Please wait a minute...
Journal of Integrative Agriculture  2025, Vol. 24 Issue (1): 85-100    DOI: 10.1016/j.jia.2023.08.011
Crop Science Advanced Online Publication | Current Issue | Archive | Adv Search |
Identification of long InDels through whole genome resequencing to fine map qIF05-1 for seed isoflavone content in soybean (Glycine max L. Merr.) 

Jia Jia1, 2, 3*, Huan Wang1, 2, 3*, Ximeng Yang1, 2, 3, Bo Chen1, 2, 3, Ruqian Wei1, 2, 3, Qibin Ma1, 2, 3, Yanbo Cheng1, 2, 3#, Hai Nian1, 2, 3#

1 Key Laboratory of Plant Molecular Breeding of Guangdong Province/College of Agriculture, South China Agricultural University, Guangzhou 510642, China

2 State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou 510642, China

3 Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, South China Agricultural University, Guangzhou 510642, China

 Highlights 
This study identified a novel bHLH transcription factor gene, GmEGL3, as a potential candidate gene of the qIF05-1 locus for seed isoflavone content through comprehensive genetic and functional analysis.
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

大豆异黄酮是一种次生代谢物,可为人体提供丰富的营养保健价值。在本实验室前期的研究中,利用一个由华春瓦窑黄豆杂交衍生的一个重组自交系群体,在大豆5号染色体上鉴定到一个控制大豆籽粒异黄酮含量的主效位点qIF05-1。本研究利用Illumina Solexa测序系统对大豆双亲亲本进行了深度的全基因组重测序分析最终在华春2号和瓦窑黄豆基因组间共鉴定出63099个长片段InDel变异(≥15 bp),这些InDels不均匀地分布大豆的20条染色体上,数量12号染色体1826个18号染色体4544个不等。鉴定到10002占总数量15.85%)片段InDel变异位于基因区,其中有1139个大效InDel变异能够导致蛋白质序列截断或从而影响基因的功能为了进一步应用长片段InDels进行大豆的遗传分析,qIF05-1定位区间内检测到68个长InDel变异位点。通过子代重组实验结合基因型分析研究,将qIF051位点的基因组区间缩小到了102.2 kb的基因组区域区间包含12个基因。进一步结合RNA-seq数据分析、基因组序列比较和拟南芥异位表达功能验证,一个bHLH转录因子家族基因Glyma.05G208300简称GmEGL3)被推测为可能是qIF05-1位点的候选基因。综上,通过鉴定和开发长片段InDel标记再一次说明这是一种重要性状精细定位



Abstract  

Soybean seed isoflavones are a type of secondary metabolites that can provide health and nutrition benefits for humans.  In our previous study, a stable quantitative trait locus (QTL) qIF05-1 controlling the seed isoflavone content in soybean was detected on chromosome (Chr.) 05 in a recombinant inbred line (RIL) population from a cross of Huachun 2×Wayao.  In this study, the parental lines were re-sequenced using the Illumina Solexa System with deep coverage.  A total of 63,099 polymorphic long insertions and deletions (InDels) (≥15 bp) were identified between the parents Huachun 2 and Wayao.  The InDels were unevenly distributed on 20 chromosomes of soybean, varying from 1,826 in Chr. 12 to 4,544 in Chr. 18.  A total of 10,002 long InDels (15.85% of total) were located in genic regions, including 1,139 large-effect long InDels which resulted in truncated or elongated protein sequences.  In the qIF05-1 region, 68 long InDels were detected between the two parents.  Using a progeny recombination experiment and genotype analysis, the qIF05-1 locus was mapped into a 102.2 kb genomic region, and this region contained 12 genes.  By RNA-seq data analysis, genome sequence comparison and functional validation through ectopic expression in Arabidopsis thaliana, Glyma.05G208300 (described as GmEGL3), which is a basic helix-loop-helix (bHLH) transcription factor in plants, emerged as the most likely confirmed gene in qIF05-1.  These long InDels can be used as a type of complementary genetic method for QTL fine mapping, and they can facilitate genetic studies and molecular-assisted selection breeding in soybean.

Keywords:  soybean       seed isoflavone content        whole genome re-sequencing        long InDels        fine map  
Received: 10 May 2023   Accepted: 12 July 2023
Fund: 

This work was supported by the China Agriculture Research System of MOF and MARA (CARS-04-PS12), the Research and Development Program in the Key-Areas of Guangdong Province, China (2020B020220008), and the Guangdong Agricultural Research System, China (2023KJ136-03).

About author:  #Correspondence Yanbo Cheng, E-mail: ybcheng@scau.edu.cn; Hai Nian, E-mail: hnian@scau.edu.cn * These authors contributed equally to this study.

Cite this article: 

Jia Jia, Huan Wang, Ximeng Yang, Bo Chen, Ruqian Wei, Qibin Ma, Yanbo Cheng, Hai Nian. 2025. Identification of long InDels through whole genome resequencing to fine map qIF05-1 for seed isoflavone content in soybean (Glycine max L. Merr.) . Journal of Integrative Agriculture, 24(1): 85-100.

Abdelmajid K M, Ramos L, Leandro L, Mbofung G, Meksem K. 2012. The ‘PI 438489b’ by ‘Hamilton’ SNP-based genetic linkage map of soybean [Glycine max (L.) Merr.] identified quantitative trait loci that underlie seedling SDS resistance. Journal of Plant Genome Science1, 18–30.

Akond M, Liu S M, Kantartzi S K, Meksem K, Bellaloui N, Lightfoot D A, Yuan J Z, Wang D C, Kassem M A. 2014. Quantitative trait loci for seed isoflavone contents in ‘MD96-5722’ by ‘Spencer’ recombinant inbred lines of soybean. Journal of Agricultural and Food Chemistry62, 1464–1468.

Arahana V S, Graef G L, Specht J E, Steadman J R, Eskridge K M. 2001. Identification of QTLs for resistance to in soybean. Crop Science41, 180–188.

Britten R J, Rowen L, Williams J, Cameron R A. 2003. Majority of divergence between closely related DNA samples is due to indels. Proceedings of the National Academy of Sciences of the United States of America100, 4661–4665.

Cai Z, Cheng Y, Ma Z, Liu X, Ma Q, Xia Q, Zhang G, Mu Y, Nian H. 2018. Fine-mapping of QTLs for individual and total isoflavone content in soybean (Glycine max L.) using a high-density genetic map. Theoretical and Applied Genetics131, 555–568.

Cai Z, Xian P, Cheng Y, Zhong Y, Yang Y, Zhou Q, Lian T, Ma Q, Nian H, Ge L. 2023. MOTHER-OF-FT-AND-TFL1 regulates the seed oil and protein content in soybean. New Phytologist239, 905–919.

Cai Z, Xian P, Lin R, Cheng Y, Lian T, Ma Q, Nian H. 2020. Characterization of the soybean GmIREG family genes and the function of GmIREG3 in conferring tolerance to aluminum stress. International Journal of Molecular Sciences21, 497.

Carter A, Tenuta A, Rajcan I, Welacky T, Woodrow L, Eskandari M. 2018. Identification of quantitative trait loci for seed isoflavone concentration in soybean (Glycine max) against soybean cyst nematode stress. Plant Breeding137, 721–729.

Cheng Y, Ma Q, Ren H, Xia Q, Song E, Tan Z, Li S, Zhang G, Nian H. 2017. Fine mapping of a phytophthora-resistance gene Rpswy in soybean (Glycine max L.) by high-throughput genome-wide sequencing. Theoretical and Applied Genetics130, 1041–1051.

Chu S, Wang J, Zhu Y, Liu S, Zhou X, Zhang H, Wang C E, Yang W, Tian Z, Cheng H, Yu D. 2017. An R2R3-type MYB transcription factor, GmMYB29, regulates isoflavone biosynthesis in soybean. PLoS Genetics13, e1006770.

Concibido V C, Lange D A, Denny R L, Orf J H, Young N D. 1997. Genome mapping of soybean cyst nematode resistance genes in ‘Peking’, PI 90763, and PI 88788 using DNA markers. Crop Science37, 258–264.

Falcone F M, Rius S P, Casati P. 2012. Flavonoids: Biosynthesis, biological functions, and biotechnological applications. Frontiers in Plant Science3, 222.

Fang C, Ma Y, Wu S, Liu Z, Wang Z, Yang R, Hu G, Zhou Z, Yu H, Zhang M, Pan Y, Zhou G, Ren H, Du W, Yan H, Wang Y, Han D, Shen Y, Liu S, Liu T, et al. 2017. Genome-wide association studies dissect the genetic networks underlying agronomical traits in soybean. Genome Biology18, 161.

Feng Y, Zhang S, Li J, Pei R, Tian L, Qi J, Azam M, Agyenim-Boateng K G, Shaibu A S, Liu Y, Zhu Z, Li B, Sun J. 2022. The dual-function C2H2-type zinc-finger transcription factor GmZFP7 contributes to isoflavone accumulation in soybean. New Phytologist237, 1794–1809.

Feyissa D N, Løvdal T, Olsen K M, Slimestad R, Lillo C. 2009. The endogenous GL3, but not EGL3, gene is necessary for anthocyanin accumulation as induced by nitrogen depletion in Arabidopsis rosette stage leaves. Planta230, 747–754.

Fliege C E, Ward R A, Vogel P, Nguyen H, Quach T, Guo M, Viana J, Santos L B, Specht J E, Clemente T E, Hudson M E, Diers B W. 2022. Fine mapping and cloning of the major seed protein quantitative trait loci on soybean chromosome 20. Plant Journal110, 114–128.

Fraser C M, Chapple C. 2011. The phenylpropanoid pathway in ArabidopsisArabidopsis Book9, e152.

Gao C, Li D, Jin C, Duan S, Qi S, Liu K, Wang H, Ma H, Hai J, Chen M. 2017. Genome-wide identification of GLABRA3 downstream genes for anthocyanin biosynthesis and trichome formation in ArabidopsisBiochemical and Biophysical Research Communications485, 360–365.

Gonzalez A, Zhao M, Leavitt J M, Lloyd A M. 2008. Regulation of the anthocyanin biosynthetic pathway by the TTG1/BHLH/MYB transcriptional complex in Arabidopsis seedlings. Plant Journal, 53, 814–827.

Graham T L. 1991. Flavonoid and isoflavonoid distribution in developing soybean seedling tissues and in seed and root exudates. Plant Physiology95, 594–603.

Gutierrez-Gonzalez J J, Vuong T D, Zhong R, Yu O, Lee J D, Shannon G, Ellersieck M, Nguyen H T, Sleper D A. 2011. Major locus and other novel additive and epistatic loci involved in modulation of isoflavone concentration in soybean seeds. Theoretical and Applied Genetics123, 1375–1385.

Gutierrez-Gonzalez J J, Wu X, Zhang J, Lee J D, Ellersieck M, Shannon J G, Yu O, Nguyen H T, Sleper D A. 2009. Genetic control of soybean seed isoflavone content: importance of statistical model and epistasis in complex traits. Theoretical and Applied Genetics119, 1069–1083.

Han Y P, Teng W L, Wang Y, Zhao X, Wu L, Li D M, Li W B. 2015. Unconditional and conditional QTL underlying the genetic interrelationships between soybean seed isoflavone, and protein or oil contents. Plant Breeding134, 300–309.

Han Z Z, Wang J Y, Wang X X, Zhang X J, Cheng Y B, Cai Z D, Nian H, Ma Q B. 2022. GmWRKY21, a soybean WRKY transcription factor gene, enhances the tolerance to aluminum stress in Arabidopsis thalianaFrontiers in Plant Science13, 1–17.

Huang J H, Ma Q B, Cai Z D, Xia Q J, Li S X, Jia J, Chu L, Lian T X, Nian H, Cheng Y B. 2020. Identification and mapping of stable QTLs for seed oil and protein content in soybean [Glycine max (L.) Merr.]. Journal of Agricultural and Food Chemistry68, 6448–6460.

Jia J, Wang H, Cai Z D, Wei R Q, Huang J H, Xia Q J, Xiao X H, Ma Q B, Nian H, Cheng Y B. 2022. Identification and validation of stable and novel quantitative trait loci for pod shattering in soybean [Glycine max (L.) Merr.]. Journal of Integrative Agriculture21, 3169–3184.

Jiao Y, Vuong T D, Liu Y, Meinhardt C, Liu Y, Joshi T, Cregan P B, Xu D, Shannon J G, Nguyen H T. 2015. Identification and evaluation of quantitative trait loci underlying resistance to multiple HG types of soybean cyst nematode in soybean PI 437655. Theoretical and Applied Genetics128, 15–23.

Jung W, Yu O, Lau S M, O’Keefe D P, Odell J, Fader G, Mcgonigle B. 2000. Identification and expression of isoflavone synthase, the key enzyme for biosynthesis of isoflavones in legumes. Nature Biotechnology18, 208–212.

Karikari B, Chen S, Xiao Y, Chang F, Zhou Y, Kong J, Bhat J A, Zhao T. 2019. Utilization of interspecific high-density genetic map of RIL population for the QTL detection and candidate gene mining for 100-seed weight in soybean. Frontiers in Plant Science10, 1001.

Knizia D, Yuan J, Bellaloui N, Vuong T, Usovsky M, Song Q, Betts F, Register T, Williams E, Lakhssassi N, Mazouz H, Nguyen H T, Meksem K, Mengistu A, Kassem M A. 2021. The soybean high density ‘Forrest’ by ‘Williams 82’ SNP-based genetic linkage map identifies QTL and candidate genes for seed isoflavone content. Plants-Basel10, 1–23.

Kwon Y. 2014. Effect of soy isoflavones on the growth of human breast tumors: Findings from preclinical studies. Food Science & Nutrition2, 613–622.

Lee S, Jun T H, Michel A P, Mian M. 2015. SNP markers linked to QTL conditioning plant height, lodging, and maturity in soybean. Euphytica203, 521–532.

Lee S, Mian M A, Mchale L K, Wang H, Wijeratne A J, Sneller C H, Dorrance A E. 2013. Novel quantitative trait loci for partial resistance to Phytophthora sojae in soybean PI 398841. Theoretical and Applied Genetics126, 1121–1132.

Li H, Durbin R. 2010. Fast and accurate long-read alignment with burrows-wheeler transform. Bioinformatics26, 589–595.

Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R. 2009. The sequence alignment/map format and samtools. Bioinformatics25, 2078–2079.

Li X, Han Y, Teng W, Zhang S, Yu K, Poysa V, Anderson T, Ding J, Li W. 2010. Pyramided QTL underlying tolerance to phytophthora root rot in mega-environments from soybean cultivars ‘Conrad’ and ‘Hefeng 25’. Theoretical and Applied Genetics121, 651–658.

Li X, Zhou Y, Bu Y, Wang X, Zhang Y, Guo N, Zhao J, Xing H. 2021. Genome-wide association analysis for yield-related traits at the R6 stage in a Chinese soybean mini core collection. Genes & Genomics43, 897–912.

Li Y H, Liu B, Reif J C, Liu Y L, Qiu L. 2014. Development of insertion and deletion markers based on biparental resequencing for fine mapping seed weight in soybean. Plant Genome7, 1–8.

Liu C, Tian Y, Liu Z X, Gu Y Z, Zhang B, Li Y H, Na J, Qiu L J. 2022. Identification and characterization of long-InDels through whole genome resequencing to facilitate fine-mapping of a QTL for plant height in soybean (Glycine max L. Merr.). Journal of Integrative Agriculture21, 1903–1912.

Liu X, Yuan L, Xu L, Xu Z, Huang Y, He X, Ma H, Yi J, Zhang D. 2013. Over-expression of GmMYB39 leads to an inhibition of the isoflavonoid biosynthesis in soybean (Glycine max. L). Plant Biotechnology Reports7, 445–455.

Lou H H, Hu L F, Lu H Y, Wei T Y, Chen Q H. 2021. Metabolic engineering of microbial cell factories for biosynthesis of flavonoids: A review. Molecules26, 1–17.

Mckenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, Garimella K, Altshuler D, Gabriel S, Daly M, Depristo M A. 2010. The genome analysis toolkit: A mapreduce framework for analyzing next-generation DNA sequencing data. Genome Research20, 1297–1303.

Meng F L, Han Y P, Teng W L, Li Y G, Li W B. 2011. QTL underlying the resistance to soybean aphid (Aphis glycines Matsumura) through isoflavone-mediated antibiosis in soybean cultivar ‘Zhongdou 27’. Theoretical and Applied Genetics123, 1459–1465.

Meng S, He J, Zhao T, Xing G, Li Y, Yang S, Lu J, Wang Y, Gai J. 2016. Detecting the QTL-allele system of seed isoflavone content in Chinese soybean landrace population for optimal cross design and gene system exploration. Theoretical and Applied Genetics129, 1557–1576.

Moghaddam S M, Song Q, Mamidi S, Schmutz J, Lee R, Cregan P, Osorno J M, Mcclean P E. 2014. Developing market class specific indel markers from next generation sequence data in Phaseolus vulgaris L. Frontiers in Plant Science5, 185.

Palapol Y, Ketsa S, Lin-Wang K, Ferguson I B, Allan A C. 2009. A MYB transcription factor regulates anthocyanin biosynthesis in mangosteen (Garcinia mangostana L.) fruit during ripening. Planta229, 1323–1334.

Primomo V S, Poysa V, Ablett G R, Jackson C J, Rajcan I. 2005. Mapping QTL for individual and total isoflavone content in soybean seeds. Crop Science45, 78–84.

Schmutz J, Cannon S B, Schlueter J, Ma J, Mitros T, Nelson W, Hyten D L, Song Q, Thelen J J, Cheng J, Xu D, Hellsten U, May G D, Yu Y, Sakurai T, Umezawa T, Bhattacharyya M K, Sandhu D, Valliyodan B, Lindquist E, et al. 2010. Genome sequence of the palaeopolyploid soybean. Nature463, 178–183.

Song Q, Hyten D L, Jia G, Quigley C V, Fickus E W, Nelson R L, Cregan P B. 2013. Development and evaluation of soySNP50K, a high-density genotyping array for soybean. PLoS ONE8, e54985.

Srivastava R, Singh M, Bajaj D, Parida S K. 2016. A high-resolution InDel (insertion-deletion) markers-anchored consensus genetic map identifies major QTLs governing pod number and seed yield in chickpea. Frontiers in Plant Science7, 1362.

Subramanian S, Stacey G, Yu O. 2007. Distinct, crucial roles of flavonoids during legume nodulation. Trends in Plant Science12, 282–285.

Sukumaran A, Mcdowell T, Chen L, Renaud J, Dhaubhadel S. 2018. Isoflavonoid-specific prenyltransferase gene family in soybean: GmPT01, a pterocarpan 2-dimethylallyltransferase involved in glyceollin biosynthesis. Plant Journal96, 966–981.

Tsai C J, Harding S A, Tschaplinski T J, Lindroth R L, Yuan Y. 2006. Genome-wide analysis of the structural genes regulating defense phenylpropanoid metabolism in populus. New Phytologist172, 47–62.

Wang H, Jia J, Cai Z D, Duan M M, Jiang Z, Xia Q J, Ma Q B, Lian T X, Nian H. 2022. Identification of quantitative trait loci (QTLs) and candidate genes of seed iron and zinc content in soybean [Glycine max (L.) Merr.]. BMC Genomics23, 1–14.

Wang J, Hu Z, Liao X, Wang Z, Li W, Zhang P, Cheng H, Wang Q, Bhat J A, Wang H, Liu B, Zhang H, Huang F, Yu D. 2022. Whole-genome resequencing reveals signature of local adaptation and divergence in wild soybean. Evolutionary Applications15, 1820–1833.

Wang K, Li M, Hakonarson H. 2010. Annovar: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Research38, e164.

Wang L, Chen M, Lam P Y, Dini-Andreote F, Dai L, Wei Z. 2022. Multifaceted roles of flavonoids mediating plant-microbe interactions. Microbiome10, 233.

Watanabe S, Yamada R, Kanetake H, Kaga A, Anai T. 2019. Identification and characterization of a major QTL underlying soybean isoflavone malonylglycitin content. Breeding Science69, 564–572.

Wu D, Li D, Zhao X, Zhan Y, Teng W, Qiu L, Zheng H, Li W, Han Y. 2020. Identification of a candidate gene associated with isoflavone content in soybean seeds using genome-wide association and linkage mapping. Plant Journal104, 950–963.

Xia Q, Zhao Z, Liu H, Guan L, Pang Y. 2016. Metabolic pathway of flavonoids in blumea balsamifera. China Journal of Chinese Materia Medica41, 3630–3636. (in Chinese)

Xing G, Zhou B, Wang Y, Zhao T, Yu D, Chen S, Gai J. 2012. Genetic components and major QTL confer resistance to bean pyralid (Lamprosema indicata Fabricius) under multiple environments in four RIL populations of soybean. Theoretical and Applied Genetics125, 859–875.

Xu W, Dubos C, Lepiniec L. 2015. Transcriptional control of flavonoid biosynthesis by MYB-BHLH-WDR complexes. Trends in Plant Science20, 176–185.

Yan J, Wang B, Zhong Y, Yao L, Cheng L, Wu T. 2015. The soybean R2R3 MYB transcription factor GmMYB100 negatively regulates plant flavonoid biosynthesis. Plant Molecular Biology, 89, 35–48.

Yang C, Yan J, Jiang S, Li X, Min H, Wang X, Hao D. 2022. Resequencing 250 soybean accessions: New insights into genes associated with agronomic traits and genetic networks. Genomics Proteomics & Bioinformatics20, 29–41.

Yi J, Derynck M R, Li X, Telmer P, Marsolais F, Dhaubhadel S. 2010. A single-repeat MYB transcription factor, GmMYB176, regulates CHS8 gene expression and affects isoflavonoid biosynthesis in soybean. Plant Journal62, 1019–1034.

Yu O, Jung W, Shi J, Croes R A, Fader G M, Mcgonigle B, Odell J T. 2000. Production of the isoflavones genistein and daidzein in non-legume dicot and monocot tissues. Plant Physiology124, 781–794.

Zeng G, Li D, Han Y, Teng W, Wang J, Qiu L, Li W. 2009. Identification of QTL underlying isoflavone contents in soybean seeds among multiple environments. Theoretical and Applied Genetics118, 1455–1463.

Zhang X, Liu C J. 2014. Multifaceted regulations of gateway enzyme phenylalanine ammonia-lyase in the biosynthesis of phenylpropanoids. Molecular Plant8, 17–27.

Zhong Y W, Wen K, Li X A, Wang S S, Li S S, Zeng Y H, Cheng Y B, Ma Q B, Nian H. 2022. Identification and mapping of QTLs for sulfur-containing amino acids in soybean (Glycine max L.). Journal of Agricultural and Food Chemistry71, 398–410.

[1] Jiang Liu, Wenyu Yang. Soybean maize strip intercropping: A solution for maintaining food security in China[J]. >Journal of Integrative Agriculture, 2024, 23(7): 2503-2506.
[2] Ping Chen, Qing Du, Benchuan Zheng, Huan Yang, Zhidan Fu, Kai Luo, Ping Lin, Yilin Li, Tian Pu, Taiwen Yong, Wenyu Yang.

Coordinated responses of leaf and nodule traits contribute to the accumulation of N in relay intercropped soybean [J]. >Journal of Integrative Agriculture, 2024, 23(6): 1910-1928.

[3] Zhimin Wu, Xiaozeng Han, Xu Chen, Xinchun Lu, Jun Yan, Wei Wang, Wenxiu Zou, Lei Yan.

Application of organic manure as a potential strategy to alleviate the limitation of microbial resources in soybean rhizospheric and bulk soils [J]. >Journal of Integrative Agriculture, 2024, 23(6): 2065-2082.

[4] Qianqian Chen, Qian Zhao, Baoxing Xie, Xing Lu, Qi Guo, Guoxuan Liu, Ming Zhou, Jihui Tian, Weiguo Lu, Kang Chen, Jiang Tian, Cuiyue Liang.

Soybean (Glycine max) rhizosphere organic phosphorus recycling relies on acid phosphatase activity and specific phosphorus-mineralizing-related bacteria in phosphate deficient acidic soils [J]. >Journal of Integrative Agriculture, 2024, 23(5): 1685-1702.

[5] Tantan Zhang, Yali Liu, Shiqiang Ge, Peng Peng, Hu Tang, Jianwu Wang. Sugarcane/soybean intercropping with reduced nitrogen addition enhances residue-derived labile soil organic carbon and microbial network complexity in the soil during straw decomposition[J]. >Journal of Integrative Agriculture, 2024, 23(12): 4216-4236.
[6] Yiwang Zhong, Xingang Li, Shasha Wang, Sansan Li, Yuhong Zeng, Yanbo Cheng, Qibin Ma, Yanyan Wang, Yuanting Pang, Hai Nian, Ke Wen. Mapping and identification of QTLs for seed fatty acids in soybean (Glycine max L.)[J]. >Journal of Integrative Agriculture, 2024, 23(12): 3966-3982.
[7] ZHAI Qian-hang, PAN Ze-qun, ZHANG Cheng, YU Hui-lin, ZHANG Meng, GU Xue-hu, ZHANG Xiang-hui, PAN Hong-yu, ZHANG Hao. Colonization by Klebsiella variicola FH-1 stimulates soybean growth and alleviates the stress of Sclerotinia sclerotiorum[J]. >Journal of Integrative Agriculture, 2023, 22(9): 2729-2745.
[8] Berhane S. GEBREGZIABHER, ZHANG Sheng-rui, Muhammad AZAM, QI Jie, Kwadwo G. AGYENIM-BOATENG, FENG Yue, LIU Yi-tian, LI Jing, LI Bin, SUN Jun-ming. Natural variations and geographical distributions of seed carotenoids and chlorophylls in 1 167 Chinese soybean accessions[J]. >Journal of Integrative Agriculture, 2023, 22(9): 2632-2647.
[9] YANG Hong-jun, YE Wen-wu, YU Ze, SHEN Wei-liang, LI Su-zhen, WANG Xing, CHEN Jia-jia, WANG Yuan-chao, ZHENG Xiao-bo. Host niche, genotype, and field location shape the diversity and composition of the soybean microbiome[J]. >Journal of Integrative Agriculture, 2023, 22(8): 2412-2425.
[10] XU Lei, ZHAO Tong-hua, Xing Xing, XU Guo-qing, XU Biao, ZHAO Ji-qiu.

Model fitting of the seasonal population dynamics of the soybean aphid, Aphis glycines Matsumura, in the field [J]. >Journal of Integrative Agriculture, 2023, 22(6): 1797-1808.

[11] GAO Hua-wei, YANG Meng-yuan, YAN Long, HU Xian-zhong, HONG Hui-long, ZHANG Xiang, SUN Ru-jian, WANG Hao-rang, WANG Xiao-bo, LIU Li-ke, ZHANG Shu-zhen, QIU Li-juan. Identification of tolerance to high density and lodging in short petiolate germplasm M657 and the effect of density on yield-related phenotypes of soybean[J]. >Journal of Integrative Agriculture, 2023, 22(2): 434-446.
[12] QU Zheng, LI Yue-han, XU Wei-hui, CHEN Wen-jing, HU Yun-long, WANG Zhi-gang. Different genotypes regulate the microbial community structure in the soybean rhizosphere[J]. >Journal of Integrative Agriculture, 2023, 22(2): 585-597.
[13] GAO Hua-wei, SUN Ru-jian, YANG Meng-yuan, YAN Long, HU Xian-zhong, FU Guang-hui, HONG Hui-long, GUO Bing-fu, ZHANG Xiang, LIU Li-ke, ZHANG Shu-zhen, QIU Li-juan. Characterization of the petiole length in soybean compact architecture mutant M657 and the breeding of new lines[J]. >Journal of Integrative Agriculture, 2022, 21(9): 2508-2520.
[14] ZHANG Hua, WU Hai-yan, TIAN Rui, KONG You-bin, CHU Jia-hao, XING Xin-zhu, DU Hui, JIN Yuan, LI Xi-huan, ZHANG Cai-ying. Genome-wide association and linkage mapping strategies reveal genetic loci and candidate genes of phosphorus utilization in soybean[J]. >Journal of Integrative Agriculture, 2022, 21(9): 2521-2537.
[15] ZOU Jia-nan, ZHANG Zhan-guo, KANG Qing-lin, YU Si-yang, WANG Jie-qi, CHEN Lin, LIU Yan-ru, MA Chao, ZHU Rong-sheng, ZHU Yong-xu, DONG Xiao-hui, JIANG Hong-wei, WU Xiao-xia, WANG Nan-nan, HU Zhen-bang, QI Zhao-ming, LIU Chun-yan, CHEN Qing-shan, XIN Da-wei, WANG Jin-hui. Characterization of chromosome segment substitution lines reveals candidate genes associated with the nodule number in soybean[J]. >Journal of Integrative Agriculture, 2022, 21(8): 2197-2210.
No Suggested Reading articles found!