Please wait a minute...
Journal of Integrative Agriculture  2025, Vol. 24 Issue (9): 3614-3625    DOI: 10.1016/j.jia.2023.12.040
Animal Science · Veterinary Medicine Advanced Online Publication | Current Issue | Archive | Adv Search |
H5N1 avian influenza virus PB2 antagonizes duck IFN-β signaling pathway by targeting mitochondrial antiviral signaling protein

Zuxian Chen1, 3, Bingbing Zhao1, 2, Yingying Wang1, Yuqing Du1, Siyu Feng1, Junsheng Zhang1, Luxiang Zhao1, Weiqiang Li1, Yangbao Ding1, Peirong Jiao1, 3#

1 College of Veterinary Medicine/Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China

2 State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China

3 Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, Guangzhou 510642, China

 Highlights 
● The PB2 protein of H5N1 AIV targeted the ΔTM domain of duck MAVS to effectively inhibit type I IFN production.
● The PBD and RND domains of H5N1 AIV PB2 interacted with MAVS to attenuate duck type I IFN signaling pathway.
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  
禽流感(Avian influenza)是由禽流感病毒(avian influenza virus,AIV)引起鸡、鸭等多种家禽及野鸟感染或患病的一种高度接触性传染病。某些禽流感病毒可导致人类和其他哺乳动物患病或亚临床感染。因此,禽流感严重危害家禽业,并严重威胁人类健康。I型干扰素(interferon,IFN)介导的天然免疫反应是宿主抵御病毒感染的第一道防线。然而,禽流感病毒抑制鸭I型干扰素产生的分子机制仍不完全清楚。在本研究中,为验证鸭MAVS蛋白的功能,首先在鸭成纤维细胞(duck embryo fibroblast,DEF)中过表达鸭MAVS基因及其各结构域的基因片段。通过荧光定量的方法发现,鸭MAVS基因可使其下游基因TRAF3、IRF7、IFN-β和炎症细胞因子IL-6的mRNA表达量明显上调;荧光素酶报告基因分析发现,鸭MAVS蛋白能显著激活禽IFN-β和禽IRF7启动子的活性。因此,鸭MAVS蛋白正调控鸭I型干扰素信号通路。进一步实验发现,H5N1亚型高致病性禽流感病毒的聚合酶碱性蛋白2(polymerase basic 2,PB2)与鸭线粒体抗病毒蛋白(mitochondrial antiviral signaling protein,MAVS)相互作用,进而抑制鸭I型干扰素信号通路。免疫共沉淀实验发现,H5N1亚型禽流感病毒PB2蛋白与鸭MAVS蛋白的△TM结构域相互作用;H5N1流感病毒PB2蛋白的PB1结合结构域(PB1 binding domain,PBD)和RNA结合核输入结构域(RNA binding nuclear import domain,RND)是其与鸭MAVS蛋白相互作用的关键区域。另外,H5N1流感病毒PB2蛋白的PB1结合结构域和RNA结合核输入结构域是抑制鸭MAVS蛋白介导的I型干扰素信号通路的关键区域。综上所述,H5N1亚型禽流感病毒PB2蛋白与鸭MAVS蛋白相互作用,进而负调控鸭RLR(retinoic acid-inducible gene I (RIG-I)-like receptor,RLR)信号通路中MAVS蛋白介导的抗病毒天然免疫反应。本研究有助于了解禽流感病毒蛋白调控RLR信号通路以逃逸鸭宿主抗病毒天然免疫反应的分子机制。


Abstract  
Type I interferon (IFN)-mediated innate immune responses represent the first line of host defense against viral infection.  However, the molecular mechanisms by which avian influenza virus (AIV) inhibits type I IFN production in ducks are not well understood.  Here, we first found that the polymerase basic 2 (PB2) protein of H5N1 subtype AIV inhibited the type I IFN responses by targeting duck mitochondrial antiviral signaling protein (MAVS).  We further demonstrated that H5N1-PB2 bound to the Δtransmembrane (ΔTM) domain of duck MAVS, and the polymerase basic 1 (PB1) binding domain (PBD) and RNA binding nuclear import domain (RND) of H5N1-PB2 interacted with MAVS to inhibit type I IFN expression in ducks.  Collectively, our findings contribute to understanding the molecular mechanism by which AIV proteins regulate the retinoic acid-inducible gene I (RIG-I)-like receptor (RLR) signaling pathway to evade host antiviral immune responses in ducks.
Keywords:  avian influenza virus       polymerase basic 2        mitochondrial antiviral signaling protein        duck        type I interferon  
Received: 08 October 2023   Online: 03 January 2024   Accepted: 01 December 2023
Fund: 
This work was supported by the grants from the National Natural Science Foundation of China (31872497 and 32072844), the National Key Research and Development Program of China (2021YFD1800200 and 2016YFD0500207), and the Laboratory of Lingnan Modern Agriculture Project, China (NT2021007).
About author:  Zuxian Chen, E-mail: czx0216@outlook.com; #Correspondence Peirong Jiao, Tel: +86-20-85280234, E-mail: prjiao@scau.edu.cn

Cite this article: 

Zuxian Chen, Bingbing Zhao, Yingying Wang, Yuqing Du, Siyu Feng, Junsheng Zhang, Luxiang Zhao, Weiqiang Li, Yangbao Ding, Peirong Jiao. 2025. H5N1 avian influenza virus PB2 antagonizes duck IFN-β signaling pathway by targeting mitochondrial antiviral signaling protein. Journal of Integrative Agriculture, 24(9): 3614-3625.

Akira S, Uematsu S, Takeuchi O. 2006. Pathogen recognition and innate immunity. Cell124, 783801.

Baskin C R, Bielefeldt-Ohmann H, Tumpey T M, Sabourin P J, Long J P, García-Sastre A, Tolnay A E, Albrecht R, Pyles J A, Olson P H, Aicher L D, Rosenzweig E R, Murali-Krishna K, Clark E A, Kotur M S, Fornek J L, Proll S, Palermo R E, Sabourin C L, Katze M G. 2009. Early and sustained innate immune response defines pathology and death in nonhuman primates infected by highly pathogenic influenza virus. Proceedings of the National Academy of Sciences of the United States of America106, 34553460.

Dias A, Bouvier D, Crépin T, McCarthy A A, Hart D J, Baudin F, Cusack S, Ruigrok R W. 2009. The cap-snatching endonuclease of influenza virus polymerase resides in the PA subunit. Nature458, 914918.

Elshina E, Te Velthuis A J W. 2021. The influenza virus RNA polymerase as an innate immune agonist and antagonist. Cellular and Molecular Life Sciences78, 72377256.

Graef K M, Vreede F T, Lau Y F, McCall A W, Carr S M, Subbarao K, Fodor E. 2010. The PB2 subunit of the influenza virus RNA polymerase affects virulence by interacting with the mitochondrial antiviral signaling protein and inhibiting expression of beta interferon. Journal of Virology84, 84338445.

Honda K, Taniguchi T. 2006. IRFs: Master regulators of signaling by toll-like receptors and cytosolic pattern-recognition receptors. Nature Reviews Immunology6, 644658.

Hou F, Sun L, Zheng H, Skaug B, Jiang Q X, Chen Z J. 2011. MAVS forms functional prion-like aggregates to activate and propagate antiviral innate immune response. Cell146, 448461.

Iwai A, Shiozaki T, Kawai T, Akira S, Kawaoka Y, Takada A, Kida H, Miyazaki T. 2010. Influenza A virus polymerase inhibits type I interferon induction by binding to interferon beta promoter stimulator 1. The Journal of Biological Chemistry285, 3206432074.

Jiao P, Song Y, Huang J, Xiang C, Cui J, Wu S, Qu N, Wang N, Ouyang G, Liao M. 2018. H7N9 avian influenza virus is efficiently transmissible and induces an antibody response in Chickens. Frontiers in Immunology9, 789.

Jiao P, Tian G, Li Y, Deng G, Jiang Y, Liu C, Liu W, Bu Z, Kawaoka Y, Chen H. 2008. A single-amino-acid substitution in the NS1 protein changes the pathogenicity of H5N1 avian influenza viruses in mice. Journal of Virology82, 11461154.

Katze M G, Fornek J L, Palermo R E, Walters K A, Korth M J. 2008. Innate immune modulation by RNA viruses: Emerging insights from functional genomics. Nature Reviews Immunology8, 644654.

Kawai T, Takahashi K, Sato S, Coban C, Kumar H, Kato H, Ishii K J, Takeuchi O, Akira S. 2005. IPS-1, an adaptor triggering RIG-I- and Mda5-mediated type I interferon induction. Nature Immunology6, 981988.

Li N, Hong T, Li R, Wang Y, Guo M, Cao Z, Cai Y, Liu S, Chai T, Wei L. 2016. Cherry valley duck’s mitochondrial antiviral-signaling protein-mediated signaling pathway and antiviral activity research. Frontiers in Immunology7, 377.

Liniger M, Summerfield A, Zimmer G, McCullough K C, Ruggli N. 2012. Chicken cells sense influenza A virus infection through MDA5 and CARDIF signaling involving LGP2. Journal of Virology86, 705717.

Meylan E, Curran J, Hofmann K, Moradpour D, Binder M, Bartenschlager R, Tschopp J. 2005. Cardif is an adaptor protein in the RIG-I antiviral pathway and is targeted by hepatitis C virus. Nature437, 11671172.

Mibayashi M, Martínez-Sobrido L, Loo Y M, Cárdenas W B, Gale Jr M, García-Sastre A. 2007. Inhibition of retinoic acid-inducible gene I-mediated induction of beta interferon by the NS1 protein of influenza A virus. Journal of Virology81, 514524.

Moore CB, Ting JP. 2008. Regulation of mitochondrial antiviral signaling pathways. Immunity28, 735-739.

Opitz B, Rejaibi A, Dauber B, Eckhard J, Vinzing M, Schmeck B, Hippenstiel S, Suttorp N, Wolff T. 2007. IFN beta induction by influenza A virus is mediated by RIG-I which is regulated by the viral NS1 protein. Cell Microbiology9, 930938.

Patel D, Schultz L W, Umland T C. 2013. Influenza A polymerase subunit PB2 possesses overlapping binding sites for polymerase subunit PB1 and human MAVS proteins. Virus Research172, 7580.

Pichlmair A, Schulz O, Tan C P, Näslund T I, Liljeström P, Weber F, Reis e Sousa C. 2006. RIG-I-mediated antiviral responses to single-stranded RNA bearing 5´-phosphates. Science314, 9971001.

Qian W, Wei X, Guo K, Li Y, Lin X, Zou Z, Zhou H, Jin M. 2017. The c-terminal effector domain of non-structural protein 1 of influenza a virus blocks ifn-β production by targeting TNF receptor associated factor 3. Frontiers in Immunology8, 779.

Reich S, Guilligay D, Pflug A, Malet H, Berger I, Crépin T, Hart D, Lunardi T, Nanao M, Ruigrok R W, Cusack S. 2014. Structural insight into cap-snatching and RNA synthesis by influenza polymerase. Nature516, 361366.

Reikine S, Nguyen J B, Modis Y. 2014. Pattern recognition and signaling mechanisms of RIG-I and MDA5. Frontiers in Immunology5, 342.

Santhakumar D, Rubbenstroth D, Martinez-Sobrido L, Munir M. 2017. Avian interferons and their antiviral effectors. Frontiers in Immunology8, 49.

Sato M, Suemori H, Hata N, Asagiri M, Ogasawara K, Nakao K, Nakaya T, Katsuki M, Noguchi S, Tanaka N, Taniguchi T. 2000. Distinct and essential roles of transcription factors IRF-3 and IRF-7 in response to viruses for IFN-alpha/beta gene induction. Immunity13, 539548.

Schulz K S, Mossman K L. 2016. Viral evasion strategies in type I IFN signaling - a summary of recent developments. Frontiers in Immunology7, 498.

Seth R B, Sun L, Ea C K, Chen Z J. 2005. Identification and characterization of MAVS, a mitochondrial antiviral signaling protein that activates NF-kappaB and IRF 3. Cell122, 669682.

Severin C, Rocha de Moura T, Liu Y, Li K, Zheng X, Luo M. 2016. The cap-binding site of influenza virus protein PB2 as a drug target. Acta Crystallographica Section D (Structural Biology), 72, 245253.

Sun H, Jiao P, Jia B, Xu C, Wei L, Shan F, Luo K, Xin C, Zhang K, Liao M. 2011. Pathogenicity in quails and mice of H5N1 highly pathogenic avian influenza viruses isolated from ducks. Veterinary Microbiology152, 258265.

Varga Z T, Ramos I, Hai R, Schmolke M, García-Sastre A, Fernandez-Sesma A, Palese P. 2011. The influenza virus protein PB1-F2 inhibits the induction of type I interferon at the level of the MAVS adaptor protein. PLoS Pathogens7, e1002067.

Te Velthuis A J, Fodor E. 2016. Influenza virus RNA polymerase: Insights into the mechanisms of viral RNA synthesis. Nature Review Microbiology14, 479493.

Wei L, Cui J, Song Y, Zhang S, Han F, Yuan R, Gong L, Jiao P, Liao M. 2014. Duck MDA5 functions in innate immunity against H5N1 highly pathogenic avian influenza virus infections. Veterinary Research45, 66.

Weis S, Te Velthuis A J W. 2021. Influenza virus RNA synthesis and the innate immune response. Viruses13, 780.

Xu L G, Wang Y Y, Han K J, Li L Y, Zhai Z, Shu H B. 2005. VISA is an adapter protein required for virus-triggered IFN-beta signaling. Molecular Cell19, 727740.

Yi C, Zhao Z, Wang S, Sun X, Zhang D, Sun X, Zhang A, Jin M. 2017. Influenza A virus PA antagonizes interferon-β by interacting with interferon regulatory factor 3. Frontiers in Immunology8, 1051.

Yoneyama M, Fujita T. 2009. RNA recognition and signal transduction by RIG-I-like receptors. Immunological Reviews227, 5465.

[1] Hong Zhang, Jing Guo, Peng Peng, Mengjing Wang, Jinyan Shen, Xiaohong Sun, Mengdi Guan, Pengfei Cui, Guohua Deng, Dong Chu, Xuyong Li. Evolution and biological characteristics of the circulated H8N4 avian influenza viruses[J]. >Journal of Integrative Agriculture, 2025, 24(6): 2342-2355.
[2] Libin Liang, Yaning Bai, Wenyan Huang, Pengfei Ren, Xing Li, Dou Wang, Yuhan Yang, Zhen Gao, Jiao Tang, Xingchen Wu, Shimin Gao, Yanna Guo, Mingming Hu, Zhiwei Wang, Zhongbing Wang, Haili Ma, Junping Li. Genetic and biological properties of H9N2 avian influenza viruses isolated in central China from 2020 to 2022[J]. >Journal of Integrative Agriculture, 2024, 23(8): 2778-2791.
[3] Zenglei Hu, Ya Huang, Jiao Hu, Xiaoquan Wang, Shunlin Hu, Xiufan Liu.

Antibodies elicited by Newcastle disease virus-vectored H7N9 avian influenza vaccine are functional in activating the complement system [J]. >Journal of Integrative Agriculture, 2024, 23(6): 2052-2064.

[4] Yina Xu, Hailing Li, Haoyu Leng, Chaofan Su, Siqi Tang, Yongtao Wang, Shiwei Zhang, Yali Feng, Yanan Wu, Daxin Wang, Ying Zhang. Genetic and biological properties of H10Nx influenza viruses in China[J]. >Journal of Integrative Agriculture, 2024, 23(11): 3860-3869.
[5] SHI Lin, YU Xue-wu, YAO Wei, YU Ben-liang, HE Li-kun, GAO Yuan, ZHANG Yun-xian, TIAN Guo-bin, PING Ji-hui, WANG Xiu-rong. Development of a reverse-transcription loop-mediated isothermal amplification assay to detect avian influenza viruses in clinical specimens[J]. >Journal of Integrative Agriculture, 2019, 18(7): 1428-1435.
[6] WEI Yan-di, GAO Wei-hua, SUN Hong-lei, YU Chen-fang, PEI Xing-yao, Sun Yi-peng, LIU Jin-hua, PU Juan. A duplex RT-PCR assay for detection of H9 subtype avian influenza viruses and infectious bronchitis viruses[J]. >Journal of Integrative Agriculture, 2016, 15(9): 2105-2113.
[7] SU Xiao-na, XIE Qing-mei, LIAO Chang-tao, YAN Zhuan-qiang, CHEN Wei-guo, BI Ying-zuo, CHEN Feng. Sequence and phylogenetic analysis of hemagglutinin genes of H9N2 influenza viruses isolated from chicken in China from 2013 to 2015[J]. >Journal of Integrative Agriculture, 2016, 15(11): 2604-2612.
No Suggested Reading articles found!