Please wait a minute...
Journal of Integrative Agriculture  2025, Vol. 24 Issue (10): 3838-3850    DOI: 10.1016/j.jia.2025.08.013
Horticulture Advanced Online Publication | Current Issue | Archive | Adv Search |
Dehydrin PbDHN3 regulates ethylene synthesis and signal transduction to improve salt tolerance in pear

Fuli Gao1*, Zidong Wang1*, Wankun Liu1, Min Liu1, Baoyi Wang1, Yingjie Yang1, 2, Jiankun Song1, Zhenhua Cui1, Chenglin Liang3, Dingli Li1, Ran Wang1, Jianlong Liu1#

1 Qingdao Key Laboratory of Genetic Improvement and Breeding in Horticultural Plants, Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China

2 Academy of Dongying Efficient Agricultural Technology and Industry on Saline and Alkaline Land in Collaboration with Qingdao Agricultural University, Dongying 257000, China

3 Haidu College, Qingdao Agricultural University, Laiyang 265200, China

 Highlights 

PbDHN3 enhanced salt tolerance in pear.
PbDHN3 precisely regulated ethylene synthesis and signaling transduction, thereby enhancing salt tolerance in plants.
OE-PbDHN3 pear plants exhibited enhanced growth and root development.

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

脱水素(DHN)通过调节渗透调节物质的合成和清除活性氧,增强植物抗性。然而,PbDHN3在盐胁迫条件下的功能尚不清楚。本研究中,盐胁迫诱导了PbDHN3的高表达,而过表达(OE-PbDHN3植株显著提高了梨在盐胁迫下的生长,与野生型相比表现出更高的叶绿素含量和根系生长能力。转录组分析表明,PbDHN3的表达与乙烯信号转导途径相关。OE-PbDHN3转基因植物显著影响乙烯含量及其相关基因的表达。然而,在外源乙烯利处理后,转基因株系显著抑制了乙烯合成和信号转导过程。经过外源乙烯和乙烯抑制剂1-MCP处理的OE-PbDHN3转基因株系显著抑制乙烯合成和信号转导,同时,根系发育增强和叶绿素含量增多。在盐胁迫下,OE-PbDHN3在胁迫早期抑制了乙烯生物合成基因PbACO1-likePbACO2以及乙烯信号转导基因PbEIN3-like的表达,这种早期调控效应减轻了盐胁迫对植物的损伤。综上所述,我们的结果表明,PbDHN3通过调节乙烯合成和信号转导,增强了植株的盐胁迫抗性



Abstract  

Dehydrin (DHN) enhances plant resistance to environmental stress by regulating the synthesis of osmotic adjustment substances and scavenging reactive oxygen species.  However, the role of PbDHN3 under salt stress remains unclear.  In this study, salt stress induced high expression of PbDHN3, and the overexpression of PbDHN3 (OE-PbDHN3) enhanced plant growth under salt stress compared to wild-type (WT) plants.  OE-PbDHN3 plants exhibited higher chlorophyll content and root growth capacity than WT plants under salt stress.  Transcriptome analysis revealed that PbDHN3 expression is associated with ethylene signaling pathways.  OE-PbDHN3 transgenic plants substantially influenced ethylene content and the expression of related genes.  Following treatment with exogenous ethephon, the transgenic lines notably inhibited the processes of ethylene synthesis and signaling transduction.  OE-PbDHN3 transgenic lines treated with exogenous ethylene and the ethylene inhibitor 1-MCP demonstrated significant inhibition of ethylene synthesis and signaling transduction, while promoting root development and chlorophyll content.  Under salt stress, OE-PbDHN3 downregulated the expression of ethylene biosynthesis genes PbACO1-like and PbACO2, and signal transduction genes PbEIN3-like during the initial stress phase.  This early regulation mitigated the adverse effects of salt stress on the plants.  These findings demonstrate that PbDHN3 ameliorates the ethylene-mediated plant growth phenotype under salt stress through regulation of ethylene synthesis and signal transduction.

Keywords:  dehydrin       salt stress       ethylene biosynthesis       pear  
Received: 04 August 2024   Online: 19 August 2025   Accepted: 29 April 2025
Fund: 
This work was funded by the Earmarked Fund for CARS (CARS-28-07), the Agricultural Variety Improvement Project of Shandong Province, China (2022LZGC011), and the Qingdao Agricultural University Doctoral Start-Up Fund, China.
About author:  #Correspondence Jianlong Liu, E-mail: 201901068@qau.edu.cn * These authors contributed equally to this study.

Cite this article: 

Fuli Gao, Zidong Wang, Wankun Liu, Min Liu, Baoyi Wang, Yingjie Yang, Jiankun Song, Zhenhua Cui, Chenglin Liang, Dingli Li, Ran Wang, Jianlong Liu. 2025. Dehydrin PbDHN3 regulates ethylene synthesis and signal transduction to improve salt tolerance in pear. Journal of Integrative Agriculture, 24(10): 3838-3850.

Achard P, Cheng H, Grauwe L D. 2006. Integration of plant responses to environmentally activated phytohormonal signals. Science, 311, 91-94.

Anita S, Eszter B, Dorottya G. 2019. Diverse responsiveness of dehydrin genes to abscisic acid and water stress treatments in cucumber F1 cultivar hybrids. Journal of Horticultural Science & Biotechnology, 94, 726-734.

Burrieza H P, Koyro H W, Tosar L M. 2011. High salinity induces dehydrin accumulation in Chenopodium quinoa Willd. cv. Hualhuas embryos. Plant and Soil, 354, 69-79.

Cao W H, Liu J, He X J. 2007. Modulation of ethylene responses affects plant salt-stress responses. Plant Physiology, 143, 707-719.

Cao W H, Liu J, Zhou Q Y. 2006. Expression of tobacco ethylene receptor NTHK1 alters plant responses to salt stress. Plant Cell and Environment, 29, 1210-1219.

Chen N N, Fan X H, Wang C L. 2022. Overexpression of ZmDHN15 enhances cold tolerance in yeast and Arabidopsis. International Journal of Molecular Sciences, 24, 480.

Chen R G, Hua J, Guo W L. 2015. Silencing of dehydrin CaDHN1 diminishes tolerance to multiple abiotic stresses in Capsicum annuum L. Plant Cell Reports, 34, 2189-2200.

Colin L, Ruhnow F, Zhu J K. 2022. The cell biology of primary cell walls during salt stress. The Plant Cell, 35, 201-217.

Dong H, Zhen Z, Peng J. 2011. Loss of ACS7 confers abiotic stress tolerance by modulating ABA sensitivity and accumulation in ArabidopsisJournal of Experimental Botany, 62, 4875-4887.

Farida S, Chulpan A, Dilara M. 2016. Involvement of dehydrins in 24-epibrassinolide-induced protection of wheat plants against drought stress. Plant Physiology and Biochemistry, 108, 539-548.

Fu H Q, Yang Y Q. 2023. How plants tolerate salt stress. Current Issues in Molecular Biology, 45, 5914-5934.

Ghanmi S, Graether S P, Hanin M. 2022. The halophyte dehydrin sequence landscape. Biomolecules, 12, 330.

Guo H W, Ecker J R. 2003. Plant responses to ethylene gas are mediated by SCFEBF1/EBF2-dependent proteolysis of EIN3 transcription factor. Cell, 115, 667-677.

Hao Y C, Ming H, Cui Y J. 2022. Genome-wide survey of the dehydrin genes in bread wheat (Triticum aestivum L.) and its relatives: Identification, evolution and expression profiling under various abiotic stresses. BMC Genomics, 23, 73.

Hua J, Li C H, Ma F. 2016. Genome-wide identification, expression diversication of dehydrin gene family and characterization of CaDHN3 in pepper (Capsicum annuum L.). PLoS ONE, 11, e0161073.

Kirungu J N, Magwanga R O, Pu L. 2020. Knockdown of Gh_A05G1554 (GhDHN_03) and Gh_D05G1729 (GhDHN_04) dehydrin genes, reveals their potential role in enhancing osmotic and salt tolerance in cotton. Genomics, 112, 1902-1915.

Li K Q, Xu, X Y, Huang X S. 2016. Identification of differentially expressed genes related to dehydration resistance in a highly drought-tolerant pear, Pyrus betulaefolia, as through RNA-Seq. PLoS ONE, 11, e0149352.

Li Q, Qiao, X, Yin H. 2019. Unbiased subgenome evolution following a recent wholegenome duplication in pear (Pyrus bretschneideri Rehd.). Horticulture Research, 6, 34.

Li Q L, Zhang X C, Lv Q. 2017. Physcomitrella patens dehydrins (PpDHNA and PpDHNC) confer salinity and drought tolerance to transgenic Arabidopsis plants. Frontiers in Plant Science, 8, 1316.

Liu J L, Deng Z W, Liang C L. 2021. Genome-wide analysis of RAV transcription factors and functional characterization of anthocyanin-biosynthesis-related RAV genes in pear. International Journal of Molecular Sciences, 22, 5567.

Livak K J, Schmittgen T D. 2001. Analysis of relative gene expressiondata using realtime quantitative PCR and the 2-ΔΔCT method. Methods, 25, 402-408.

Luo D, Hou X M, Zhang Y M. 2019. CaDHN5, a dehydrin gene from pepper, plays an important role in salt and osmotic stress responses. International Journal of Molecular Medicine, 20, 1989.

Marwa D A, Moez H A, Khaled M. 2016. Comparison of full-length and conserved segments of wheat dehydrin DHN-5 overexpressed in Arabidopsis thaliana showed different responses to abiotic and biotic stress. Functional Plant Biology, 43, 1048.

Mota A P Z, Oliveira T N, Vinson C C. 2019. Contrasting effects of wild Arachis dehydrin under abiotic and biotic stresses. Frontiers in Plant Science, 10, 497.

Nawaz M S, Sami S A, Bano M. 2023. Impact of salt stress on cotton. International Journal of Agriculture and Biosciences, 12, 98-103.

Ondrasek G, Rathod S, Manohara K K. 2022. Salt stress in plants and mitigation approaches. Plants, 11, 717.

Porat R, Pasentsis K, Rozentzvieg D. 2004. Isolation of a dehydrin cDNA from orange and grapefruit citrus fruit that is specifically induced by the combination of heat followed by chilling temperatures. Physiologia Plantarum, 120, 256-264.

Riyazuddin R, Nisha N, Kalpita S. 2021. Involvement of dehydrin proteins in mitigating the negative effects of drought stress in plants. Plant Cell Reports, 41, 519-533.

Robertson M. 2003. Increased dehydrin promoter activity caused by HvSPY is independent of the ABA response pathway. Plant Journal, 34, 39-46.

Rorat T. 2006. Plant dehydrins-tissue location, structure and function. Cellular & Molecular Biology Letters11, 536-556.

Saibi W, Feki K, Mahmoud R B. 2015. Durum wheat dehydrin (DHN-5) confers salinity tolerance to transgenic Arabidopsis plants through the regulation of proline metabolism and ROS scavenging system. Planta, 242, 1187-1194.

Sun Y B, Liu L H, Sun S K. 2021. AnDHN, a dehydrin protein from Ammopiptanthus nanus, mitigates the negative effects of drought stress in plants. Frontiers in Plant Science, 12, 788938.

Tiwari P, Indoliya Y, Singh P K. 2019. Role of dehydrin-FK506-binding protein complex in enhancing drought tolerance through the ABA-mediated signaling pathway. Environmental and Experimental Botany, 158, 136-149.

Wan L S, Zhang J F, Zhang H W. 2011. Transcriptional activation of OsDERF1 in OsERF3 and OsAP239 negatively modulates ethylene synthesis and drought tolerance in rice. PLoS ONE, 6, e25216.

Wang N N, Ming-Che S, Li N. 2005. The GUS reporter-aided analysis of the promoter activities of Arabidopsis ACC synthase genes AtACS4, AtACS5, and AtACS7 induced by hormones and stresses. Journal of Experimental Botany, 56, 909-920.

Wang X Y, Yu Z W, Liu H. 2020. Effect of K-/S- segments on subcellular localization and dimerization of wheat dehydrin WZY1-2. Plant Signaling & Behavior, 15, 1827583.

Wang Y N, Liu C, Li K X. 2007. Arabidopsis EIN2 modulates stress response through abscisic acid response pathway. Plant Molecular Biology, 64, 633-644.

Xiong H. 2023. Epigenetic regulation in plant salt stress response. Null, 6, 387-393.

Xu J, Li Y, Wang Y. 2008. Activation of MAPK kinase 9 induces ethylene and camalexin biosynthesis and enhances sensitivity to salt stress in Arabidopsis. Journal of Biological Chemistry, 283, 26996-27006.

Yang C, Ma B, He S J, Xiong Q, Duan K X, Yin C C, Chen H, Lu X, Chen S Y, Zhang J S. 2015. MAOHUZI6/ETHYLENE INSENSITIVE3-LIKE1 and ETHYLENE INSENSITIVE3-LIKE2 regulate ethylene response of roots and coleoptiles and negatively affect salt tolerance in rice. Plant Physiology, 169, 148-165.

Yang W B, Zhang L S, Lv H. 2015. The K-segments of wheat dehydrin WZY2 are essential for its protective functions under temperature stress. Frontiers in Plant Science, 6, 406.

Zhang H, Zheng J X, Su H X. 2018. Molecular cloning and functional characterization of the dehydrin (IpDHN) gene from Ipomoea pes-caprae. Frontiers in Plant Science, 9, 1454.

Zhang M, Smith J A C, Harberd N P, Jiang C F. 2016. The regulatory roles of ethylene and reactive oxygen species (ROS) in plant salt stress responses. Plant Molecular Biology, 91, 651-659.

Zhao S, Wei Y, Pang H. 2020. Genomewide identification of the PEBP genes in pears and the putative role of PbFT in flower bud differentiation. PeerJ, 8, e8928.

Zhou M Q, Peng N F, Yang C P. 2022. The poplar (PoPblus trichocarpa) dehydrin gene PtrDHN-3 enhances tolerance to salt stress in Arabidopsis. Plants, 11, 2700.

[1] Runnan Zhou, Sihui Wang, Peiyan Liu, Yifan Cui, Zhenbang Hu, Chunyan Liu, Zhanguo Zhang, Mingliang Yang, Xin Li, Xiaoxia Wu, Qingshan Chen, Ying Zhao. Genome-wide characterization of soybean malate dehydrogenase genes reveals a positive role for GmMDH2 in the salt stress response[J]. >Journal of Integrative Agriculture, 2025, 24(7): 2492-2510.
[2] Shuran Li, Chunqing Ou, Fei Wang, Yanjie Zhang, Omayma Ismail, Yasser S. G. Abd Elaziz, Sherif Edris, , He Li, Shuling Jiang. Ppbbx24-del mutant positively regulates light-induced anthocyanin accumulation in the ‘Red Zaosu’ pear (Pyrus pyrifolia White Pear Group)[J]. >Journal of Integrative Agriculture, 2025, 24(7): 2619-2639.
[3] Congrui Sun, Runze Wang, Jiaming Li, Xiaolong Li, Bobo Song, David Edwards, Jun Wu. Pan-transcriptome analysis provides insights into resistance and fruit quality breeding of pear (Pyrus pyrifolia)[J]. >Journal of Integrative Agriculture, 2025, 24(5): 1813-1830.
[4] Zhian Dai, Rongwei Yuan, Xiangxia Yang, Hanxiao Xi, Ma Zhuo, Mi Wei. Salinity-responsive key endophytic bacteria in the propagules of Kandelia obovata enhance salt tolerance in rice[J]. >Journal of Integrative Agriculture, 2025, 24(5): 1738-1753.
[5] Xiaomei Tang, Yue Wang, Yuqing Guo, Luoluo Xie, Wei Song, Ziwen Xiao, Ruichang Yin, Zhe Ye, Xueqiu Sun, Wenming Wang, Lun Liu, Zhenfeng Ye, Zhenghui Gao, Bing Jia. Integrated transcriptomic and metabolomic analyses reveal a novel mechanism of resistance to Colletotrichum fructicola in pear[J]. >Journal of Integrative Agriculture, 2025, 24(10): 3851-3865.
[6] Tong Shen, Mengdi Ye, Yeping Xu, Bohan Ding, Hongtao Li, Li Zhang, Jun Wang, Yanli Tian, Baishi Hu, Youfu Zhao. Cytospora pyri promotes Erwinia amylovora virulence by providing metabolites and hyphae[J]. >Journal of Integrative Agriculture, 2024, 23(9): 3045-3054.
[7] Guoling Guo, Haiyan Zhang, Weiyu Dong, Bo Xu, Youyu Wang, Qingchen Zhao, Lun Liu, Xiaomei Tang, Li Liu, Zhenfeng Ye, Wei Heng, Liwu Zhu, Bing Jia. Overexpression of PbrGA2ox1 enhances pear drought tolerance through the regulation of GA3-inhibited reactive oxygen species detoxification and abscisic acid signaling[J]. >Journal of Integrative Agriculture, 2024, 23(9): 2989-3011.
[8] Wanting Yu, Xinnan Zhang, Weiwei Yan, Xiaonan Sun, Yang Wang, Xiaohui Jia. Effects of 1-methylcyclopropene on skin greasiness and quality of ‘Yuluxiang’ pear during storage at 20°C[J]. >Journal of Integrative Agriculture, 2024, 23(7): 2476-2490.
[9] Congcong Zhang, Han Wang, Guojie Nai, Lei Ma, Xu Lu, Haokai Yan, Meishuang Gong, Yuanyuan Li, Ying Lai, Zhihui Pu, Li Wei, Guiping Chen, Ping Sun, Baihong Chen, Shaoying Ma, Sheng Li. Nitrogen application regulates antioxidant capacity and flavonoid metabolism, especially quercetin, in grape seedlings under salt stress[J]. >Journal of Integrative Agriculture, 2024, 23(12): 4074-4092.
[10] Berhane S. GEBREGZIABHER, ZHANG Sheng-rui, Muhammad AZAM, QI Jie, Kwadwo G. AGYENIM-BOATENG, FENG Yue, LIU Yi-tian, LI Jing, LI Bin, SUN Jun-ming. Natural variations and geographical distributions of seed carotenoids and chlorophylls in 1 167 Chinese soybean accessions[J]. >Journal of Integrative Agriculture, 2023, 22(9): 2632-2647.
[11] MA Xiao-wen, MA Qiu-xiang, MA Mu-qing, CHEN Yan-hang, GU Jin-bao, LI Yang, HU Qing, LUO Qing-wen, WEN Ming-fu, ZHANG Peng, LI Cong, WANG Zhen-yu.

Cassava MeRS40 is required for the regulation of plant salt tolerance [J]. >Journal of Integrative Agriculture, 2023, 22(5): 1396-1411.

[12] JIAO Hui-jun, WANG Hong-wei, RAN Kun, DONG Xiao-chang, DONG Ran, WEI Shu-wei, WANG Shao-min. Identification and functional analysis of arabinogalactan protein expressed in pear pollen tubes[J]. >Journal of Integrative Agriculture, 2023, 22(3): 776-789.
[13] LI Qiao-lu, LI Zhi-yong, WANG Meng-meng, YAN Jing-wei, FANG Lin. Phosphorylation of SiRAV1 at Ser31 regulates the SiCAT expression to enhance salt tolerance in Setaria italica[J]. >Journal of Integrative Agriculture, 2023, 22(12): 3638-3651.
[14] WEI Wei-lin, JIANG Fu-dong, LIU Hai-nan, SUN Man-yi, LI Qing-yu, CHANG Wen-jing, LI Yuan-jun, LI Jia-ming, WU Jun. The PcHY5 methylation is associated with anthocyanin biosynthesis and transport in ‘Max Red Bartlett’ and ‘Bartlett’ pears[J]. >Journal of Integrative Agriculture, 2023, 22(11): 3256-3268.
[15] SHAN Yan-fei, LI Meng-yan, WANG Run-ze, LI Xiao-gang, LIN Jing, LI Jia-ming, ZHAO Ke-jiao, WU Jun. Evaluation of the early defoliation trait and identification of resistance genes through a comprehensive transcriptome analysis in pears[J]. >Journal of Integrative Agriculture, 2023, 22(1): 120-138.
No Suggested Reading articles found!