics, 24, 390.

Zhang Y Q, Xie Y X, Zhang H Q. 2000. Identification of pathogenic fungi of rubber red root disease. Chinese Journal of Tropical Crops, 21, 20-24. (in Chinese)

Zhao L L, He C Q, Zheng X L, Fan L Y, Zheng F C. 2011. Effect of Bacillus subtilis strain Czk1 on different rubber root pathogens and in vitro control of Colletotrichum gloeosporioides on rubber leaf. Journal of Southern Agriculture, 42, 740-743. (in Chinese)

No related articles found!
No Suggested Reading articles found!