Please wait a minute...
Journal of Integrative Agriculture  2025, Vol. 24 Issue (9): 3656-3670    DOI: 10.1016/j.jia.2025.02.004
Agro-ecosystem & Environment Advanced Online Publication | Current Issue | Archive | Adv Search |
Polyphosphate-enriched algae fertilizer as a slow-release phosphorus resource can improve plant growth and soil health

Jiahong Yu1*, Bingbing Luo2*, Yujie Yang1*, Suna Ren2, Lei Xu3, Long Wang3, Xianqing Jia4, Yiyong Zhu1#, Keke Yi3#

1 Key Lab of Organic-based Fertilizers of China/Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing 210095, China

2 Anhui Province Key Lab of Farmland Ecological Conservation and Nutrient Utilization/Anhui Province Engineering and Technology Research Center of Intelligent Manufacture and Efficient Utilization of Green Phosphorus Fertilizer, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China

3 State Key Laboratory of Efficient Utilization of Arable Land in China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China

4 Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education/Provincial Key Laboratory of Biotechnology of Shaanxi Province, College of Life Sciences, Northwest University, Xi’an 710069, China

 Highlights 
● Polyphosphate-enriched algae fertilizer (PEA) gradually releases phosphorus, ensuring a sustained and steady supply of phosphorus in the soil.
● PEA enhances phosphorus solubilization and uptake by improving soil microbial activity and promoting beneficial microbial communities.
Algae fertilizers, especially PEA, support plant growth and soil health, offering a promising solution for sustainable phosphorus management in agriculture.
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

磷肥的施用促进了作物生长,提高了农业生产效率。然而,磷矿作为磷肥的主要来源,其不可再生性日益突出,且土壤中铁、铝等金属离子易对磷肥产生固定作用,导致磷肥利用效率低下。此外,磷肥通过扩散和径流等途径流失,容易导致水体富营养化等环境问题。在此背景下,藻类肥料作为一种环境友好型替代品,逐渐受到关注。然而,藻类肥料在提供持续磷源、促进植物生长、影响土壤微生物群落以及养分循环等方面的潜力,仍有待深入探究。在本研究中,我们开发了一种聚磷藻肥并通过土壤培养实验、溶液培养实验以及作物生长试验,将其与化学磷肥进行对比分析。土壤培养实验结果显示,聚磷藻肥能逐步释放出土壤初始活性磷两倍的磷素,展现出缓释特性。相比之下,化学磷肥处理下的土壤虽然在初期表现出较高的活性磷水平,但随后这些活性磷迅速转化为稳定态磷,三个月后的活性磷水平已降至聚磷藻肥处理土壤的30%左右。进一步研究发现,聚磷藻肥中磷素的缓慢释放与土壤微生物活性的增强有关。在培养三个月后,聚磷藻肥处理土壤的微生物量磷含量较化学磷肥处理土壤高出约8倍,同时微生物量碳与微生物量磷的比值下降了约75%。微生物多样性分析显示,与化学磷肥相比,聚磷藻肥能够吸引更多有益微生物种群,如溶磷菌、植物促生菌和抗逆菌等,从而优化土壤微生物群落结构。盆栽实验以及对番茄根际微生物的扩增子和宏基因组分析表明,藻类肥料在促进植物生长方面与化学磷肥效果相当,同时能够增强土壤磷循环和整体养分动态。以上结果表明,藻类肥料,尤其是聚磷藻肥,通过其独特的磷素缓慢释放和吸引有益微生物的能力,有效稳定了土壤磷肥力,促进了植物生长。本研究强调了聚磷藻肥作为一种缓释磷肥在缓解磷资源短缺、减少土壤磷流失、促进植物生长以及改善土壤健康方面的巨大潜力,为推动磷素资源的可持续利用提供了有力支撑。



Abstract  

Using phosphorus (P) fertilizers has historically increased agricultural productivity, yet the highly dissipative nature of phosphate rock and the low efficiency due to soil fixation and runoff raise sustainability concerns.  Algae fertilizers have emerged as a promising eco-friendly alternative.  However, the potential of algae fertilizers for providing sustained P availability and their impacts on plant growth, soil microbes, and nutrient cycling remains to be explored.  In this study, we developed a polyphosphate-enriched algae fertilizer (PEA) and conducted comparative experiments with chemical P fertilizers (CP) through soil and solution cultures, as well as crop growth trials.  Soil cultivation experiments showed that PEA released twice as much labile P as initially available in the soil, and it functioned as a slow-release P source.  In contrast, soils treated with CP initially exhibited high levels of labile P, which was gradually converted to stable forms, but it dropped to 30% of the labile P level in PEA after three months.  Further tests revealed that the slow release of P from PEA was linked to increased microbial activity, and the microbial biomass P (MBP) content was about eight times higher than in soils treated with CP after three months, resulting in a 75% decline in the microbial biomass carbon (MBC) to MBP ratio.  Microbial diversity analysis showed that algae fertilizers could recruit more beneficial microbes than CP, like phosphorus-solubilizing bacteria, plant growth-promoting bacteria, and stress-resistant bacteria.  Crop pot experiments, along with amplicon and metagenomic analysis of tomato root-associated microbes, revealed that algae fertilizers including PEA promoted plant growth comparable to CP, and enhanced soil P cycling and overall nutrient dynamics.  These data showed that algae fertilizers, especially PEA, can stabilize soil P fertility and stimulate plant growth through their slow P release and the recruitment of beneficial microbes.  Our study highlights the potential of PEA to foster sustainable agriculture by mitigating the P scarcity and soil P loss associated with chemical fertilizers and improving plant growth and soil health.

Keywords:  algae fertilizer       slow-release fertilizer        polyphosphate-enriched        P fractionsoil microbiome  
Received: 04 September 2024   Online: 10 February 2025   Accepted: 18 December 2024
Fund: 

This work was supported by the National Key Research and Development Program of China (2021YFF1000404), the National Natural Science Foundation of China (32472823 and 32102478), the Innovation Program of Chinese Academy of Agricultural Sciences (CAAS-CSAL-202301), and the China Postdoctoral Science Foundation (2021M693447, 2021M693449 and 2022T150707).

About author:  #Correspondence Yiyong Zhu, E-mail: yiyong1973@njau.edu.cn; Keke Yi, E-mail: yikeke@caas.cn

Cite this article: 

Jiahong Yu, Bingbing Luo, Yujie Yang, Suna Ren, Lei Xu, Long Wang, Xianqing Jia, Yiyong Zhu, Keke Yi. 2025. Polyphosphate-enriched algae fertilizer as a slow-release phosphorus resource can improve plant growth and soil health. Journal of Integrative Agriculture, 24(9): 3656-3670.

Ammar E E, Aioub A A A, Elesawy A E, Karkour A M, Mouhamed M S, Amer A A, EL-Shershaby N A. 2022. Algae as bio-fertilizers: Between current situation and future prospective. Saudi Journal of Biological Sciences29, 3083–3096.

Bai Y, Müller D B, Srinivas G, Garrido Oter R, Potthoff E, Rott M, Dombrowski N, Münch P C, Spaepen S, Remus-Emsermann M, Hüttel B, McHardy A C, Vorholt J A, Schulze-Lefert P. 2015. Functional overlap of the Arabidopsis leaf and root microbiota. Nature528, 364–369.

Bodenhausen N, Horton M W, Bergelson J. 2013. Bacterial communities associated with the leaves and the roots of Arabidopsis thalianaPLoS ONE8, e56329.

Brookes P C, Powlson D S, Jenkinson D S. 1982. Measurement of microbial biomass phosphorus in soil. Soil Biology and Biochemistry14, 319–329.

Brownlie W J, Sutton M A, Reay D S, Heal K V, Hermann L, Kabbe C, Spears B M. 2021. Global actions for a sustainable phosphorus future. Nature Food2, 71–74.

Cao T N D, Mukhtar H, Le L T, Tran D P H, Ngo M T T, Pham M D T, Nguyen T B, Vo T K Q, Bui X T. 2023. Roles of microalgae-based biofertilizer in sustainability of green agriculture and food-water-energy security nexus. Science of the Total Environment870, 161927.

Castrillo G, Teixeira P J P L, Paredes S H, Law T F, de Lorenzo L, Feltcher M E, Finkel O M, Breakfield N W, Mieczkowski P, Jones C D, Paz-Ares J, Dangl J L. 2017. Root microbiota drive direct integration of phosphate stress and immunity. Nature543, 513–518.

Chelius M K, Triplett E W. 2001. The diversity of archaea and bacteria in association with the roots of Zea mays L. Microbial Ecology41, 252–263.

Chen G, Yuan J, Chen H, Zhao X, Wang S, Zhu Y, Wang Y. 2022. Animal manures promoted soil phosphorus transformation via affecting soil microbial community in paddy soil. Science of the Total Environment831, 154917.

Chen Q Q, Zhao Q, Xie B X, Lu X, Guo Q, Liu G X, Zhou M, Tian J H, Lu W G, Chen K, Tian J, Liang C Y. 2024. Soybean (Glycine max) rhizosphere organic phosphorus recycling relies on acid phosphatase activity and specific phosphorusmineralizing-related bacteria in phosphate deficient acidic soils. Journal of Integrative Agriculture23, 1685–1702.

Chen S, Zhou Y, Chen Y, Gu J. 2018. fastp: An ultra-fast all-in-one FASTQ preprocessor. Bioinformatics34, i884–i890.

Cong W F, Suriyagoda L D B, Lambers H. 2020. Tightening the phosphorus cycle through phosphorus-efficient crop genotypes. Trends in Plant Science25, 967–975.

Cordell D, Brownlie W J, Esham M. 2021. Commentary: Time to take responsibility on phosphorus: Towards circular food systems. Global Environmental Change71, 102406.

Cordell D, Drangert J O, White S. 2009. The story of phosphorus: Global food security and food for thought. Global Environmental Change19, 292–305.

Cordell D, White S. 2014. Life’s bottleneck: Sustaining the world’s phosphorus for a food secure future. Annual Review of Environment and Resources39, 161–188.

Dai Y, Yang S, Zhao D, Hu C, Xu W, Anderson D M, Li Y, Song X P, Boyce D G, Gibson L, Zheng C, Feng L. 2023. Coastal phytoplankton blooms expand and intensify in the 21st century. Nature615, 280–284.

Dhillon J, Torres G, Driver E, Figueiredo B, Raun W R. 2017. World phosphorus use efficiency in cereal crops. Agronomy Journal109, 1670–1677.

Edgar R C. 2013. UPARSE: Highly accurate OTU sequences from microbial amplicon reads. Nature Methods10, 996–998.

Elser J, Bennett E. 2011. A broken biogeochemical cycle. Nature478, 29–31.

Gilbert N. 2009. Environment: The disappearing nutrient. Nature461, 716–718.

Hedley M J, Stewart J W B, Chauhan B S. 1982. Changes in inorganic and organic soil phosphorus fractions induced by cultivation practices and by laboratory incubations. Soil Science Society of America Journal46, 970–976.

Hussain F, Shah S Z, Ahmad H, Abubshait S A, Abubshait H A, Laref A, Manikandan A, Kusuma H S, Iqbal M. 2021. Microalgae an ecofriendly and sustainable wastewater treatment option: Biomass application in biofuel and bio-fertilizer production. A review. Renewable and Sustainable Energy Reviews137, 110603.

Li P, Tedersoo L, Crowther T W, Dumbrell A J, Dini-Andreote F, Bahram M, Kuang L, Li T, Wu M, Jiang Y, Luan L, Saleem M, de Vries F T, Li Z, Wang B, Jiang J. 2023. Fossil-fuel-dependent scenarios could lead to a significant decline of global plant-beneficial bacteria abundance in soils by 2100. Nature Food4, 996–1006.

Li Y, Xu Z, Zhang L, Chen W, Feng G. 2024. Dynamics between soil fixation of fertilizer phosphorus and biological phosphorus mobilization determine the phosphorus budgets in agroecosystems. AgricultureEcosystems & Environment375, 109174.

Liu C, Zhao D, Ma W, Guo Y, Wang A, Wang Q, Lee D J. 2016. Denitrifying sulfide removal process on high-salinity wastewaters in the presence of Halomonas sp. Applied Microbiology and Biotechnology100, 1421–1426.

Liu H, Brettell L E, Qiu Z, Singh B K. 2020. Microbiome-mediated stress resistance in plants. Trends in Plant Science25, 733–743.

Liu W, Ciais P, Liu X, Yang H, Hoekstra AY, Tang Q, Wang X, Li X, Cheng L. 2020. Global phosphorus losses from croplands under future precipitation scenarios. Environmental Science & Technology54, 14761–14771.

Lu Q, Xiao Y. 2022. From manure to high-value fertilizer: The employment of microalgae as a nutrient carrier for sustainable agriculture. Algal Research67, 102855.

Luo G, Xue C, Jiang Q, Xiao Y, Zhang F, Guo S, Shen Q, Ling N. 2020. Soil carbon, nitrogen, and phosphorus cycling microbial populations and their resistance to global change depend on soil C:N:P stoichiometry. mSystems5, e00162-20.

Maciá Vicente J G, Bai B, Qi R, Ploch S, Breider F, Thines M. 2022. Nutrient availability does not affect community assembly in root-associated fungi but determines fungal effects on plant growth. mSystems7, e00304–22.

McDowell R W, Pletnyakov P, and Haygarth P M. 2024. Phosphorus applications adjusted to optimal crop yields can help sustain global phosphorus reserves. Nature Food5, 332–339.

Mekonnen M M, Hoekstra A Y. 2018. Global anthropogenic phosphorus loads to freshwater and associated grey water footprints and water pollution levels: A high-resolution global study. Water Resources Research54, 345–358.

Murphy J, Riley J P. 1962. A modified single solution method for the determination of phosphate in natural waters. Analytica Chimica Acta27, 31–36.

Olsen S R, Sommers L E. 1982. Phosphorus. In: Methods of Soil Analysis. John Wiley & Sons, New York. pp. 403–430.

Plouviez M, Brown N. 2024. Polyphosphate accumulation in microalgae and cyanobacteria: Recent advances and opportunities for phosphorus upcycling. Current Opinion in Biotechnology90, 103207.

Reitzel K, Bennett W W, Berger N, Brownlie W J, Bruun S, Christensen M L, Cordell D, van Dijk K, Egemose S, Eigner H. 2019. New training to meet the global phosphorus challenge. Environmental Science & Technology53, 8479–8481.

Ren Y, Yu G, Shi C, Liu L, Guo Q, Han C, Zhang D, Zhang L, Liu B, Gao H. 2022. Majorbio cloud: A one-stop, comprehensive bioinformatic platform for multiomics analyses. iMeta1, e12.

Priya E, Sarkar S, Maji P K. 2024. A review on slow-release fertilizer: Nutrient release mechanism and agricultural sustainability. Journal of Environmental Chemical Engineering12, 113211.

Santos-Medellín C, Edwards J, Liechty Z, Nguyen B, Sundaresan V. 2017. Drought stress results in a compartment-specific restructuring of the rice root-associated microbiomes. mBio8, e00764-17.

Schindler D W, Carpenter S R, Chapra S C, Hecky R E, Orihel D M. 2016. Reducing phosphorus to curb lake eutrophication is a success. Environmental Science & Technology50, 8923–8929.

Schreiber C, Schiedung H, Harrison L, Briese C, Ackermann B, Kant J, Schrey S D, Hofmann D, Singh D, Ebenhöh O, Amelung W, Schurr U, Mettler-Altmann T, Huber G, Jablonowski N D, Nedbal L. 2018. Evaluating potential of green alga Chlorella vulgaris to accumulate phosphorus and to fertilize nutrient-poor soil substrates for crop plants. Journal of Applied Phycology30, 2827–2836.

Siebers N, Hofmann D, Schiedung H, Landsrath A, Ackermann B, Gao L, Mojzeš P, Jablonowski N D, Nedbal L, Amelung W. 2019. Towards phosphorus recycling for agriculture by algae: Soil incubation and rhizotron studies using 33P-labeled microalgal biomass. Algal Research43, 101634.

Slocombe S P, Zúñiga Burgos T, Chu L, Mehrshahi P, Davey M P, Smith A G, Camargo Valero M A, Baker A. 2023. Overexpression of PSR1 in Chlamydomonas reinhardtii induces luxury phosphorus uptake. Frontiers in Plant Science141208168.

Solovchenko A, Verschoor A M, Jablonowski N D, Nedbal L. 2016. Phosphorus from wastewater to crops: An alternative path involving microalgae. Biotechnology Advances34, 550–564.

Solovchenko A, Khozin-Goldberg I, Selyakh I, Semenova L, Ismagulova T, Lukyanov A, Mamedov I, Vinogradova E, Karpova O, Konyukhov I, Vasilieva S, Mojzes P, Dijkema C, Vecherskaya M, Zvyagin I, Nedbal L, Gorelova O. 2019. Phosphorus starvation and luxury uptake in green microalgae revisited. Algal Research43, 101651.

Stewart W M, Dibb D W, Johnston A E, Smyth T J. 2005. The contribution of commercial fertilizer nutrients to food production. Agronomy Journal97, 1–6.

Tiessen H, Moir J. 1993. Characterization of available P by sequential extraction. In: Carter M R, ed., Soil Sampling and Methods of Analysis. Lewis Publishers, Boca Raton. pp. 75–86.

Veneklaas E J, Lambers H, Bragg J, Finnegan P M, Lovelock C E, Plaxton W C, Price C A, Scheible W R, Shane M W, White P J, Raven J A. 2012. Opportunities for improving phosphorus-use efficiency in crop plants. New Phytologist195, 306–320.

Wang L, Jia X, Xu L, Yu J, Ren S, Yang Y, Wang K, López-Arredondo D, Herrera-Estrella L, Lambers H, Yi K. 2023. Engineering microalgae for water phosphorus recovery to close the phosphorus cycle. Plant Biotechnology Journal21, 1373–1382.

Wang L, Jia X, Zhang Y, Xu L, Menand B, Zhao H, Zeng H, Dolan L, Zhu Y, Yi K. 2021. Loss of two families of SPX domain-containing proteins required for vacuolar polyphosphate accumulation coincides with the transition to phosphate storage in green plants. Molecular Plant14, 838–846.

Wang Q, Garrity G M, Tiedje J M, Cole J R. 2007. Naïve bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Applied and Environmental Microbiology73, 5261–5267.

Wang X, Gao Y, Hu B, Chu G. 2019. Comparison of the hydrolysis characteristics of three polyphosphates and their effects on soil phosphorus and micronutrient availability. Soil Use and Management35, 664–674.

Weeks Jr J J, Hettiarachchi G M. 2019. A review of the latest in phosphorus fertilizer technology: Possibilities and pragmatism. Journal of Environmental Quality48, 1300–1313.

Wu J, Joergensen R G, Pommerening B, Chaussod R, Brookes P C. 1990. Measurement of soil microbial biomass C by fumigation-extraction - an automated procedure. Soil Biology and Biochemistry22, 1167–1169.

Xu M Z, Wang Y H, Nie C E, Song G P, Xin S N, Lu Y L, Bai Y L, Zhang Y J, Wang L. 2023. Identifying the critical phosphorus balance for optimizing phosphorus input and regulating soil phosphorus effectiveness in a typical winter wheat–summer maize rotation system in North China. Journal of Integrative Agriculture22, 3769–3782.

Yahaya S M, Mahmud A A, Abdullahi M, Haruna A. 2023. Recent advances in the chemistry of nitrogen, phosphorus and potassium as fertilizers in soil: A review. Pedosphere33, 385–406.

Yang S, Liu H, Xie P, Wen T, Shen Q, Yuan J. 2023. Emerging pathways for engineering the rhizosphere microbiome for optimal plant health. Journal of Agricultural and Food Chemistry71, 4441–4449.

Yu J, Wang L, Jia X, Wang Z, Yu X, Ren S, Yang Y, Ye X, Wu X, Yi K, Zhu Y. 2023. Different microbial assembly between cultivated and wild tomatoes under P stress. Soil Science and Environment2, 10.

Zhang Y, Wang L, Guo Z, Xu L, Zhao H, Zhao P, Ma C, Yi K, Jia X. 2022. Revealing the underlying molecular basis of phosphorus recycling in the green manure crop Astragalus sinicusJournal of Cleaner Production341, 130924.

Zhao B, Jia X, Yu N, Murray J D, Yi K, Wang E. 2024. Microbe-dependent and independent nitrogen and phosphate acquisition and regulation in plants. New Phytologist242, 1507–1522.

Zhou R, Zhou J, Jia L, Wei J, Yan J, Ji J, Wei Z. 2023. Polyphosphate hydrolysis, sorption, and conversion in two different soils. European Journal of Soil Science74, e13341.

Zhou Z, Tran P Q, Breister A M, Liu Y, Kieft K, Cowley E S, Karaoz U, Anantharaman K. 2022. METABOLIC: High-throughput profiling of microbial genomes for functional traits, metabolism, biogeochemistry, and community-scale functional networks. Microbiome10, 33.

Zou T, Zhang X, and Davidson E A. 2022. Global trends of cropland phosphorus use and sustainability challenges. Nature611, 81–87.

No related articles found!
No Suggested Reading articles found!