Please wait a minute...
Journal of Integrative Agriculture  2025, Vol. 24 Issue (10): 3851-3865    DOI: 10.1016/j.jia.2024.12.041
Horticulture Advanced Online Publication | Current Issue | Archive | Adv Search |
Integrated transcriptomic and metabolomic analyses reveal a novel mechanism of resistance to Colletotrichum fructicola in pear

Xiaomei Tang1*, Yue Wang1*, Yuqing Guo1, Luoluo Xie1, Wei Song1, Ziwen Xiao1, Ruichang Yin1, Zhe Ye1, Xueqiu Sun1, Wenming Wang2, Lun Liu1, 3, Zhenfeng Ye1, 3, Zhenghui Gao4#, Bing Jia1#

1 Key Laboratory of Horticultural Crop Quality Biology of Anhui Province, College of Horticulture, Anhui Agricultural University, Hefei 230036, China

2 Science and Technology Experiment Station of Shexian County, Huangshan 245200, China

3 Jinzhai Modern Agricultural Cooperation Center, Integrated Experimental Station in Dabie Mountains, Anhui Agricultural University, Lu’an 237000, China

4 Key Laboratory of Horticultural Crop Germplasm Creation and Utilization of Ministry of Agriculture and Rural Areas, Institute of Horticulture, Anhui Academy of Agricultural Sciences, Hefei 230031, China

 Highlights 
Lipid metabolism is critically associated with anthracnose resistance in ‘Seli’ pear.
Dysregulated biosynthesis of amino acids and abnormal metabolism of proanthocyanidins contribute to anthracnose susceptibility in ‘Cuiguan’ pear.
Lipids and amino acids may serve as key resistance-regulating metabolites.
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  
由果生炭疽引起的梨炭疽病是一种毁灭性病害,严重影响大多数梨品种的产量和品质。然而,目前尚缺乏有效的防治措施。此外,梨果生炭疽关键抗性调节机制尚不清楚。为了探究梨炭疽病的抗性机制,本研究以梨炭疽病抗性品种“涩梨”和易感品种“翠冠”为材料,对接种果生炭疽和无菌水5天的‘涩梨’和‘翠冠’叶片进行转录组和代谢组关联分析。结果表明,这些差异表达基因和差异积累代谢物主要与代谢和次级代谢合成途径有关,包括α-亚麻酸代谢、苯丙氨酸生物合成代谢、不饱和脂肪酸生物合成、氨基酸及其衍生物的合成等。其中,抗病品种‘涩梨’感染炭疽后差异代谢物主要为不饱和脂肪酸、氨基酸及其衍生物,如亚油酸及其衍生物、月桂酸、N-乙酰-L-谷氨酸和L-脯氨酸的积累显著增加,而易感品种‘翠冠’感染炭疽后氧化型谷胱甘肽和N-乙酰-L-谷氨酸以及原花青素含量显著降低,这些差异代谢物的含量变化可能与‘涩梨’和‘翠冠’炭疽病的抗性差异有关。总之,本研究为梨炭疽病抗性调控提供了新的见解,有助于研发新的梨炭疽病防治策略、以及炭疽病抗性品种的培育。




Abstract  

Pear anthracnose, caused by Colletotrichum fructicola, is a devastating disease that seriously affects most pear varieties, compromising their yield and quality.  However, effective control of this pathogen is lacking.  Moreover, the critical resistance responses to Cfructicola in pear are unknown.  To investigate these resistance mechanisms of pear against Cfructicola, transcriptomic and metabolomic analyses were performed on the anthracnose-resistant variety ‘Seli’ and susceptible variety ‘Cuiguan’ after Cfructicola infection.  Differentially expressed genes (DEGs) and differentially accumulated metabolites (DAMs) were mainly involved in metabolism and secondary metabolite synthetic pathways, including α-linoleic acid metabolism, phenylalanine biosynthesis metabolism, unsaturated fatty acids biosynthesis, and biosynthesis of amino acids and their derivatives.  In particular, the accumulation of unsaturated fatty acids (UFAs), amino acids, and their derivatives, such as linoleic acid and its derivatives, lauric acid, N-acetyl-L-glutamic acid, and L-proline, was significantly increased in ‘Seli’ after infection, while the amino acids of oxiglutatione and N-acetyl-L-glutamic acid, as well as the proanthocyanidins, were significantly decreased in ‘Cuiguan’.  These findings suggest that these metabolites may contribute to the differential anthracnose resistance between ‘Seli’ and ‘Cuiguan’.  Overall, our results provid new insights into the regulation of pear anthracnose resistance, which may assist in developing new control strategies and breeding anthracnose-resistant varieties.

Keywords:  pear anthracnose       Colletotrichum fructicola        transcriptomic        metabolomic        disease resistance  
Received: 28 July 2024   Online: 31 December 2024   Accepted: 11 December 2024
Fund: 

This study was supported by the China Agriculture Research System (CARS-28-14), the National Natural Science Foundation of China (32302484), the University Natural Science Research Project of Anhui Province, China (2022AHO50926 and 2022AH040129). 

About author:  *These authors contributed equally to this study. #Correspondence Bing Jia, E-mail: jb1977@ahau.edu.cn; Zhenghui Gao, E-mail: gzh96gao@163.com

Cite this article: 

Xiaomei Tang, Yue Wang, Yuqing Guo, Luoluo Xie, Wei Song, Ziwen Xiao, Ruichang Yin, Zhe Ye, Xueqiu Sun, Wenming Wang, Lun Liu, Zhenfeng Ye, Zhenghui Gao, Bing Jia. 2025. Integrated transcriptomic and metabolomic analyses reveal a novel mechanism of resistance to Colletotrichum fructicola in pear. Journal of Integrative Agriculture, 24(10): 3851-3865.

Browse J, Howe G A. 2008. New weapons and a rapid response against insect attack. Plant Physiology146, 832–838.

Cai J H, Aharoni A. 2022. Amino acids and their derivatives mediating defense priming and growth tradeoff. Current Opinion in Plant Biology69, 102288.

Chassot C, Métraux J P. 2005. The cuticle as source of signals for plant defense. Plant Biosystems139, 28–31.

Curien G, Giustini C, Montillet J L, Mas Y M S, Cobessi D, Ferrer J L, Matringe M, Grechkin A, Rolland N. 2016. The chloroplast membrane associated ceQORH putative quinone oxidoreductase reduces long-chain, stress-related oxidized lipids. Phytochemistry122, 45–55.

Fridovich I. 1997. Superoxide anion radical (O2· ), superoxide dismutases, and related matters. Journal of Biological Chemistry272, 18515–18517.

Fu M, Bai Q, Zhang H, Guo Y S, Peng Y H, Zhang P F, Sheng L, Hong N, Xu W X, Wang G P. 2022. Transcriptome analysis of the molecular patterns of pear plants infected by two Colletotrichum fructicola pathogenic strains causing contrasting sets of leaf symptoms. Frontiers in Plant Science13, 761133.

Fu M, Crous P W, Ba Q, Zhang P F, Xiang J, Guo Y S, Zhao F F, Yang M M, Hong N, Xu W X, Wang G P. 2019. Colletotrichum species associated with anthracnose of Pyrus spp. in China. Persoonia42, 1–35.

Gao Y H, Yang Q S, Yan X H, Wu X Y, Yang F, Li J Z, Wei J, Ni J B, Ahmad M, Bai S L, Teng Y W. 2021. High-quality genome assembly of ‘Cuiguan’ pear (Pyrus pyrifolia) as a reference genome for identifying regulatory genes and epigenetic modifications responsible for bud dormancy. Horticulture Research8, 197.

Goto Y, Maki N, Ichihashi Y, Kitazawa D, Igarashi D, Kadota Y, Shirasu K. 2020. Exogenous treatment with glutamate induces immune responses in Arabidopsis. Molecular Plant Microbe Interactions33, 474–487.

Gullner G, Komives T, Király L, Schröder P. 2018. Glutathione S-transferase enzymes in plant-pathogen interactions. Frontiers in Plant Science9, 1836.

Han C Y, Su Z Y, Zhao Y C, Li C H, Guo B D, Wang Q, Liu F Q, Zhang S L. 2024. Uncovering the mechanisms underlying pear leaf apoplast protein-mediated resistance against Colletotrichum fructicola through transcriptome and proteome profiling. Phytopathology Research6, 3.

He M, Qin C X, Wang X, Ding N Z. 2020. Plant unsaturated fatty acids: Biosynthesis and regulation. Frontiers in Plant Science11, 390.

Huang J L, Gu M, Lai Z B, Fan B F, Shi K, Zhou Y H, Yu J Q, Chen Z X. 2010. Functional analysis of the Arabidopsis PAL gene family in plant growth, development, and response to environmental stress. Plant Physiology153, 1526–1538.

Huang R, Sun W X, Wang L R, Li Q L, Huang S P, Tang L H, Guo T X, Mo J Y, Hsiang T. 2021. Identification and characterization of Colletotrichum species associated with anthracnose disease of banana. Plant Pathology70, 1827–1837.

Kachroo A, Kachroo P. 2009. Fatty acid-derived signals in plant defense. Annual Review of Phytopathology47, 153–176.

Kadotani N, Akagi A, Takatsuji H, Miwa T, Igarashi D. 2016. Exogenous proteinogenic amino acids induce systemic resistance in rice. BMC Plant Biology16, 60.

Kan C C, Chung T Y, Wu H Y, Juo Y A, Hsieh M H. 2017. Exogenous glutamate rapidly induces the expression of genes involved in metabolism and defense responses in rice roots. BMC Genomics18, 186.

Kim D, Paggi J M, Park C, Bennett C, Salzberg S L. 2019. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nature Biotechnology37, 907–915.

Kozieł E, Otulak-Kozieł K, Rusin P. 2024. Glutathione - the “master” antioxidant in the regulation of resistant and susceptible host-plant virus-interaction. Frontiers in Plant Science15, 1373801.

Li H, Tian J, Yao Y Y, Zhang J, Song T T, Li K T, Yao Y C. 2019. Identification of leucoanthocyanidin reductase and anthocyanidin reductase genes involved in proanthocyanidin biosynthesis in Malus crabapple plants. Plant Physiology and Biochemistry139, 141–151.

Li Y, Zhao X, Zhang M M, He X, Huang Y, Ahmad S, Liu Z J, Lan S. 2023. Genome-based identification of the CYP75 gene family in Orchidaceae and its expression patterns in Cymbidium goeringiiFrontiers in Plant Science14, 1243828.

Liang C H, Gao W T, Ge T, Tan X W, Wang J Y, Liu H X, Wang Y, Han C, Xu Q, Wang Q Q. 2021. Lauric acid is a potent biological control agent that damages the cell membrane of Phytophthora sojaeFrontiers in Microbiology12, 666761.

Lim G H, Singhal R, Kachroo A, Kachroo P. 2017. Fatty acid- and lipid-mediated signaling in plant defense. Annual Review of Phytopathology55, 505–536.

Lima N B, de A, Batista M V, De Morais M A, Barbosa M A G, Michereff S J, Hyde K D, Câmara M P S. 2013. Five Colletotrichum species are responsible for mango anthracnose in northeastern Brazil. Fungal Diversity61, 75–88.

Liu C, Wang X, Shulaev V, Dixon R A. 2016. A role for leucoanthocyanidin reductase in the extension of proanthocyanidins. Nature Plants2, 16182.

Liu S A, Zhang S H, He S N, Qiao X Y, Runa A. 2023. Tea plant (Camellia sinensis) lipid metabolism pathway modulated by tea field microbe (Colletotrichum camelliae) to promote disease. Horticulture Research10, uhad028.

Lu Q H, Wang Y C, Xiong F, Hao X Y, Zhang X Z, Li N N, Wang L, Zeng J M, Yang Y J, Wang X C. 2020. Integrated transcriptomic and metabolomic analyses reveal the effects of callose deposition and multihormone signal transduction pathways on the tea plant-Colletotrichum camelliae interaction. Scientific Reports10, 12858.

Mehmood N, Yuan Y, Ali M, Iftikhar J, Cheng C Z, Lyu M L, Wu B H. 2021. Early transcriptional response of terpenoid metabolism to Colletotrichum gloeosporioides in a resistant wild strawberry Fragaria nilgerrensisPhytochemistry181, 112590.

Naoumkina M A, Zhao Q, Gallego-Giraldo L, Dai X, Zhao P X, Dixon R A. 2010. Genome-wide analysis of phenylpropanoid defence pathways. Molecular Plant Pathology11, 829–846.

Pratiwi P, Tanaka G, Takahashi T, Xie X, Yoneyama K, Matsuura H, Takahashi K. 2017. Identification of jasmonic acid and jasmonoyl-Isoleucine, and characterization of AOS, AOC, OPR and JAR1 in the model lycophyte Selaginella moellendorffiiPlant Cell Physiology58, 789–801.

Shan Y F, Li M Y, Wang R Z, Li X G, Lin J, Li J M, Zhao K J, Wu J. 2023. Evaluation of the early defoliation trait and identification of resistance genes through a comprehensive transcriptome analysis in pears. Journal of Integrative Agriculture22, 120–138.

Shang S P, Wang B, Zhang S, Liu G L, Liang X F, Zhang R, Gleason M L, Sun G Y. 2020. A novel effector CfEC92 of Colletotrichum fructicola contributes to glomerella leaf spot virulence by suppressing plant defences at the early infection phase. Molecular Plant Pathology21, 936–950.

Tang X M, Lu F, Xiao Z W, Wang Y, Hu G Q, Cai K X, Yin R C, Song W, Xie L L, Guo G L, Wang W M, Liu L, Liu L, Ye Z F, Heng W, Guo X P, Wang D S, Jia B. 2024. Determination of anthracnose (Colletotrichum fructicola) resistance mechanism using transcriptome analysis of resistant and susceptible pear (Pyrus pyrifolia). BMC Plant Biology24, 619.

Trapnell C, Roberts A, Goff L, Pertea G, Kim D, Kelley D R, Pimentel H, Salzberg S L, Rinn J L, Pachter L. 2012. Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nature Protocols7, 562–578.

Varet H, Brillet-Gueguen L, Coppee J Y, Dillies M A. 2016. SARTools: A DESeq2- and EdgeR-based R pipeline for comprehensive differential analysis of RNA-Seq data. PLoS ONE11, e0157022.

Viswanath K K, Varakumar P, Pamuru R R, Basha S J, Mehta S, Rao A D. 2020. Plant lipoxygenases and their role in plant physiology. Journal of Plant Biology63, 83–95.

Wang J, Yang C L, Hu X F, Yao X L, Han L, Wu X M, Li R Y, Wen T C, Ming L. 2022. Lauric acid induces apoptosis of rice sheath blight disease caused by Rhizoctonia solani by affecting fungal fatty acid metabolism and destroying the dynamic equilibrium of reactive oxygen species. Journal of Fungi8, 153.

Wang Y, Branicky R, Noe A, Hekimi S. 2018. Superoxide dismutases: Dual roles in controlling ROS damage and regulating ROS signaling. Journal of Cell Biology217, 1915–1928.

Wang Y, Wang X H, Fang J H, Yin W C, Yan X X, Tu M X, Liu H, Zhang Z D, Li Z, Gao M, Lu H, Wang Y J, Wang X P. 2023. VqWRKY56 interacts with VqbZIPC22 in grapevine to promote proanthocyanidin biosynthesis and increase resistance to powdery mildew. New Phytologist237, 1856–1875.

Wang Y C, Hao X Y, Lu Q H, Wang L, Qian W J, Li N, Ding C Q, Wang X C, Yang Y J. 2018. Transcriptional analysis and histochemistry reveal that hypersensitive cell death and H2O2 have crucial roles in the resistance of tea plant (Camellia sinensis (L.) O. Kuntze) to anthracnose. Horticulture Research5, 18.

Wang Y C, Qian W J, Li N N, Hao X Y, Wang L, Xiao B, Wang X C, Yang Y J. 2016. Metabolic changes of caffeine in tea plant (Camellia sinensis (L.) O. Kuntze) as defense response to Colletotrichum fructicolaJournal of Agricultural and Food Chemistry64, 6685–6693.

Wagner U, Edwards R, Dixon D P, Mauch F. 2002. Probing the diversity of the Arabidopsis glutathione S-transferase gene family. Plant Molecular Biology49, 515–532.

Wasternack C, Hause B. 2019. The missing link in jasmonic acid biosynthesis. Nature Plants5, 776–777.

Wu L Q, Zhu L W, Hen W, Ye Z F, Liu G, Shi S X. 2010. Identification of Dangshan pear anthracnose pathogen and screening fungicides against it. Scientia Agricultura Sinica43, 3750–3758. (in Chinese)

Yang J, Chen Y Z, W Y X, Tao L, Zhang Y D, Wang S R, Zhang G C, Zhang J. 2021. Inhibitory effects and mechanisms of vanillin on gray mold and black rot of cherry tomatoes. Pesticide Biochemistry and Physiology175, 104859.

Yang J L, Sun C, Fu D, Yu T. 2017. Test for L-glutamate inhibition of growth of Alternaria alternata by inducing resistance in tomato fruit. Food Chemistry230, 145–153.

Yang Q, He Y J, Kabahuma M, Chaya T, Kelly A, Borrego E, Yang B, Kasmi F E, Yang L, Teixeira P, Kolkman J, Nelson R, Kolomiets M, Dangl J L, Wisser R, Caplan J, Lauter N, Balint-Kurti P. 2017. A gene encoding maize caffeoyl-CoA O-methyltransferase confers quantitative resistance to multiple pathogens. Nature Genetics49, 1364–1372.

Yu D, Wei W, Fan Z Q, Chen J Y, You Y L, Huang W D, Zhan J C. 2023. VabHLH137 promotes proanthocyanidin and anthocyanin biosynthesis and enhances resistance to Colletotrichum gloeosporioides in grapevine. Horticulture Research10, uhac261.

Zhang J, He L, Guo C, Liu Z Y, Kaliaperumal K, Zhong B L, Jiang Y M. 2022. Evaluation of Aspergillus aculeatus GC-09 for the biological control of citrus blue mold caused by Penicillium italicumFungal Biology126, 201–212.

Zhang L X, Bao H B, Meng F L, Ren Y, Tian C M. 2023. Transcriptome and metabolome reveal the role of flavonoids in poplar resistance to poplar anthracnose. Industrial Crops and Products197, 116537.

Zhao T, Huang C B, Li N, Ge Y Q, Wang L, Tang Y J, Wang Y J, Li Y, Zhang C H. 2024. Ubiquitin ligase VvPUB26 in grapevine promotes proanthocyanidin synthesis and resistance to powdery mildew. Plant Physiology1, kiae249.

Zhu L M, Yang Q, Yu X M, Fu X J, Jin H X, Yuan F J. 2022. Transcriptomic and metabolomic analyses reveal a potential mechanism to improve soybean resistance to anthracnose. Frontiers in Plant Science13, 850829.

[1] Chenyu Zhang, Hongli Li, Piao Mei, Yuanyuan Ye, Dingding Liu, Yang Gong, Haoran Liu, Mingzhe Yao, Chunlei Ma. QTL detection and candidate gene analysis of the anthracnose resistance locus in tea plant (Camellia sinensis)[J]. >Journal of Integrative Agriculture, 2025, 24(6): 2240-2250.
[2] Congrui Sun, Runze Wang, Jiaming Li, Xiaolong Li, Bobo Song, David Edwards, Jun Wu. Pan-transcriptome analysis provides insights into resistance and fruit quality breeding of pear (Pyrus pyrifolia)[J]. >Journal of Integrative Agriculture, 2025, 24(5): 1813-1830.
[3] Guanghui Chen, Li Sheng, Lijun Wu, Liang Yin, Shuangling Li, Hongfeng Wang, Xiao Jiang, Heng Wang, Yanmao Shi, Fudong Zhan, Xiaoyuan Chi, Chunjuan Qu, Yan Ren, Mei Yuan. Identification of novel QTLs for resistance to late leaf spot in peanut by SNP array and QTL-seq analyses[J]. >Journal of Integrative Agriculture, 2025, 24(10): 3772-3788.
[4] MA Yu-xin, ZHOU Zhi-jun, CAO Hong-zhe, ZHOU Fan, SI He-long, ZANG Jin-ping, XING Ji-hong, ZHANG Kang, DONG Jin-gao. Identification and expression analysis of sugar transporter family genes reveal the role of ZmSTP2 and ZmSTP20 in maize disease resistance[J]. >Journal of Integrative Agriculture, 2023, 22(11): 3458-3473.
No Suggested Reading articles found!