Badrinarayanan V, Kendall A, Cipolla R. 2017. Segnet: A deep convolutional encoder-decoder architecture for image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39, 2481–2495.
Bari B S, Islam M N, Rashid M, Hasan M J, Razman M A M, Musa R M, Ab Nasir A F, Majeed A P A. 2021. A real-time approach of diagnosing rice leaf disease using deep learning-based faster R-CNN framework. PeerJ Computer Science, 7, 432.
Borhani Y, Khoramdel J, Najafi E. 2022. A deep learning based approach for automated plant disease classification using vision transformer. Scientific Reports, 12, 11554.
Chen L C, Papandreou G, Kokkinos I, Murphy K, Yuille A L. 2017. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs. IEEE Transactions on Pattern Analysis and Machine Intelligence, 40, 834–848.
Chen S, Zhang K F, Zhao Y D, Sun Y Q, Ban W, Chen Y, Zhuang H F, Zhang X W, Liu J X, Yang T. 2021. An approach for rice bacterial leaf streak disease segmentation and disease severity estimation. Agriculture, 11, 420.
DB32/T 3714-2020. 2020. Technical Specification for investigation and forecast of Liriomyza trifolii (Burgess). Jiangsu Market Supervision and Administration Bureau, China. (in Chinese)
Fang W, Qian J, Wu Q, Chen Y,Yu G Z. 2017. ADAM-17 expression is enhanced by FoxM1 and is a poor prognostic sign in gastric carcinoma. Journal of Surgical Research, 220, 223–233.
Gao Y F, Yin F, Chen H, Chen X F, Deng H, Liu Y J, Li Z Y, Yao Q. 2025. Intelligent field monitoring system for cruciferous vegetable pests using yellow sticky trap images and an improved Cascade R-CNN. Journal of Integrative Agriculture, 24, 2-16.
Gao Y L, Reitz S, Xing Z L, Ferguson S, Lei Z. 2017. A decade of leafminer invasion in China: Lessons learned. Pest Management Science, 73, 1775–1779.
Goncalves J P, Pinto F A, Queiroz D M, Villar F M, Barbedo J G, Del Ponte E M. 2021. Deep learning architectures for semantic segmentation and automatic estimation of severity of foliar symptoms caused by diseases or pests. Biosystems Engineering, 210, 129–142.
Goyal A, Bochkovskiy A, Deng J, Koltun V. 2022. Non-deep networks. Advances in Neural Information Processing Systems, 35, 6789–6801.
Guo M H, Lu C Z, Hou Q, Liu Z N, Cheng M M,Hu S M. 2022. SegNeXt: Rethinking convolutional attention design for semantic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Institute of Electrical and Electronic Engineers Computer Society, USA. pp. 8575.
Han X T, Yang B J, Li S X, Liao F B, Liu S H, Tang J, Yao Q. 2022. Intelligent forecasting method of rice sheath blight based on images. Scientia Agricultura Sinica, 55, 1557–1567. (in Chinese)
Hatamizadeh A, Nath V, Tang Y, Yang D, Roth H R, Xu D. 2021. Swin UNETR: Swin transformers for semantic segmentation of brain tumors in MRI images. In: Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries. Springer, Cham, Switzerland. pp. 272–284.
He K, Gkioxari G, Dollár P, Girshick R. 2017. Mask r-cnn. In: Proceedings of the IEEE International Conference on Computer Vision. Institute of Electrical and Electronic Engineers Computer Society, USA. pp. 2961–2969.
Hong Q H, Liu F M, Li D L, Liu J, Tian L, Shan Y. 2022. Dynamic sparse R-CNN. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Institute of Electrical and Electronic Engineers Computer Society, USA. pp. 4713–4722.
Ji J, Lu X C, Luo M, Yin M H, Miao Q G, Liu X Z. 2021. Parallel fully convolutional network for semantic segmentation. IEEE Access, 9, 673–682.
Jin C L, Yuan J M, Shen J H, Wheeler C, Liu Z Y, Yan J H. 2024. A visual detection method for conveyor belt misalignment based on the improved YOLACT network. Particulate Science and Technology, 42, 541–552.
Li H, Liang Y X, Liu Y J, Xian X Q, Xue Y T, Huang H K, Yao Q, Liu W X. 2023. Development of an intelligent field investigation system for Liriomyza using SeResNet-Liriomyza for accurate identification. Computers and Electronics in Agriculture, 214, 108276.
Li K Y, Zhang L X, Li B, Li S F, Ma J C. 2022. Attention-optimized DeepLab V3+ for automatic estimation of cucumber disease severity. Plant Methods, 18, 109.
Li S X, Feng Z L, Yang B J, Li H, Gao Y F , Liu S H , Tang J, Yao Q. 2022. An intelligent monitoring system of diseases and pests on rice canopy. Frontiers in Plant Science, 13, 972286.
Liang Q K, Xiang S, Hu Y C, Coppola G, Zhang D, Sun W. 2019. PD2SE-Net: Computer-assisted plant disease diagnosis and severity estimation network. Computers and Electronics in Agriculture, 157, 518–529.
Liao F B, Feng X Q, Li Z Q, Wang D Y, Xu C M, Chu G, Ma H Y, Yao Q, Chen S. 2024. A hybrid CNN-LSTM model for diagnosing rice nutrient levels at the rice panicle initiation stage. Journal of Integrative Agriculture, 23, 711-723.
Liu B, Zhang Y, He D J, Li Y. 2018. Identification of apple leaf diseases based on deep convolutional neural networks. Symmetry, 10, 11.
Liu H J, Liu F Q, Fan X Y, Huang D. 2022. Polarized self-attention: Towards high-quality pixel-wise mapping. Neurocomputing, 506, 158–167.
Ronneberger O, Fischer P, Brox T. 2015. U-Net: Convolutional networks for biomedical image segmentation. In: Medical Image Computing and Computer-Assisted Intervention- MICCAI 2015. Springer International Publishing, Germany. pp. 234–241.
Saleh S, Anshary A, Yunus M, Hasriyanty. 2019. Compatibility of trap cropping system and insecticides in managing leafminers Liriomyza spp. IOP Conference Series (Earth and Environmental Science), 468, 12002.
Sheng H Y, Yao Q, Luo J, Liu Y J, Chen X F, Ye Z R, Zhao T Z, Ling H P, Tang J, Liu S H. 2024. Automatic detection and counting of planthoppers on white flat plate images captured by AR glasses for planthopper field survey. Computers and Electronics in Agriculture, 218, 108639.
Singh R P, Dixit M. 2015. Histogram equalization: A strong technique for image enhancement. International Journal of Signal Processing, Image Processing and Pattern Recognition, 8, 345–352.
Spencer K A. 2012. Divisions equisetophyta and polypodiophyta. In: Spencer K A, ed., Host Specialization in the World Agromyzidae (Diptera). Springer, Dordrecht, Netherlands. pp. 4–14.
Spencer K A. 2013. Leguminous crops 2: Leaf-miners. In: Spencer K A, ed., Agromyzidae (Diptera) of Economic Importance. Springer, Dordrecht, Netherlands. pp. 129–179.
Sun G J, Liu S H, Luo H L, Feng Z L, Yang B J, Luo J, Tang J, Yao Q, Xu J J. 2022. Intelligent monitoring system of migratory pests based on searchlight trap and machine vision. Frontiers in Plant Science, 13, 897739.
Sunil C, Jaidhar C, Patil N. 2021. Cardamom plant disease detection approach using EfficientNetV2. Ieee Access, 10, 789–804.
Wang C S, Du P F, Wu H R, Li J X, Zhao C J, Zhu H. 2021. A cucumber leaf disease severity classification method based on the fusion of DeepLabV3+ and U-Net. Computers and Electronics in Agriculture, 189, 106373.
Wang L, Chen X X, Hu L Y, Li H. 2020. Overview of image semantic segmentation technology. In: IEEE Joint International Information Technology and Artificial Intelligence Conference. Institute of Electrical and Electronic Engineers Computer Society, USA. pp. 19–26.
Xu J J, Feng Z L, Tang J, Liu S H, Ding Z P, Lyu J, Yao Q, Yang B J. 2022. Improved Random Forest for the Automatic Identification of Spodoptera frugiperda Larval Instar Stages. Agriculture, 12, 1919.
Yan B, Li Y, Li L, Yang X C, Li T Q, Yang G, Jiang M F. 2022. Quantifying the impact of Pyramid Squeeze Attention mechanism and filtering approaches on Alzheimer's disease classification. Computers in Biology and Medicine, 148, 105944.
Yao N, Ni F C, Wu M C, Wang H Y, Li G L, Sung W K. 2022. Deep learning-based segmentation of peach diseases using convolutional neural network. Frontiers in Plant Science, 13, 876357.
Yao Q, Feng J, T J, Xu W G, Zhu H X, Yang B J. 2020. Development of an automatic monitoring system for rice light-trap pests based on machine vision. Journal of Integrative Agriculture, 19, 2500–2513.
Yuan H B, Zhu J J, Wang Q F, Cheng M, Cai Z J. 2022. An improved DeepLab v3+ deep learning network applied to the segmentation of grape leaf black rot spots. Frontiers in Plant Science, 13, 795410.
Yuan Y H, Chen X L, Wang J D. 2020. Object-contextual representations for semantic segmentation. In: Computer Vision-ECCV 2020. Springer International Publishing, Germany. pp. 173–190.
Zhang P, Yang L, Li D L. 2020. EfficientNet-B4-Ranger: A novel method for greenhouse cucumber disease recognition under natural complex environment. Computers and Electronics in Agriculture, 176, 105652.
Zhang T X, Xu Z Y, Su J Y, Yang Z F, Liu C J, Chen W H, Li J. 2021. Ir-unet: Irregular segmentation u-shape network for wheat yellow rust detection by UAV multispectral imagery. Remote Sensing, 13, 3892.
Zhang X R, Xing Z L, Lei Z R, Gao Y L. 2017. Recent status of the invasive leafminer liriomyza trifolii1 in China. Southwestern Entomologist, 42, 301–304.
Zhao H S, Shi J P, Qi X J, Wang X, Jia J Y. 2017. Pyramid scene parsing network. In: 30th IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Institute of Electrical and Electronic Engineers Computer Society, USA. pp. 6230–6239.
|