Please wait a minute...
Journal of Integrative Agriculture  2025, Vol. 24 Issue (9): 3583-3597    DOI: 10.1016/j.jia.2023.10.012
Animal Science · Veterinary Medicine Advanced Online Publication | Current Issue | Archive | Adv Search |
FGF7 secreted from dermal papillae cell regulates the proliferation and differentiation of hair follicle stem cell
Niu Wang, Weidong Zhang, Zhenyu Zhong, Xiongbo Zhou, Xinran Shi, Xin Wang#

College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China

 Highlights 
● FGF7 promoted DPC proliferation through Wnt/β-catenin signaling activation.
Establishing the first evidence that FGF7 orchestrated bidirectional signaling between DPC and HFSC.
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

羊绒由绒山羊次级毛囊产生,是纺织业的重要原料之一。根据绒山羊毛囊结构变化,绒山羊毛囊周期可分为生长期、休止期和退行期。绒山羊毛囊周期进入生长期的快慢和生长期维持稳定会直接影响羊绒产量。毛囊干细胞 (Hair follicle stem cell, HFSC) 位于毛囊隆凸区,具有自我更新和分化的特性,研究再生医学干细胞模型之一。毛乳头细胞 (Dermal papilla cell, DPC) 位于毛乳头区域,在毛囊周期转换过程中,DPC发出生长信号作用于HFSC并激活HFSC,使其开始增殖和分化,为毛囊发育提供结构细胞。因此,DPCHFSC之间的相互作用在毛囊发育和周期转换过程中发挥着重要作用。FGF7是一种分泌蛋白,参与调控上皮细胞的增殖、分化和迁移。单细胞转录组数据和组织免疫荧光结果显示FGF7定位于DPC,而其受体FGFR2DPCHFSC表达。酶联免疫吸附试验结果表明,在DPC中添加FGF7过表达腺病毒84 h时,FGF7蛋白在DPC及其培养液中含量最高;利用Tanswell技术将过表达FGF7腺病毒的DPCHFSC共培养,发现DPC分泌的FGF7促进HFSC的增殖和分化。为进一步研究FGF7HFSC生物学功能的影响,在HFSC培养基中添加FGF7重组蛋白,结果发现FGF7重组蛋白也能促进HFSC的增殖和分化,与上述结果一致。为了进一步探究FGF7调控HFSC生物学功能的作用机制,利用CUT&Tag技术检测FGF7下游靶基因,结果显示FGF7结合在Wnt信号通路抑制因子GSK3β和多能性相关基因的启动子区。凝胶/电泳迁移率试验(Enzyme-linked immunosorbent assay, EMAS)进一步证明,FGF7与CISHPRKX基因启动子区相互作用。本研究将绒山羊DPCHFSC共培养,探究了DPC分泌的FGF7HFSC生物学功能的调控及其作用机制,阐述了FGF7在绒山羊毛囊再生过程中的作用机理,为外源信号对绒山羊HFSC的调节机制奠定了基础。



Abstract  

Hair follicle stem cell (HFSC), capable of self-renewal and differentiation in hair follicle, represents an emerging stem cell model for regenerative medicine.  The interaction between HFSC and dermal papilla cell (DPC) governs hair follicle development.  FGF7 functions as a paracrine protein regulating epithelial proliferation, differentiation and migration.  The single-cell transcriptome profiling and immunofluorescence analysis demonstrated that FGF7 localizes at DPC, while FGF7 receptor (FGFR2) expresses in both DPC and HFSC.  Through co-culture experiments of HFSC and DPC, the results indicated that FGF7 secreted from DPC promotes the proliferation of DPC and HFSC via Wnt signaling pathway and induces HFSC differentiation.  Furthermore, CUT&Tag assay revealed genomic colocalization between FGF7 and pluripotency-related genes and GSK3β.  Electrophoretic mobility shift assay (EMSA) demonstrated that FGF7 interacts with the promoter region of CISH and PRKX.  This research provides valuable insights into the molecular mechanisms underlying the hair cycle.  Understanding the interaction between HFSC and DPC, as well as the role of FGF7, may advance regenerative medicine and hair loss treatment.

Keywords:  FGF7        dermal papilla cell        hair follicle stem cell        proliferation        differentiation        CUT&Tag assay  
Received: 10 May 2023   Online: 18 October 2023   Accepted: 05 September 2023
Fund: This work was supported by the National Key Research And Development Program of China (2022YFD1300204).  
About author:  Niu Wang, E-mail: wn1979196154@163.com; #Correspondence Xin Wang, E-mail: xinwang5@nwafu.edu.cn

Cite this article: 

Niu Wang, Weidong Zhang, Zhenyu Zhong, Xiongbo Zhou, Xinran Shi, Xin Wang. 2025. FGF7 secreted from dermal papillae cell regulates the proliferation and differentiation of hair follicle stem cell. Journal of Integrative Agriculture, 24(9): 3583-3597.

Adam R, Yang H, Ge Y, Lien W, Wang P, Zhao Y, Polak L, Levorse J, Baksh S, Zheng D, Fuchs E. 2018. Temporal layering of signaling effectors drives chromatin remodeling during hair follicle stem cell lineage progression. Cell Stem Cell22, 398–413.

Alam M, Bertolini M, Gherardini J, Keren A, Ponce L, Chéret J, Alenfall J, Dunér P, Nilsson A, Gilhar A, Paus R. 2020. An osteopontin-derived peptide inhibits human hair growth at least in part by decreasing fibroblast growth factor-7 production in outer root sheath keratinocytes. The British Journal of Dermatology182, 1404–1414.

Biswas R, Banerjee A, Lembo S, Zhao Z, Lakshmanan V, Lim R, Le S, Nakasaki M, Kutyavin V, Wright G, Palakodeti D, Ross R, Jamora C, Vasioukhin V, Jie Y, Raghavan S. 2021. Mechanical instability of adherens junctions overrides intrinsic quiescence of hair follicle stem cells. Developmental Cell, 56, 761–780.

Chen L, Toke N, Luo S, Vasoya R, Fullem R, Parthasarathy A, Perekatt A, Verzi M. 2019. A reinforcing HNF4-SMAD4 feed-forward module stabilizes enterocyte identity. Nature Genetics51, 777–785.

Chen P, Zhang F, Fan Z, Shen T, Liu B, Chen R, Qu Q, Wang J, Miao Y, Hu Z. 2021. Nanoscale microenvironment engineering for expanding human hair follicle stem cell and revealing their plasticity. Journal of Nanobiotechnology19, 94.

Choi H, Choi G, Kim E, Choi Y, Sohn K, Lee Y, Kim C, Yoon T, Sohn H, Han S, Kim S, Lee J, Lee Y. 2011. Hair greying is associated with active hair growth. The British Journal of Dermatology165, 1183–1189.

Chu S, Chou C, Huang H, Yen M, Hong H, Chao P, Wang Y, Chen P, Nian S, Chen Y, Liou L, Liu Y, Chen H, Lin F, Chang Y, Chen C, Lee O. 2019. Mechanical stretch induces hair regeneration through the alternative activation of macrophages. Nature Communications10, 1524.

Cornelis R, Hahne S, Taddeo A, Petkau G, Malko D, Durek P, Thiem M, Heiberger L, Peter L, Mohr E, Klaeden C, Tokoyoda K, Siracusa F, Hoyer B, Hiepe F, Mashreghi M, Melchers F, Chang H, Radbruch A. 2020. Stromal cell-contact dependent PI3K and APRIL induced NF-κB signaling prevent mitochondrial- and ER stress induced death of memory plasma cells. Cell Reports32, 107982.

Ding Y, Xue X, Liu Z, Ye Y, Xiao P, Pu Y, Guan W, Mwacharo J, Ma Y, Zhao Q. 2020. Expression profiling and functional characterization of miR-26a and miR-130a in regulating Zhongwei goat hair development via the TGF-β/SMAD pathway. International Journal of Molecular Sciences21, 5076.

Driskell R, Clavel C, Rendl M, Watt F. 2011. Hair follicle dermal papilla cells at a glance. Journal of Cell Science124, 1179–1182.

Driskell R, Giangreco A, Jensen K, Mulder K, Watt F. 2009. Sox2-positive dermal papilla cells specify hair follicle type in mammalian epidermis. Development (Cambridge, England), 136, 2815–2823.

Figueroa V, Rodríguez M, Lanari C, Lamb C. 2019. Nuclear action of FGF members in endocrine-related tissues and cancer: Interplay with steroid receptor pathways. Steroids152, 108492.

Ge W, Tan S, Wang S, Li L, Sun X, Shen W, Wang X. 2020. Single-cell transcriptome profiling reveals dermal and epithelial cell fate decisions during embryonic hair follicle development. Theranostics10, 7581–7598.

Ge W, Zhang W, Zhang Y, Zheng Y, Li F,Wang S, Liu J, Tan S, Yan Z, Wang L, Shen W, Qu L, Wang X. 2021. A Single-cell transcriptome atlas of cashmere goat hair follicle morphogenesis. Genomics Proteomics Bioinformatics19, 437–451.

Ge W, Wang S, Sun B, Zhang Y, Shen W, Khatib H, Wang X. 2018. Melatonin promotes Cashmere goat (Capra hircus) secondary hair follicle growth: A view from integrated analysis of long non-coding and coding RNAs. Cell Cycle17, 1255–1267.

Gentile P, Scioli M, Bielli A, De Angelis B, De Sio C, De Fazio D, Ceccarelli G, Trivisonno A, Orlandi A, Cervelli V, Garcovich S. 2019. Platelet-rich plasma and micrografts enriched with autologous human follicle mesenchymal stem cells improve hair re-growth in androgenetic alopecia. Biomolecular Pathway Analysis and Clinical Evaluation Biomedicines7, 27.

Guo H, Xing Y, Zhang Y, He L, Deng F, Ma X, Li Y. 2018. Establishment of an immortalized mouse dermal papilla cell strain with optimized culture strategy. Peer J6, e4306.

Genander M, Cook P, Ramsköld D, Keyes B, Mertz A, Sandberg R, Fuchs E. 2014. BMP signaling and its pSMAD1/5 target genes differentially regulate hair follicle stem cell lineages. Cell Stem Cell15, 619–633.

Glesne D, Huberman E. 2006. Smad6 is a protein kinase X phosphorylation substrate and is required for HL-60 cell differentiation. Oncogene25, 4086–4098.

Harshuk-Shabso S, Dressler H, Niehrs C, Aamar E, Enshell-Seijffers D. 2020. Fgf and Wnt signaling interaction in the mesenchymal niche regulates the murine hair cycle clock. Nature Communications11, 5114.

Hoeck J, Biehs B, Kurtova A, Kljavin N, de Sousa E Melo F, Alicke B, Koeppen H, Modrusan Z, Piskol R, de Sauvage F. 2017. Stem cell plasticity enables hair regeneration following Lgr5 cell loss. Nature Cell Biology19, 666–676.

Hsu Y, Pasolli H, Fuchs E. 2011. Dynamics between stem cells, niche, and progeny in the hair follicle. Cell144, 92–105.

Huang D, Wang Y, Thompson J, Yin T, Alexander P, Qin D, Mudgal P, Wu H, Liang Y, Tan L, Pan C, Yuan L, Wan Y, Li Q, Wang X. 2022. Cancer-cell-derived GABA promotes β-catenin-mediated tumour growth and immunosuppression. Nature cell Biology24, 230–241.

Kaya-Okur H, Wu S, Codomo C, Pledger E, Bryson T, Henikoff J, Ahmad K, Henikoff S. 2019. CUT&Tag for efficient epigenomic profiling of small samples and single cells. Nature Communications10, 1930.

Kawano M, Komi-Kuramochi A, Asada M, Suzuki M, Oki J, Jiang J, Imamura T. 2005. Comprehensive analysis of FGF and FGFR expression in skin: FGF18 is highly expressed in hair follicles and capable of inducing anagen from telogen stage hair follicles. The Journal of Investigative Dermatology124, 877–885.

Klufa J, Bauer T, Hanson B, Herbold C, Starkl P, Lichtenberger B, Srutkova D, Schulz D, Vujic I, Mohr T, Rappersberger K, Bodenmiller B, Kozakova H, Knapp S, Loy A, Sibilia M. 2019. Hair eruption initiates and commensal skin microbiota aggravate adverse events of anti-EGFR therapy. Science Translational Medicine11, eaax2693.

LaRochelle W, Dirsch O, Finch P, Cheon H, May M, Marchese C, Pierce J, Aaronson S. 1995. Specific receptor detection by a functional keratinocyte growth factor-immunoglobulin chimera. The Journal of Cell Biology129, 357–366.

Li X, Hyink D, Radbill B, Sudol M, Zhang H, Zheleznova N, Wilson P. 2009. Protein kinase-X interacts with Pin-1 and Polycystin-1 during mouse kidney development. Kidney International76, 54–62.

Lin X, Zhu L, He J. 2022. Morphogenesis, growth cycle and molecular regulation of hair follicles. Frontiers in Cell and Developmental Biology10, 899095.

Liu X, Zhang P, Zhang X, Li X, Bai Y, Ao Y, Hexig B, Guo X, Liu D. 2020. Fgf21 knockout mice generated using CRISPR/Cas9 reveal genetic alterations that may affect hair growth. Gene733, 144242.

Liu Y, Guerrero-Juarez C, Xiao F, Shettigar N, Ramos R, Kuan C, Lin Y, de Jesus Martinez Lomeli L, Park J, Oh J, Liu R, Lin S, Tartaglia M, Yang R, Yu Z, Nie Q, Li J, Plikus M. 2022. Hedgehog signaling reprograms hair follicle niche fibroblasts to a hyper-activated state. Developmental Cell57, 1758–1775.

Liu Y, Yang Y, Luo Y, Wang J, Lu X, Yang Z, Yang J. 2020. Prognostic potential of PRPF3 in hepatocellular carcinoma. Aging12, 912–930.

Liu Z, Liu J, Chen T, Wang Y, Shi A, Li K, Li X, Qiu B, Zheng L, Zhao L, Shu L, Lian S, Huang S, Zhang Z, Xu Y. 2022. Wnt-TCF7-SOX9 axis promotes cholangiocarcinoma proliferation and pemigatinib resistance in a FGF7-FGFR2 autocrine pathway. Oncogene, 41, 2885–2896.

Lorz C, García-Escudero R, Segrelles C, Garín M, Ariza J, Santos M, Ruiz S, Lara M, Martínez-Cruz A, Costa C, Buitrago-Pérez A, Saiz-Ladera C, Dueñas M, Paramio J. 2010. A functional role of RB-dependent pathway in the control of quiescence in adult epidermal stem cells revealed by genomic profiling. Stem Cell Reviews and Reports6, 162–177.

MacCarthy C, Huertas J, Ortmeier C, Vom Bruch H, Tan D, Reinke D, Sander A, Bergbrede T, Jauch R, Schöler H, Cojocaru V. 2022. OCT4 interprets and enhances nucleosome flexibility. Nucleic Acids Research, 50, 10311–10327.

Mieczkowski K, Kitowska K, Braun M, Galikowska-Bogut B, Gorska-Arcisz M, Piasecka D, Stawiski K, Zaczek A, Nejc D, Kordek R, Romanska H, Sadej R. 2022. FGF7/FGFR2-JunB signalling counteracts the effect of progesterone in luminal breast cancer. Molecular Oncology16, 2823–2842.

Maddaluno L, Urwyler C, Rauschendorfer T, Meyer M, Stefanova D, Spörri R, Wietecha M, Ferrarese L, Stoycheva D, Bender D, Li N, Strittmatter G, Nasirujjaman K, Beer H, Staeheli P, Hildt E, Oxenius A, Werner S. 2020. Antagonism of interferon signaling by fibroblast growth factors promotes viral replication. EMBO Molecular Medicine12, e11793.

Morgan B. 2014. The dermal papilla: An instructive niche for epithelial stem and progenitor cells in development and regeneration of the hair follicle. Cold Spring Harbor Perspectives in Medicine4, a015180.

Miah M, Bae Y. 2013. Regulation of DC development and DC-mediated T-cell immunity via CISH. Oncoimmunology2, e23404.

Müller-Röver S, Handjiski B, van der Veen C, Eichmüller S, Foitzik K, McKay I, Stenn K, Paus R. 2001. A comprehensive guide for the accurate classification of murine hair follicles in distinct hair cycle stages. The Journal of Investigative Dermatology117, 3–15.

Nakashima Y, Nahar S, Miyagi-Shiohira C, Kinjo T, Kobayashi N, Kitamura S, Saitoh I, Watanabe M, Fujita J, Noguchi H. 2019. Identification of proteins differentially expressed by adipose-derived mesenchymal stem cells isolated from immunodeficient mice. International Journal of Molecular Sciences20, 2672.

Oedekoven C, Belmonte M, Bode D, Hamey F, Shepherd M, Che J, Boyd G, McDonald C, Belluschi S, Diamanti E, Bastos H, Bridge K, Göttgens B, Laurenti E, Kent D. 2021. Hematopoietic stem cells retain functional potential and molecular identity in hibernation cultures. Stem Cell Reports16, 1614–1628.

Oshima H, Rochat A, Kedzia C, Kobayashi K, Barrandon Y. 2001. Morphogenesis and renewal of hair follicles from adult multipotent stem cells. Cell104, 233–245.

Qu R, Gupta K, Dong D, Jiang Y, Landa B, Saez C, Strickland G, Levinsohn J, Weng P, Taketo M, Kluger Y, Myung P. 2022. Decomposing a deterministic path to mesenchymal niche formation by two intersecting morphogen gradients. Developmental Cell57, 1053–1067.e5.

Recoules L, Heurteau A, Raynal F, Karasu N, Moutahir F, Bejjani F, Jariel-Encontre I, Cuvier O, Sexton T, Lavigne A, Bystricky K. 2022. The histone variant macroH2A1.1 regulates RNA polymerase II-paused genes within defined chromatin interaction landscapes. Journal of Cell Science135, 259456.

Richardson G, Bazzi H, Fantauzzo K, Waters J, Crawford H, Hynd P, Christiano A, Jahoda C. 2009. KGF and EGF signalling block hair follicle induction and promote interfollicular epidermal fate in developing mouse skin. Development (Cambridge, England), 136, 2153–2164.

Rossi S, Jeker L, Ueno T, Kuse S, Keller M, Zuklys S, Gudkov A, Takahama Y, Krenger W, Blazar B, Holländer G. 2007. Keratinocyte growth factor (KGF) enhances postnatal T-cell development via enhancements in proliferation and function of thymic epithelial cells. Blood109, 3803–3811.

Schumacher J, Kong B, Wu J, Rizzolo D, Armstrong L, Chow M, Goedken M, Lee Y, Guo G. 2020. Direct and indirect effects of fibroblast growth factor (FGF) 15 and FGF19 on liver fibrosis development. Hepatology71, 670–685.

Stelling A, Hashwah H, Bertram K, Manz M, Tzankov A, Müller A. 2018. The tumor suppressive TGF-β/SMAD1/S1PR2 signaling axis is recurrently inactivated in diffuse large B-cell lymphoma. Blood131, 2235–2246.

Stenn K, Paus R. 2001. Controls of hair follicle cycling. Physiological Reviews81, 449–494.

Wang E, Dai Z, Ferrante A, Drake C, Christiano A. 2019. A subset of TREM2 dermal macrophages secretes oncostatin M to maintain hair follicle stem cell quiescence and inhibit hair growth. Cell Stem Cell24, 654–669.

Wang S, Luo Z, Zhang Y, Yuan D, Ge W, Wang X. 2018. The inconsistent regulation of HOXC13 on different keratins and the regulation mechanism on HOXC13 in cashmere goat (Capra hircus). BMC Genomics19, 630.

Wang X, Cai B, Zhou J, Zhu H, Niu Y, Ma B, Yu H, Lei A, Yan H, Shen Q, Shi L, Zhao X, Hua J, Huang X, Qu L, Chen Y. 2016. Disruption of FGF5 in cashmere goats using CRISPR/Cas9 results in more secondary hair follicles and longer fibers. PLoS ONE11, e0164640.

Watanabe R, Shirai T, Namkoong H, Zhang H, Berry G, Wallis B, Schaefgen B, Harrison D, Tremmel J, Giacomini J, Goronzy J, Weyand C. 2017. Pyruvate controls the checkpoint inhibitor PD-L1 and suppresses T cell immunity. The Journal of Clinical Investigation127, 2725–2738.

Xu Y, Hong Y, Xu M, Ma K, Fu X, Zhang M, Wang G. 2016. Role of keratinocyte growth factor in the differentiation of sweat gland-like cells from human umbilical cord-derived mesenchymal stem cells. Stem Cells Translational Medicine5, 106–116.

Yan H, Gao Y, Ding Q, Liu J, Li Y, Jin M, Xu H, Ma S, Wang X, Zeng W, Chen Y. 2019. Exosomal micro RNAs derived from dermal papilla cells mediate hair follicle stem cell proliferation and differentiation. International Journal of Biological Sciences15, 1368–1382.

Yi R. 2017. Concise review: Mechanisms of quiescent hair follicle stem cell regulation. Stem Cells35, 2323–2330.

Yu Z, Jiang K, Xu Z, Huang H, Qian N, Lu Z, Chen D, Di R, Yuan T, Du Z, Xie W, Lu X, Li H, Chai R, Yang Y, Zhu B, Kunieda T, Wang F, Chen T. 2018. Hoxc-dependent mesenchymal niche heterogeneity drives regional hair follicle regeneration. Cell Stem Cell23, 487–500.

Zhang B, Srivastava A, Mimitou E, Stuart T, Raimondi I, Hao Y, Smibert P, Satija R. 2022. Characterizing cellular heterogeneity in chromatin state with scCUT&Tag-pro. Nature Biotechnology40, 1220–1230.

Zhang W, Wang N, Zhang T, Wang M, Ge W, Wang X. 2021. Roles of melatonin in goat hair follicle stem cell proliferation and pluripotency through regulating the Wnt signaling pathway. Frontiers in Cell and Developmental Biology9, 686805.

Zhu X, Liu Y, Dai Z, Zhang X, Yang X, Li Y, Qiu M, Fu J, Hsu W, Chen Y, Zhang Z. 2014. BMP-FGF signaling axis mediates Wnt-induced epidermal stratification in developing mammalian skin. PLoS Genetics10, e1004687.

[1] Wenya Li, Haoxiang Ma, Yanxing Wang, Yushi Zhang, Yang Liu, Ruili Han, Hong Li, Hanfang Cai, Xiaojun Liu, Xiangtao Kang, Ruirui Jiang, Zhuanjian Li. The VGLL2 gene participates in muscle development in Gushi chickens[J]. >Journal of Integrative Agriculture, 2025, 24(1): 246-260.
[2] Xiaoxu Shen, Yongtong Tian, Wentao He, Can He, Shunshun Han, Yao Han, Lu Xia, Bo Tan, Menggen Ma, Houyang Kang, Jie Yu, Qing Zhu, Huadong Yin. Gga-miRNA-181-5p family facilitates chicken myogenesis via targeting TGFBR1 to block TGF-β signaling[J]. >Journal of Integrative Agriculture, 2024, 23(8): 2764-2777.
[3] Shengjie Shi, Lutong Zhang, Liguang Wang, Huan Yuan, Haowei Sun, Mielie Madaniyati, Chuanjiang Cai, Weijun Pang, Lei Gao, Guiyan Chu.

miR-24-3p promotes proliferation and inhibits apoptosis of porcine granulosa cells by targeting P27 [J]. >Journal of Integrative Agriculture, 2024, 23(4): 1315-1328.

[4] Dan Chu, Bin Chen, Bo Weng, Saina Yan, Yanfei Yin, Xiangwei Tang, Maoliang Ran. Long non-coding RNA FPFSC promotes immature porcine Sertoli cell growth through modulating the miR-326/EHMT2 axis[J]. >Journal of Integrative Agriculture, 2024, 23(11): 3830-3842.
[5] WENG Bo, RAN Mao-liang, Cao Rong, PENG Fu-zhi, LUO Hui, GAO Hu, TANG Xiang-wei, Yang An-qi, CHEN Bin.
miR-10b promotes porcine immature Sertoli cell proliferation by targeting the DAZAP1 gene  
[J]. >Journal of Integrative Agriculture, 2019, 18(8): 1924-1935.
No Suggested Reading articles found!