Please wait a minute...
Journal of Integrative Agriculture  2011, Vol. 10 Issue (9): 1467-1474    DOI: 10.1016/S1671-2927(11)60140-5
ANIMAL SCIENCE · VETERINARY SCIENCE Advanced Online Publication | Current Issue | Archive | Adv Search |
A MicroRNA Catalog of Swine Umbilical Vein Endothelial Cells Identified by Deep Sequencing
DAI  Chen, ZHANG  Yan-ming, ZHANG  Qian, WU  Zong-song, DENG  Wen, ZHANG  Xu, GUO  Kang-kang, TANG  Qing-hai , HOU  Bo
College of Veterinary Medicine, Northwest A&F University,
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  MicroRNAs (miRNAs) are endogenous ~22 nt RNAs that play important regulatory roles in targeting mRNAs for cleavageor translational repression. Despite the discovery of increasing numbers of human and mouse miRNAs, little is knownabout miRNAs from pig. In this study, we sought to extend the repertoire of porcine small regulatory RNAs using Solexasequencing. We sequenced a library of small RNAs prepared from immortalized swine umbilical vein endothelial cells(SUVECs). We produced over 13.6 million short sequence reads, of which 8 547 658 perfectly mapped to the pig genome.A bioinformatics pipeline was used to identify authentic mature miRNA sequences. We identified 154 porcine miRNAgenes, among which 146 were conserved across species, and 8 were pig-specific miRNA genes. The 146 miRNA genesencoded 116 conserved mature miRNAs and 66 miRNA*. The 8 pig-specific miRNA genes encoded 4 mature miRNAs.Four potential novel miRNAs were identified. The secondary structures of the 154 miRNA genes were predicted; 13miRNAs have 2 structures, and miR-9 and miR-199 have 4 and 3 structures, respectively. 36 miRNAs were organized into19 compact clusters. miR-206, miR-21 and miR-378 were the relatively highly expressed miRNAs. In conclusion, Solexasequencing allowed the successful discovery of known and novel porcine miRNAs with high accuracy and efficiency.Furthermore, our results supply new data to the somewhat insufficient pig miRBase, and are useful for investigatingfeatures of the blood-brain barrier, vascular diseases and inflammation.

Abstract  MicroRNAs (miRNAs) are endogenous ~22 nt RNAs that play important regulatory roles in targeting mRNAs for cleavageor translational repression. Despite the discovery of increasing numbers of human and mouse miRNAs, little is knownabout miRNAs from pig. In this study, we sought to extend the repertoire of porcine small regulatory RNAs using Solexasequencing. We sequenced a library of small RNAs prepared from immortalized swine umbilical vein endothelial cells(SUVECs). We produced over 13.6 million short sequence reads, of which 8 547 658 perfectly mapped to the pig genome.A bioinformatics pipeline was used to identify authentic mature miRNA sequences. We identified 154 porcine miRNAgenes, among which 146 were conserved across species, and 8 were pig-specific miRNA genes. The 146 miRNA genesencoded 116 conserved mature miRNAs and 66 miRNA*. The 8 pig-specific miRNA genes encoded 4 mature miRNAs.Four potential novel miRNAs were identified. The secondary structures of the 154 miRNA genes were predicted; 13miRNAs have 2 structures, and miR-9 and miR-199 have 4 and 3 structures, respectively. 36 miRNAs were organized into19 compact clusters. miR-206, miR-21 and miR-378 were the relatively highly expressed miRNAs. In conclusion, Solexasequencing allowed the successful discovery of known and novel porcine miRNAs with high accuracy and efficiency.Furthermore, our results supply new data to the somewhat insufficient pig miRBase, and are useful for investigatingfeatures of the blood-brain barrier, vascular diseases and inflammation.
Keywords:  microRNA      sequencing      Solexa      pig      umbilical vein endothelial cells  
Received: 23 August 2010   Accepted:
Fund: 

This work was supported by grants from the National Natural Science Foundation of China (30771607).

Corresponding Authors:  Correspondence ZHANG Yan-ming, Professor, Tel: +86-29-87092040, Fax: +86-29-87091032, E-mail: ylzhangym@sohu.com   
About author:  DAI Chen, Ph D, E-mail: ddc_moon@163.com

Cite this article: 

DAI Chen, ZHANG Yan-ming, ZHANG Qian, WU Zong-song, DENG Wen, ZHANG Xu, GUO Kang-kang, TANG Qing-hai , HOU Bo. 2011. A MicroRNA Catalog of Swine Umbilical Vein Endothelial Cells Identified by Deep Sequencing. Journal of Integrative Agriculture, 10(9): 1467-1474.

[1]Adams B D, Cowee D M, White B A. 2009. The role of miR-206in the epidermal growth factor (EGF) induced repression ofestrogen receptor-??(ER?) signaling and a luminal phenotypein MCF-7 breast cancer cells. Molecular Endocrinology, 23,1215-1230.

[2]Altuvia Y, Landgraf P, Lithwick G, Elefant N, Pfeffer S, AravinA, Brownstein M J, Tuschl T, Margalit H. 2005. Clusteringand conservation patterns of human microRNAs. NucleicAcids Research, 33, 2697-2706.

[3]Antonini D, Russo M T, de Rosa L, Gorrese M, del Vecchio L,Missero C. 2010. Transcriptional repression of miR-34family contributes to p63-mediated cell cycle progression inepidermal cells. Journal of Investigative Dermatology, 130,1249-1257.

[4]Bartel D P. 2004. MicroRNAs: genomics, biogenesis, mechanism,and function. Cell, 116, 281-297.

[5]Bentwich I, Avniel A, Karov Y, Aharonov R, Gilad S, Barad O,Barzilai A, Einat P, Einav U, Meiri E, et al. 2005. Identificationof hundreds of conserved and nonconserved humanmicroRNAs. Nature Genetics, 37, 766-770.

[6]Berezikov E, Cuppen E, Plasterk R H. 2006a. Approaches tomicroRNA discovery. Nature Genetics, 38, 2-7.

[7]Berezikov E, Thuemmler F, van Laake L W, Kondova I, BontropR, Cuppen E, Plasterk R H. 2006b. Diversity of microRNAsin human and chimpanzee brain. Nature Genetics, 38, 1375-1377.

[8]Browne E P, Li J, Chong M, Littman D R. 2005. Virus-hostinteractions: new insights from the small RNA world. GenomeBiology, 6, 238-242.

[9]Burnside J, Ouyang M, Anderson A, Bernberg E, Lu C, MeyersB C, Green P J, Markis M, Isaacs G, Huang E, Morgan R W.2008. Deep sequencing of chicken microRNAs. BMCGenomics, 9, 185-194.

[10]Cheng Y, Zhang C. 2010. MicroRNA-21 in cardiovascular disease.Journal of Cardiovascular Translational Research, 3, 251-255.

[11]Cho I S, Kim J, Seo H Y, Lim D H, Hong J S, Park Y H, Park DC, Hong K C, Whang K Y, Lee Y S. 2010. Cloning andcharacterization of microRNAs from porcine skeletal muscleand adipose tissue. Molecular Biology Reports, 37, 3567-3574.

[12]Cullen B R. 2006. Viruses and microRNAs. Nature Genetics, 38,25-23.

[13]Griffiths-Jones S, Grocock R J, van Dongen S, Bateman A, EnrightA J. 2006. miRBase: microRNA sequences, targets and genenomenclature. Nucleic Acids Research, 34, 140-144.

[14]Griffiths-Jones S, Saini H K, van Dongen S, Enright A J. 2008.miRBase: tools for microRNA genomics. Nucleic AcidsResearch, 36, 154-158.

[15]Grimson A, Farh K K, Johnston W K, Garrett-Engele P, Lim LP, Bartel D P. 2007. MicroRNA targeting specificity inmammals: determinants beyond seed pairing. Molecules andCells, 27, 91-105.

[16]He L, Hannon G J. 2004. MicroRNAs: small RNAs with a bigrole in gene regulation. Nature Reviews Genetics, 5, 522-531.

[17]Hong H X, Zhang Y M, Xu H, Su Z Y, Sun P. 2007.Immortalization of swine umbilical vein endothelial cells withhuman telomerase reverse transcriptase. Nature ReviewsGenetics, 24, 358-363.

[18]Jiang P, Wu H, Wang W, Ma W, Sun X, Lu Z. 2007. MiPred:classification of real and pseudo microRNA precursors usingrandom forest prediction model with combined features.Nucleic Acids Research, 35, 339-344.

[19]Jopling C L, Yi M, Lancaster A M, Lemon S M, Sarnow P. 2005.Modulation of hepatitis C virus RNA abundance by a liverspecificmicroRNA. Science, 309, 1577-1581.

[20]Kim H J, Cui X S, Kim E J, Kim W J, Kim N H. 2006. Newporcine microRNA genes found by homology search.Genome, 49, 1283-1286.

[21]Kim J, Cho I S, Hong J S, Choi Y K, Kim H, Lee Y S. 2008.Identification and characterization of new microRNAs frompig. Mammalian Genome, 19, 570-580.

[22]Kloosterman W P, Plasterk R H. 2006. The diverse functions ofmicroRNAs in animal development and disease.Developmental Cell, 11, 441-450.

[23]Kuehbacher A, Urbich C, Zeiher A M, Dimmeler S. 2007. Role ofDicer and Drosha for endothelial microRNA expression andangiogenesis. Circulation Research, 101, 59-68.

[24]Lee D Y, Deng Z, Wang C H, Yang B B. 2007. MicroRNA-378promotes cell survival, tumor growth, and angiogenesis bytargeting SuFu and Fus-1 expression. Proceedings of theNational Academy of Sciences of the USA, 104, 20350-20355.

[25]Li R, Li Y, Kristiansen K, Wang J. 2008. SOAP: shortoligonucleotide alignment program. Bioinformatics, 24, 713-714.

[26]Liu X, Wang T, Wakita T, Yang W. 2010. Systematic identificationof microRNA and messenger RNA profiles in hepatitis Cvirus-infected human hepatoma cells. Virology, 398, 57-67.

[27]McDaneld T G, Smith T P, Doumit M E, Miles J R, Coutinho LL, Sonstegard T S, Matukumalli L K, Nonneman D J,Wiedmann R T. 2009. MicroRNA transcriptome profilesduring swine skeletal muscle development. BMC Genomics,10, 77-88.

[28]Moxon S, Moulton V, Kim J T. 2008. A scoring matrix approachto detecting miRNA target sites. Algorithms for MolecularBiology, 3, 3-12.

[29]Nielsen M, Hansen J H, Hedegaard J, Nielsen R O, Panitz F,Bendixen C, Thomsen B. 2010. MicroRNA identity andabundance in porcine skeletal muscles determined by deepsequencing. Animal Genetics, 41, 159-168.

[30]Niwa R, Slack F J. 2007. The evolution of animal microRNAfunction. Current Opinion in Genetics & Development, 17,145-150.

[31]Rathjen T, Pais H, Sweetman D, Moulton V, Munsterberg A,Dalmay T. 2009. High throughput sequencing of microRNAs in chicken somites. FEBS Letters, 583, 1422-1426.

[32]Reddy A M, Zheng Y, Jagadeeswaran G, Macmil S L, Graham WB, Roe B A, Desilva U, Zhang W, Sunkar R. 2009. Cloning,characterization and expression analysis of porcinemicroRNAs. BMC Genomics, 10, 65-85.

[33]Sawera M, Gorodkin J, Cirera S, Fredholm M. 2005. Mappingand expression studies of the mir17-92 cluster on pigchromosome 11. Mammalian Genome, 16, 594-598.

[34]Shan Z X, Lin Q X, Fu Y H, Deng C Y, Zhou Z L, Zhu J N, LiuX Y, Zhang Y Y, Li Y, Lin S G, et al. 2009. Upregulatedexpression of miR-1/miR-206 in a rat model of myocardialinfarction. Biochemical and Biophysical ResearchCommunications, 4, 597-561.

[35]Sharbati S, Friedlander M R, Sharbati J, Hoeke L, Chen W, KellerA, Stahler P F, Rajewsky N, Einspanier R. 2010. Decipheringthe porcine intestinal microRNA transcriptome. BMCGenomics, 11, 275-289.

[36]Weber M, Baker M B, Moore J P, Searles C D. 2010. MiR-21 isinduced in endothelial cells by shear stress and modulatesapoptosis and eNOS activity. Biochemical and BiophysicalResearch Communications, 393, 643-648.

[37]Wernersson R, Schierup M H, Jorgensen F G, Gorodkin J, PanitzF, Staerfeldt H H, Christensen O F, Mailund T, Hornshoj H,Klein A, et al. 2005. Pigs in sequence space: a 0.66X coveragepig genome survey based on shotgun sequencing. BMCGenomics, 6, 70-77.

[38]Zuker M. 2003. Mfold web server for nucleic acid folding andhybridization prediction. Nucleic Acids Research, 31, 3406-3415.
[1] Tengteng Xu, Mengya Zhang, Qiuchen Liu, Xin Wang, Pengfei Luo, Tong Liu, Yelian Yan, Naru Zhou, Yangyang Ma, Tong Yu, Yunsheng Li, Zubing Cao, Yunhai Zhang. 18S ribosomal RNA methyltransferase METTL5-mediated CDX2 translation regulates porcine early embryo development[J]. >Journal of Integrative Agriculture, 2025, 24(8): 3185-3198.
[2] Weiqi Guo, Di Wang, Xinyu Wang, Zhiyang Wang, Hong Zhu, Jiangang Hu, Beibei Zhang, Jingjing Qi, Mingxing Tian, Yanqing Bao, Na Li, Wanjiang Zhang, Shaohui Wang. Identification and characterization of a plasmid co-harboring blaCTX-M-55 and blaTEM-141 in Escherichia albertii from broiler in China[J]. >Journal of Integrative Agriculture, 2025, 24(8): 3212-3221.
[3] Chenyang Wang, Yinuo Zhang, Qiming Sun, Lin Li, Fang Guan, Yazhou He, Yidong Wu. Species-specific evolution of lepidopteran TspC5 tetraspanins associated with dominant resistance to Bacillus thuringiensis toxin Cry1Ac[J]. >Journal of Integrative Agriculture, 2025, 24(8): 3127-3140.
[4] Jie Zhang, Qi Wang, Jinxi Yuan, Zhen Tian, Shanchun Yan, Wei Liu.
Development of a piggyBac transgenic system in Bactrocera dorsalis and its potential for research on olfactory molecular targets
[J]. >Journal of Integrative Agriculture, 2025, 24(6): 2311-2326.
[5] Berhane S. Gebregziabher, Shengrui Zhang, Jing Li, Bin Li, Junming Sun. Identification of genomic regions and candidate genes underlying carotenoid accumulation in soybean using next-generation sequen-cing based bulk segregant analysis[J]. >Journal of Integrative Agriculture, 2025, 24(6): 2063-2079.
[6] Zipeng Zhang, Siyuan Xing, Ao Qiu, Ning Zhang, Wenwen Wang, Changsong Qian, Jia’nan Zhang, Chuduan Wang, Qin Zhang, Xiangdong Ding. The development of a porcine 50K SNP panel using genotyping by target sequencing and its application[J]. >Journal of Integrative Agriculture, 2025, 24(5): 1930-1943.
[7] Deyin Zhang, Xiaolong Li, Fadi Li, Xiaoxue Zhang, Yuan Zhao, Yukun Zhang, Zongwu Ma, Huibin Tian, Xiuxiu Weng, Weimin Wang. Genome-wide association study identifies novel loci associated with feed efficiency traits in Hu lambs[J]. >Journal of Integrative Agriculture, 2025, 24(4): 1259-1269.
[8] Mianyan Li, Lei Pu, David E. MacHugh, Jingjing Tian, Xiaoqing Wang, Qingyao Zhao, Lijun Shi, Hongmei Gao, Ying Yu, Lixian Wang, Fuping Zhao. Genome-wide association studies of novel resilience traits identify important immune QTL regions and candidate genes in Duroc pigs[J]. >Journal of Integrative Agriculture, 2025, 24(11): 4355-4369.
[9] Kaiyuan Ji, Yiwei Zhao, Xin Yuan, Chun’e Liang, Xueqing Zhang, Wenli Tian, Tong Yu, Yangyang Ma, Yinghui Ling, Yunhai Zhang. circKIF27 inhibits melanogenesis and proliferation by targeting miR-129-5p/TGIF2 pathway in goat melanocytes[J]. >Journal of Integrative Agriculture, 2025, 24(10): 3997-4011.
[10] Jia Jia, Huan Wang, Ximeng Yang, Bo Chen, Ruqian Wei, Qibin Ma, Yanbo Cheng, Hai Nian. Identification of long InDels through whole genome resequencing to fine map qIF05-1 for seed isoflavone content in soybean (Glycine max L. Merr.) [J]. >Journal of Integrative Agriculture, 2025, 24(1): 85-100.
[11] Xi Tang, Lei Xie, Min Yan, Longyun Li, Tianxiong Yao, Siyi Liu, Wenwu Xu, Shijun Xiao, Nengshui Ding, Zhiyan Zhang, Lusheng Huang . Genomic selection for meat quality traits based on VIS/NIR spectral information[J]. >Journal of Integrative Agriculture, 2025, 24(1): 235-245.
[12] Jialing Fu, Qingjiang Wu, Xia Wang, Juan Sun, Li Liao, Li Li, Qiang Xu. A novel histone methyltransferase gene CgSDG40 positively regulates carotenoid biosynthesis during citrus fruit ripening[J]. >Journal of Integrative Agriculture, 2024, 23(8): 2633-2648.
[13] Qian Wang, Huimin Cao, Jingcheng Wang, Zirong Gu, Qiuyun Lin, Zeyan Zhang, Xueying Zhao, Wei Gao, Huijun Zhu, Hubin Yan, Jianjun Yan, Qingting Hao, Yaowen Zhang. Fine-mapping and primary analysis of candidate genes associated with seed coat color in mung bean (Vigna radiata L.)[J]. >Journal of Integrative Agriculture, 2024, 23(8): 2571-2588.
[14] Jun Zhou, Qing Lin, Xueyan Feng, Duanyang Ren, Jinyan Teng, Xibo Wu, Dan Wu, Xiaoke Zhang, Xiaolong Yuan, Zanmou Chen, Jiaqi Li, Zhe Zhang, Hao Zhang.

Evaluating the performance of genomic selection on purebred population by incorporating crossbred data in pigs [J]. >Journal of Integrative Agriculture, 2024, 23(2): 639-648.

[15] Lan Huang, Qixin Guo, Yong Jiang, Zhixiu Wang, Guohong Chen, Guobin Chang, Hao Bai. Transcriptome analysis reveals the genetic basis of crest cushion formation in duck[J]. >Journal of Integrative Agriculture, 2024, 23(12): 4172-4185.
No Suggested Reading articles found!