Please wait a minute...
Journal of Integrative Agriculture  2026, Vol. 25 Issue (2): 529-539    DOI: 10.1016/j.jia.2025.06.018
Section 3: Environmental Impacts of Agricultural Production Advanced Online Publication | Current Issue | Archive | Adv Search |
Effects of host niche and genotype on the diversity and community assembly of the fungal community in peas (Pisum sativum L.)

Yu Wang1, 2, Linying Xu3#, Liquan Zhang3, Rui Zhang3, Qiong Liu1, Hongquan Liu4, Tao Yang5, Haoqing Zhang1, 6, 7, Tida Ge1, 6, 7, Li Wang1, 6, 7#

1 State Key Laboratory for Quality and Safety of Agro-Products/Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Rural Affairs/Zhejiang Key Laboratory of Green Plant Protection, Institute of Plant Virology, Ningbo University, Ningbo 315211, China

2 School of Marine Sciences, Ningbo University, Ningbo 315211, China

3 Cixi City Agricultural Technology Extension Center, Ningbo 315300, China

4 College of Horticulture, Hebei Agricultural University, Baoding 071001, China

5 Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China

6 International Science and Technology Cooperation Base for the Regulation of Soil Biological Functions and One Health of Zhejiang Province, Ningbo University, Ningbo 315211, China

7 Institute of One Health Science (IOHS), Ningbo University, Ningbo 315211, China

 Highlights 
Niches shaped the pea fungal communities more than genotypes.
Fungal β-diversity was mainly driven by species replacement.
Niche- and genotype-based communities presented deterministic and stochastic assembly, respectively.
The migration rate from exogenous to endogenous niches was low.
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

真菌在营养吸收、植物生长促进以及增强植物对非生物和生物胁迫的抵御能力等方面扮演起着重要作用。然而,关于豌豆(Pisum sativum L.)相关真菌群落的研究目前仍相对匮乏。在本研究中,我们采用模式识别(β多样性分解)、机制验证(中性群落模型检验)和动态追踪(迁移路径溯源分析)等多尺度研究方法,系统研究了宿主生态位(土壤、根、茎、叶、荚)与基因型对豌豆真菌群落多样性及组成的生态效应。结果表明,不同生态位和基因型地优势门为子囊菌门(Ascomycota)、担子菌门(Basidiomycota)和被孢霉门(Mortierellomycota),且土壤-植物连续体的群落结构主要由豌豆生态位而非基因型决定。β-多样性分解在很大程度上归因于物种替代而非丰富度差异,表明微生境间存在显著的生态位特异性与微生物替代。中性模型分析表明基因型相关群落主要受随机性过程主导,而生态位相关群落主要受确定性过程主导。溯源分析确定了真菌在生态位与生态位之间的迁移,其中白粉菌属(Erysiphe),镰刀菌属(Fusarium),头孢菌属(Cephaliophora),粪盘菌属(Ascobolus),链格孢属(Alternaria)和曲霉属(Aspergillus)是关键属。外生生态位向内生生态位的迁移率较低(1.3-61.5%),而外生生态位间(64.4-83.7%)或内生生态位间(73.9-96.4%)的迁移率更高,表明豌豆表皮在内部定殖之前起到了过滤并富集微生物群落的选择性屏障。本研究为寄主过滤、富集和微生物来源的机制提供了全面的见解,增加了对豌豆相关真菌群落的组装机制的理解。



Abstract  

Fungi play crucial roles in nutrient acquisition, plant growth promotion, and the enhancement of resistance to both abiotic and biotic stresses.  However, studies on the fungal communities associated with peas (Pisum sativum L.) remain limited.  In this study, we systematically investigated the ecological effects of host niches (soil, root, stem, leaf, and pod) and genotypes on the diversity and composition of fungal communities in peas using a multi-level approach that encompassed pattern recognition (β-diversity decomposition), mechanism validation (neutral community model testing), and dynamic tracking methods (migration pathway source-tracking).  The results revealed that the dominant fungal phyla across niches and genotypes were Ascomycota, Basidiomycota, and Mortierellomycota, and the community structures of the soil–plant continuum were primarily determined by the pea niches rather than genotypes.  β-diversity decomposition was largely attributed to species replacement rather than richness differences, indicating strong niche specificity and microbial replacement across microhabitats.  Neutral model analysis revealed that stochastic processes influenced genotype-associated communities, while deterministic processes played a dominant role in niche-based community assembly.  Source-tracking analysis identified niche-to-niche fungal migration, with Erysiphe, Fusarium, Cephaliophora, Ascobolus, Alternaria, and Aspergillus as the key genera.  Migration rates from exogenous to endogenous niches were low (1.3–61.5%), whereas those within exogenous (64.4–83.7%) or endogenous (73.9–96.4%) compartments were much higher, suggesting that the pea epidermis acts as a selective barrier that filters and enriches microbial communities prior to internal colonization.  This study provides comprehensive insights into the mechanisms of host filtering, enrichment and microbial sourcing, which increases our understanding of the assembly rules of the pea-associated fungal microbiome.

Keywords:  β-diversity decomposition        fungal community assembly       pea       source-sink relationships       host niche       genotype  
Received: 20 February 2025   Accepted: 12 May 2025 Online: 10 June 2025  
Fund: 

This study was financially supported by the National Key Research and Development Program of China (2023YFD1900902), the Joint Funds of the Zhejiang Provincial Natural Science Foundation of China (LLSSZ24C030001) and the Earmarked Fund for China Agriculture Research System (CARS-08-G-09), and sponsored by the K.C. Wong Magna Fund of Ningbo University, China.

About author:  Yu Wang, Mobile: +86-19883556249, E-mail: 19883556249@163.com; #Correspondence Li Wang, Mobile: +86-15549062286, E-mail: wangli7@nbu.edu.cn; Linying Xu, Mobile: +86-13858330100, E-mail: 283616641@qq.com

Cite this article: 

Yu Wang, Linying Xu, Liquan Zhang, Rui Zhang, Qiong Liu, Hongquan Liu, Tao Yang, Haoqing Zhang, Tida Ge, Li Wang. 2026. Effects of host niche and genotype on the diversity and community assembly of the fungal community in peas (Pisum sativum L.). Journal of Integrative Agriculture, 25(2): 529-539.

Beckers B, Beeck M O D, Weyens N, Boerjan W, Vangronsveld J. 2017. Structural variability and niche differentiation in the rhizosphere and endosphere bacterial microbiome of field-grown poplar trees. Microbiome5, 25.

Boakye T A, Li H, Osei R, Boamah S, Min Z, Ni C, Wu J, Shi M, Qiao W. 2022. Antagonistic effect of Trichoderma longibrachiatum (TL6 and TL13) on Fusarium solani and Fusarium avenaceum causing root rot on snow pea plants. Journal of Fungi8, 1148.

Calderon R B, Dangi S R. 2024. Arbuscular mycorrhizal fungi and rhizobium improve nutrient uptake and microbial diversity relative to dryland site-specific soil conditions. Microorganisms12, 667.

Callahan B J, McMurdie P J, Rosen M J, Han A W, Johnson A J A, Holmes S P. 2016. DADA2: High-resolution sample inference from Illumina amplicon data. Nature Methods13, 581–583.

Caporaso J G, Kuczynski J, Stombaugh J, Bittinger K, Bushman F D, Costello E K, Fierer N, Peña A G, Goodrich J K, Gordon J I, Huttley G A, Kelley S T, Knights D K, Koenig J E, Ley R E, Lozupone C A, Mcdonald D, Muegge B D, Pirrung M, Reeder J, et al. 2010. QIIME allows analysis of high-throughput community sequencing data. Nature Methods7, 335–336.

Chase J M. 2010. Stochastic community assembly causes higher biodiversity in more productive environments. Science328, 1388–1391.

Chen X, Krug L, Yang H, Li H, Yang M, Berg G, Cernava T. 2020. Nicotiana tabacum seed endophytic communities share a common core structure and genotype-specific signatures in diverging cultivars. Computational and Structural Biotechnology Journal18, 287–295.

Cheng S, Feng C, Chen B, Hofer J, Shi Y, Jiang M, Song B, Cheng H, Lu L, Wang L, Howard A, Bendahmane A, Fouchal A, Moreau C, Sawada C, Lesignor C, Barclay E, Vikeli E, Tsanakas G, Zhao H, et al. 2024. Genomic and genetic insights into Mendel’s pea genes. bioRxiv5, 596837.

Cregger M A, Veach A M, Yang Z K, Crouch M J, Vilgalys R, Tuskan G A, Schadt C W. 2018. The Populus holobiont: Dissecting the effects of plant niches and genotype on the microbiome. Microbiome6, 31.

Gao M, Xiong C, Gao C, Tsui C K M, Wang M, Zhou X, Zhang A M, Cai L. 2021. Disease-induced changes in plant microbiome assembly and functional adaptation. Microbiome9, 187.

Goldford J E, Lu N, Bajić D, Estrela S, Tikhonov M, Sanchez-Gorostiaga A S, Segrè D, Mehta P, Sanchez A. 2018. Emergent simplicity in microbial community assembly. Science361, 469–474.

Guo B, Zhang H, Liu Y, Chen J, Li J. 2024. Assembly of cereal crop fungal communities under water stress determined by host niche. Environmental and Experimental Botany219, 105650.

Guo Q, Wen Z, Ghanizadeh H, Fan Y, Zheng C, Yang X, Yan X, Li W. 2023. Stochastic processes dominate assembly of soil fungal community in grazing excluded grasslands in northwestern China. Journal of Soils and Sediments23, 156–171.

Hao J, Liu Q, Song F, Cui X, Liu L, Fu L, Zhang S, Wu X, Zhang X. 2024. Community diversity of endophytic bacteria in the leaves and roots of pea seedlings. Agronomy14, 2030.

Jiya N, Shede P, Sharma A. 2023. Diversity and composition of fungal communities across diverse environmental niches in Antarctica. Polar Science38, 100973.

Katoh K, Misawa K, Kuma K, Miyata T. 2002. MAFFT: A novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Research30, 3059–3066.

Lahlali R, Taoussi M, Laasli S E, Gachara G, Ezzouggari R, Belabess Z, Aberkani K, Assouguem A, Meddich A, Jarroudi M E, Barka E A. 2024. Effects of climate change on plant pathogens and host-pathogen interactions. Crop and Environment3, 159–170.

Li S, Ren K, Yan X, Tsyganov A N, Mazei Y, Smirnov A, Mazei N, Zhang Y, Rensing C, Yang J. 2023. Linking biodiversity and ecological function through extensive microeukaryotic movement across different habitats in six urban parks. iMeta2, e103.

Lv X, Wang Q, Zhang X, Hao J, Li L, Chen W, Li H, Wang Y, Ma C, Wang J, Liu Q. 2021. Community structure and associated networks of endophytic bacteria in pea roots throughout plant life cycle. Plant and Soil468, 225–238.

Manici L M, Caputo F, De Sabata D D, Fornasier F. 2024. The enzyme patterns of ascomycota and basidiomycota fungi reveal their different functions in soil. Applied Soil Ecology196, 105323.

Nguyen N H, Song Z, Bates S T, Branco S, Tedersoo L, Menke J, Schilling J S, Kennedy P G. 2016. FUNGuild: An open annotation tool for parsing fungal community datasets by ecological guild. Fungal Ecology20, 241–248.

Ozimek E, Hanaka A. 2021. Mortierella species as the plant growth-promoting fungi present in the agricultural soils. Agriculture11, 7.

Pappas M L, Liapoura M, Papantoniou D, Avramidou M, Kavroulakis N, Weinhold A, Broufas G D, Papadopoulou K K, 2018. The beneficial endophytic fungus Fusarium solani strain K alters tomato responses against spider mites to the benefit of the plant. Frontiers in Plant Science9, 1603.

Pii Y, Mimmo T, Tomasi N, Terzano R, Cesco S, Crecchio C. 2015. Microbial interactions in the rhizosphere: Beneficial influences of plant growth-promoting rhizobacteria on nutrient acquisition process. A review. Biology and Fertility of Soils51, 403–415.

Piñeiro C, Abuín J M, Pichel J C. 2020. Very Fast Tree: Speeding up the estimation of phylogenies for large alignments through parallelization and vectorization strategies. Bioinformatics36, 4658–4659.

Qian X, Li H, Wang Y, Wu B, Wu M, Chen L, Li X, Zhang Y, Wang X, Shi M, Zheng Y, Guo L, Zhang D. 2019. Leaf and root endospheres harbor lower fungal diversity and less complex fungal co-occurrence patterns than rhizosphere. Frontiers in Microbiology10, 1015.

Remus-Emsermann M N P, Schlechter R O. 2018. Phyllosphere microbiology: At the interface between microbial individuals and the plant host. New Phytologist218, 1327–1333.

Schmidt R, Mitchell J, Scow K. 2019. Cover cropping and no-till increase diversity and symbiotroph: Saprotroph ratios of soil fungal communities. Soil Biology and Biochemistry129, 99–109.

Shen C, Gunina A, Luo Y, Wang J, He J, Kuzyakov Y, Hemp A, Classen A T, Ge Y. 2020. Contrasting patterns and drivers of soil bacterial and fungal diversity across a mountain gradient. Environmental Microbiology22, 3287–3301.

Shenhav L, Thompson M, Joseph T A, Briscoe L, Furman O, David B, Mizrahi I, Pe’er I, Halperin E. 2019. FEAST: Fast expectation-maximization for microbial source tracking. Nature Methods16, 627–632.

Silva R N, Monteiro V N, Steindorff A S, Gomes E V, Noronha E F, Ulhoa C J. 2019. Trichoderma/pathogen/plant interaction in pre-harvest food security. Fungal Biology123, 565–583.

Sloan W T, Lunn M, Woodcock S, Head I M, Nee S, Curtis T P. 2006. Quantifying the roles of immigration and chance in shaping prokaryote community structure. Environmental Microbiology8, 732–740.

Wan W, Gadd G M, Gu J, Liu W, Chen P, Zhang Q, Yang Y. 2023. Beyond biogeographic patterns: Processes shaping the microbial landscape in soils and sediments along the Yangtze River. mLife2, 89–100.

Xiong C, He J, Singh B K, Zhu Y, Wang J, Li P, Zhang Q, Han L, Shen J, Ge A, Wu C, Zhang L. 2020. Rare taxa maintain the stability of crop mycobiomes and ecosystem functions. Environmental Microbiology23, 1907–1924.

Xiong C, Zhu Y, Wang J, Singh B, Han L, Shen J, Li P, Wang G, Wu C, Ge A, Zhang L, He J. 2021. Host selection shapes crop microbiome assembly and network complexity. New Phytologist229, 1091–1104.

Yang H, Ye W, Yu Z, Shen W, Li S, Wang X, Chen J, Wang Y, Zheng X. 2023. Host niche, genotype, and field location shape the diversity and composition of the soybean microbiome. Journal of Integrative Agriculture22, 2412–2425.

Yang T, Liu R, Luo Y, Hu S, Wang D, Wang C, Pandey M K, Ge S, Xu Q, Li N, Li G, Huang Y, Saxena R K, Ji Y, Li M, Yan X, He Y, Liu Y, Wang X, Xiong C, et al. 2022. Improved pea reference genome and pan-genome highlight genomic features and evolutionary characteristics. Nature Genetics54, 1553–1563.

Zhang H, Wu C, Wang F, Wang H, Chen G, Cheng Y, Chen J, Yang J, Ge T. 2022. Wheat yellow mosaic enhances bacterial deterministic processes in a plant–soil system. Science of the Total Environment812, 151430.

Zhang L, Zhang M, Huang S, Huang S, Li L, Gao Q, Wang Y, Zhang S, Huang S, Yuan L, Wen Y, Liu K, Yu X, Li D, Zhang L, Xu X, Wei H, He P, Zhou W, Philippot L, Ai C. 2022. A highly conserved core bacterial microbiota with nitrogen-fixation capacity inhabits the xylem sap in maize plants. Nature Communications13, 3361.

Zhang Z, Zhang J, Jiao S. 2021. Fungi show broader environmental thresholds in wet than dry agricultural soils with distinct biogeographic patterns. Science of the Total Environment750, 141761.

Zhao M, Loreau M, Ochoa-Hueso R, Zhang H, Yang J, Zhang Y, Liu H, Jiang Y, Han X. 2024. Decoupled responses of above- and below-ground beta-diversity to nitrogen enrichment in a typical steppe. Ecology Letters27, e14339.

Zhou X R, Dai L, Xu G F, Wang H S. 2021. A strain of Phoma species improves drought tolerance of Pinus tabulaeformisScientific Reports11, 7637.

Zinger L, Taberlet P, Schimann H, Bonin A, Boyer F, Barba M D, Gaucher P, Gielly L, Giguet-Covex C, Iribar A, Réjou-Méchain M, Rayé G, Rioux D, Schilling V, Tymen B, Viers J, Zouiten C, Thuiller W, Coissac E, Chave J. 2019. Body size determines soil community assembly in a tropical forest. Molecular Ecology28, 528–543.

Zhu T, Zhang L, Yan Z, Liu B, Li Y, You X, Chen Mo, Liu T, Xu Y, Zhang J. 2023. Niche-dependent microbial assembly in salt-tolerant tall fescue and its contribution to plant biomass. Industrial Crops and Products206, 117736.

Zwirzitz B, Wetzels S U, Dixon E D, Stessl B, Zaiser A, Rabanser I, Thalguter S, Pinior B, Roch F, Strachan C, Zanghellini J, Dzieciol M, Wagner M, Selberherr E. 2020. The sources and transmission routes of microbial populations throughout a meat processing facility. NPJ Biofilms and Microbiomes6, 26.

[1] Xi Chen, Khalid Ayesha, Xue Wen, Yanan Zhang, Mengru Dou, Kexuan Jia, Yong Wang, Yuling Li, Feng Sun, Guotian Liu, Yan Xu. An integrate methods to improve the high efficiency of embryo rescue breeding in seedless grapes[J]. >Journal of Integrative Agriculture, 2026, 25(2): 721-733.
[2] Huili Sun, Xinyue Wang, Qiuping Ren, Chunyan Liu, Xiaoqian Wang. The PuMYB93–PuGSTF12 regulatory module promotes anthocyanin accumulation in ‘Nanhong’ pear fruit[J]. >Journal of Integrative Agriculture, 2026, 25(2): 671-681.
[3] Qi Zhao, Mengjie Cui, Tengda Guo, Lei Shi, Feiyan Qi, Ziqi Sun, Pei Du, Hua Liu, Yu Zhang, Zheng Zheng, Bingyan Huang, Wenzhao Dong, Suoyi Han, Xinyou Zhang. Genome-wide characterization and expression analysis of the cultivated peanut AhPR10 gene family mediating resistance to Aspergillus flavus[J]. >Journal of Integrative Agriculture, 2026, 25(1): 56-67.
[4] Chaohui Li, Xiaogang Li, Weibo Sun, Yanan Zhao, Yifan Jia, Chenyang Han, Peijie Gong, Shutian Tao, Yancun Zhao, Fengquan. Identification of Fusarium cugenangense as a causal agent of wilt disease on Pyrus pyrifolia in China[J]. >Journal of Integrative Agriculture, 2026, 25(1): 157-165.
[5] Shengzhong Zhang, Xiaohui Hu, Feifei Wang, Huarong Miao, Chu Ye, Weiqiang Yang, Wen Zhong, Jing Chen. Identification of QTLs for plant height and branching-related traits in cultivated peanut[J]. >Journal of Integrative Agriculture, 2025, 24(7): 2511-2524.
[6] Shuran Li, Chunqing Ou, Fei Wang, Yanjie Zhang, Omayma Ismail, Yasser S. G. Abd Elaziz, Sherif Edris, , He Li, Shuling Jiang. Ppbbx24-del mutant positively regulates light-induced anthocyanin accumulation in the ‘Red Zaosu’ pear (Pyrus pyrifolia White Pear Group)[J]. >Journal of Integrative Agriculture, 2025, 24(7): 2619-2639.
[7] Bingyan Huang, Hua Liu, Yuanjin Fang, Lijuan Miao, Li Qin, Ziqi Sun, Feiyan Qi, Lei Chen, Fengye Zhang, Shuanzhu Li, Qinghuan Zheng, Lei Shi, Jihua Wu, Wenzhao Dong, Xinyou Zhang. Identification of oil content QTLs on Arahy12 and Arahy16, and development of KASP markers in cultivated peanut (Arachis hypogaea L.)[J]. >Journal of Integrative Agriculture, 2025, 24(6): 2096-2105.
[8] Congrui Sun, Runze Wang, Jiaming Li, Xiaolong Li, Bobo Song, David Edwards, Jun Wu. Pan-transcriptome analysis provides insights into resistance and fruit quality breeding of pear (Pyrus pyrifolia)[J]. >Journal of Integrative Agriculture, 2025, 24(5): 1813-1830.
[9] Rumeng Wang, Jinsong Luo, Jian Zeng, Yingying Xiong, Tianchu Shu, Dawei He, Zhongsong Liu, Zhenhua Zhang. BjuB05.GS1.4 promotes nitrogen assimilation and participates in the domestication of shoot nitrogen use efficiency in Brassica juncea[J]. >Journal of Integrative Agriculture, 2025, 24(5): 1800-1812.
[10] Jiage Li, Rongling Qin, Yongchen Fang, Yuhao Gao, Yang Jiao, Jia Wei, Songling Bai, Junbei Ni, Yuanwen Teng. PpMYB114 partially depends on PpMYB10 for the promotion of anthocyanin accumulation in pear[J]. >Journal of Integrative Agriculture, 2025, 24(12): 4630-4642.
[11] Sen Li, Ge Tian, Xiling Fu, Wei Xiao, Xiude Chen, Dongmei Li, Qingjie Wang, Ling Li. Genome-wide identification of the PpSWEET gene family and function characterization of PpSWEET6 associated with endodormancy release in peach bud[J]. >Journal of Integrative Agriculture, 2025, 24(11): 4255-4270.
[12] Feifan Wu, Luoyang Ding, Shane K Maloney, Dominique Blache, Mengzhi Wang. Temperament and production in ruminants: The microbiome as one of the factors that affect temperament[J]. >Journal of Integrative Agriculture, 2025, 24(11): 4111-4126.
[13] Xiaomei Tang, Yue Wang, Yuqing Guo, Luoluo Xie, Wei Song, Ziwen Xiao, Ruichang Yin, Zhe Ye, Xueqiu Sun, Wenming Wang, Lun Liu, Zhenfeng Ye, Zhenghui Gao, Bing Jia. Integrated transcriptomic and metabolomic analyses reveal a novel mechanism of resistance to Colletotrichum fructicola in pear[J]. >Journal of Integrative Agriculture, 2025, 24(10): 3851-3865.
[14] Fuli Gao, Zidong Wang, Wankun Liu, Min Liu, Baoyi Wang, Yingjie Yang, Jiankun Song, Zhenhua Cui, Chenglin Liang, Dingli Li, Ran Wang, Jianlong Liu. Dehydrin PbDHN3 regulates ethylene synthesis and signal transduction to improve salt tolerance in pear[J]. >Journal of Integrative Agriculture, 2025, 24(10): 3838-3850.
[15] Kai Zhao, Yanzhe Li, Zhan Li, Zenghui Cao, Xingli Ma, Rui Ren, Kuopeng Wang, Lin Meng, Yang Yang, Miaomiao Yao, Yang Yang, Xiaoxuan Wang, Jinzhi Wang, Sasa Hu, Yaoyao Li, Qian Ma, Di Cao, Kunkun Zhao, Ding Qiu, Fangping Gong, Zhongfeng Li, Xingguo Zhang, Dongmei Yin. Genome-wide analysis of AhCN genes reveals that AhCN34 is involved in bacterial wilt resistance in peanut[J]. >Journal of Integrative Agriculture, 2025, 24(10): 3757-3771.
No Suggested Reading articles found!