Please wait a minute...
Journal of Integrative Agriculture  2025, Vol. 24 Issue (5): 1800-1812    DOI: 10.1016/j.jia.2024.08.007
Horticulture Advanced Online Publication | Current Issue | Archive | Adv Search |
BjuB05.GS1.4 promotes nitrogen assimilation and participates in the domestication of shoot nitrogen use efficiency in Brassica juncea

Rumeng Wang1*, Jinsong Luo1, 3*, Jian Zeng1, Yingying Xiong1, Tianchu Shu1, Dawei He1, Zhongsong Liu2#, Zhenhua Zhang1, 3#

1 College of Resources, Hunan Agricultural University, Changsha 410128, China

2 College of Agronomy, Hunan Agricultural University, Changsha 410128, China

3 Yuelushan Laboratory, Changsha 410128, China

 Highlights 
The N-efficient variety is more sensitive to low nitrogen stress than the N-inefficient variety.
Higher nitrogen assimilation ability and differentially genes involved in amino acid metabolism lead to differences in nitrogen efficiency among different varieties.
The BjuB05.GS1.4 allele contributes to the geographic adaptation of Brassica juncea varieties to nitrogen-deficient soils.
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

阐明作物耐受低氮胁迫的生理和分子机制,促进氮素从衰老叶片向新叶的转移对提高芸薹属的氮素利用效率至关重要。谷氨酰胺合成酶(GS)参与植物叶片蛋白降解过程中释放的铵的重新同化过程,是我们研究的重要基因。在本研究中,我们通过水培试验发现了2个对低氮胁迫响应有差异的基因型芥菜:氮高效基因型芥菜(H141)和氮低效基因型芥菜(L65)。各项生理指标表明H141号芥菜氮素利用效率高的生理原因是它的地上部拥有较低的硝酸盐含量,较高的铵盐、游离氨基酸含量以及NR和GS活性。全基因组重测序数据表明在H65和L141之间有5,880个与NUE相关的基因存在多态性。这些基因参与了氨基酸代谢、碳水化合物代谢和能量代谢。单倍型分析结果表明在芥菜群体中BjuB05.GS1.4存在两种单倍型,Hap1和Hap2在5’非翻译区(UTR)和3’UTR的调控区以及内含子中具有多个单核苷酸多态性或插入/缺失,并且Hap1芥菜群体的地上部NUE显著低于Hap2。这两种单倍型导致芥菜不同遗传群体的地上部NUE存在差异,并与当地土壤氮含量有关,这表明它可能有助于芥菜适应不同的地理环境。因此,我们的研究结果揭示了不同芥菜NUE基因型的生理和分子机制,并证明了在芥菜中进行NUE育种的巨大潜力。



Abstract  
Elucidating crops’ physiological and molecular mechanisms to adapt to low nitrogen environment and promoting nitrogen transfer from senescent leaves to new leaves is crucial in improving Brassica’s nitrogen use efficiency (NUE).  Glutamine synthetase gene (GS) plays a vital role in helping plants reassimilate ammonium released from protein degradation in leaves, and it was the focus of our research on this topic.  In this study, we identified high (H141) and low (L65) NUE genotypes of Brassica juncea with different responses to low-nitrogen stress.  We found that H141 has a lower nitrate content but higher ammonium and free amino acid contents as well as higher nitrate reductase and GS activities in the shoots.  These physiological indicators are responsible for the high NUE of H141.  Whole-genome resequencing data revealed that 5,880 genes associated with NUE are polymorphic between H141 and L65.  These genes participate in various amino acid, carbohydrate, and energy metabolic pathways.  Haplotype analysis revealed two haplotypes for BjuB05.GS1.4, Hap1 and Hap2, which have multiple single nucleotide polymorphisms or insertions/deletions in the regulatory regions of the 5´ and 3´ untranslated regions and introns.  Furthermore, the shoot NUE of Hap1 is significantly lower than that of Hap2.  These two haplotypes of BjuB05.GS1.4 lead to differences in the shoot NUEs of different genetic populations of mustard and are associated with the local soil nitrogen content, suggesting that they might help mustard to adapt to different geographic localities.  In conclusion, the results of our study shed light on the physiological and molecular mechanisms underlying different mustard NUE genotypes and demonstrate the enormous potential of NUE breeding in Bjuncea.


Keywords:  Brassica juncea       nitrogen use efficiency        BjuB05.GS1.4        haplotype        genotype  
Received: 18 September 2023   Online: 16 August 2024   Accepted: 20 March 2024
Fund: 
This study was partially supported by the National Natural Science Foundation of China (U21A20236, 32072664), the Natural Science Foundation of Hunan Province, China (2022RC3053, 2021JC0001, 2021RC3086, 2022NK2009), the China Agriculture Research System (CARS-01-30), and the Innovation Foundation for Graduate of Hunan Agricultural University, China (2023XC116).
About author:  Rumeng Wang, E-mail: liangchenrm@163.com; Jinsong Luo, E-mail: 0609020317@163.com; #Correspondence Zhongsong Liu, E-mail: zsliu48@hunau.net; Zhenhua Zhang, E-mail: zhzh1468@163.com *These authors contributed equally to this study.

Cite this article: 

Rumeng Wang, Jinsong Luo, Jian Zeng, Yingying Xiong, Tianchu Shu, Dawei He, Zhongsong Liu, Zhenhua Zhang. 2025. BjuB05.GS1.4 promotes nitrogen assimilation and participates in the domestication of shoot nitrogen use efficiency in Brassica juncea. Journal of Integrative Agriculture, 24(5): 1800-1812.

Asif I, Niu J, Qiang D, Wang X R, Gui H P, Zhang H H, Pang N C, Zhang X, Song M Z. 2022. Physiological characteristics of cotton subtending leaf are associated with yield in contrasting nitrogen-efficient cotton genotypes. Frontiers in Plant Science13, 825116.

Bird K A, VanBuren R, Puzey J R, Edger P P. 2018. The causes and consequences of subgenome dominance in hybrids and recent polyploids. New Phytologist220, 87–93.

Carneiro M, Rubin C J, Di Palma F, Albert F W, Alfoldi J, Martinez Barrio A, Pielberg G, Rafati N, Sayyab S, Turner-Maier J, Younis S, Afonso S, Aken B, Alves J M, Barrell D, Bolet G, Boucher S, Burbano H A, Campos R, Chang J L, et al. 2014. Rabbit genome analysis reveals a polygenic basis for phenotypic change during domestication. Science345, 1074–1079.

Chardon F, Noel V, Masclaux-Daubresse C. 2012. Exploring NUE in crops and in Arabidopsis ideotypes to improve yield and seed quality. Journal of Experimental Botany63, 3401–3412.

Chen C J, Chen H, Zhang Y, Thomas H R, Frank M H, He Y H, Xia R. 2020. TBtools: An integrative toolkit developed for interactive analyses of big biological data. Molecular Plant13, 1194–1202.

Chen K E, Chen H Y, Tseng C S, Tsay Y F. 2020. Improving nitrogen use efficiency by manipulating nitrate remobilization in plants. Nature Plants6, 1126–1135.

Cingolani P, Platts A, Wang le L, Coon M, Nguyen T, Wang L, Land S J, Lu X, Ruden D M. 2012. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118iso-2; iso-3. Fly (Austin), 6, 80–92.

Diaz C, Saliba-Colombani V, Loudet O, Belluomo P, Moreau L, Daniel-Vedele F, Morot-Gaudry J F, Masclaux-Daubresse C. 2006. Leaf yellowing and anthocyanin accumulation are two genetically independent strategies in response to nitrogen limitation in Arabidopsis thalianaPlant and Cell Physiology47, 74–83.

Ding L, Wang K J, Jiang G M, Biswas D K, Xu H, Li L F, Li Y H. 2005. Effects of nitrogen deficiency on photosynthetic traits of maize hybrids released in different years. Annals of Botany96, 925–930.

Gao K, Chen F J, Yuan L X, Zhang F S, Mi G H. 2015. A comprehensive analysis of root morphological changes and nitrogen allocation in maize in response to low nitrogen stress. Plant Cell Environment38, 740–750.

Gao Y J, de Bang T C, Schjoerring J K. 2019. Cisgenic overexpression of cytosolic glutamine synthetase improves nitrogen utilization efficiency in barley and prevents grain protein decline under elevated CO2Plant Biotechnology Journal17, 1209–1221.

Goel P, Sharma N K, Bhuria M, Sharma V, Chauhan R, Pathania S, Swarnkar M K, Chawla V, Acharya V, Shankar R, Singh A K. 2018. Transcriptome and co-expression network analyses identify key genes regulating nitrogen use efficiency in Brassica juncea L. Scientific Reports8, 7451.

Han Y L, Song H X, Liao Q, Yu Y, Jian S F, Lepo J E, Liu Q, Rong X M, Tian C, Zeng J, Guan C Y, Ismail A M, Zhang Z H. 2016. Nitrogen use efficiency is mediated by vacuolar nitrate sequestration capacity in roots of Brassica napusPlant Physiology170, 1684–1698.

Havé M, Marmagne A, Chardon F, Masclaux-Daubresse C. 2016. Nitrogen remobilisation during leaf senescence: Lessons from Arabidopsis to crops. Journal of Experimental Botany10, 2513–2529.

Hu M Y, Zhao X Q, Liu Q, Hong X, Zhang W, Zhang Y J, Sun L J, Li H, Tong Y P. 2018. Transgenic expression of plastidic glutamine synthetase increases nitrogen uptake and yield in wheat. Plant Biotechnology Journal16, 1858–1867.

Hua Y P, Zhou T, Ding G D, Yang Q Y, Shi L, Xu F S. 2016. Physiological, genomic and transcriptional diversity in responses to boron deficiency in rapeseed genotypes. Journal of Experimental Botany67, 5769–5784.

Hua Y P, Zhou T, Liao Q, Song H X, Guan C Y, Zhang Z H. 2018. Genomics-assisted identification and characterization of the genetic variants underlying differential nitrogen use efficiencies in allotetraploid rapeseed genotypes. GenesGenomesGenetics8, 2757–2771.

Ihaka R, Gentleman R. 1996. R: A language for data analysis and graphics. Journal of Computational and Graphical Statistics5, 299–314.

Islam S, Zhang J J, Zhao Y, She M Y, Ma W J. 2021. Genetic regulation of the traits contributing to wheat nitrogen use efficiency. Plant Science303, 110759.

Kang L, Qian L W, Zheng M, Chen L Y, Chen H, Yang L, You L, Yang B, Yan M L, Gu Y G, Wang T Y, Schiessl S V, An H, Blischak P, Liu X J, Lu H F, Zhang D W, Rao Y, Jia D H, Zhou D G, et al. 2021. Genomic insights into the origin, domestication and diversification of Brassica junceaNature Genetics53, 1392–1402.

Kask K, Kannaste A, Talts E, Copolovici L, Niinemets U. 2016. How specialized volatiles respond to chronic and short-term physiological and shock heat stress in Brassica nigraPlant Cell Environment39, 2027–2042.

Khator K, Shekhawat G S. 2020. Nitric oxide mitigates salt-induced oxidative stress in Brassica juncea seedlings by regulating ROS metabolism and antioxidant defense system. 3 Biotech10, 499.

Li M X, Xu J S, Wang X X, Fu H, Zhao M L, Wang H, Shi L X. 2018. Photosynthetic characteristics and metabolic analyses of two soybean genotypes revealed adaptive strategies to low-nitrogen stress. Journal of Plant Physiology229, 132–141.

Li P, Li Y J, Zhang F J, Zhang G Z, Jiang X Y, Yu H M, Hou B K. 2017. The Arabidopsis UDP-glycosyltransferases UGT79B2 and UGT79B3, contribute to cold, salt and drought stress tolerance via modulating anthocyanin accumulation. The Plant Journal89, 85–103.

Li Q, Ding G D, Yang N M, White P J, Ye X S, Cai H M, Lu J W, Shi L, Xu F S. 2020. Comparative genome and transcriptome analysis unravels key factors of nitrogen use efficiency in Brassica napus L. Plant Cell Environment43, 712–731.

Li X, Yang J, Shen M, Xie X L, Liu G J, Xu Y X, Lv F H, Yang H, Yang Y L, Liu C B, Zhou P, Wan P C, Zhang Y S, Gao L, Yang J Q, Pi W H, Ren Y L, Shen Z Q, Wang F, Deng J, et al. 2020. Whole-genome resequencing of wild and domestic sheep identifies genes associated with morphological and agronomic traits. Nature Communications11, 2815.

Liang G H, Hua Y P, Chen H F, Luo J S, Xiang H K, Song H X, Zhang Z H. 2023. Increased nitrogen use efficiency via amino acid remobilization from source to sink organs in Brassica napusThe Crop Journal11, 119–131.

Liang J, He J X. 2018. Protective role of anthocyanins in plants under low nitrogen stress. Biochemical and Biophysical Research Communications498, 946–953.

Liao H S, Yang C C, Hsieh M H. 2022. Nitrogen deficiency- and sucrose-induced anthocyanin biosynthesis is modulated by HISTONE DEACETYLASE15 in Arabidopsis. Journal of Experimental Botany73, 3726–3742.

Liu X J, Hu B, Chu C C. 2022. Nitrogen assimilation in plants: Current status and future prospects. Journal of Genetics and Genomics49, 394–404.

Liu Y Q, Wang H R, Jiang Z M, Wang W, Xu R N, Wang Q H, Zhang Z H, Li A F, Liang Y, Ou S J, Liu X J, Cao S Y, Tong H N, Wang Y H, Zhou F, Liao H, Hu B, Chu C C. 2021. Genomic basis of geographical adaptation to soil nitrogen in rice. Nature590, 600–605.

Martin A, Belastegui-Macadam X, Quillere I, Floriot M, Valadier M H, Pommel B, Andrieu B, Donnison I, Hirel B. 2005. Nitrogen management and senescence in two maize hybrids differing in the persistence of leaf greenness: Agronomic, physiological and molecular aspects. New Phytologist167, 483–492.

Martin A, Lee J, Kichey T, Gerentes D, Zivy M, Tatout C, Dubois F, Balliau T, Valot B, Davanture M, Terce-Laforgue T, Quillere I, Coque M, Gallais A, Gonzalez-Moro M B, Bethencourt L, Habash D Z, Lea P J, Charcosset A, Perez P, et al. 2006. Two cytosolic glutamine synthetase isoforms of maize are specifically involved in the control of grain production. The Plant Cell18, 3252–3274.

Medugorac I, Graf A, Grohs C, Rothammer S, Zagdsuren Y D, Gladyr E, Zinovieva N, Barbieri J, Seichter D, Russ I, Eggen A, Hellenthal G, Brem G, Blum H, Krebs S, Capitan A. 2017. Whole-genome analysis of introgressive hybridization and characterization of the bovine legacy of Mongolian yaks. Nature Genetics49, 470–475.

Mehra P, Pandey B K, Giri J. 2015. Genome-wide DNA polymorphisms in low Phosphate tolerant and sensitive rice genotypes. Scientific Reports5, 13090.

Meng J X, Gao Y, Han M L, Liu P Y, Yang C, Shen T, Li H H. 2020. In vitro anthocyanin induction and metabolite analysis in Malus spectabilis leaves under low nitrogen conditions. Horticultural Plant Journal6, 284–292.

Orsel M, Moison M, Clouet V, Thomas J, Leprince F, Canoy A S, Just J, Chalhoub B, Masclaux-Daubresse C. 2014. Sixteen cytosolic glutamine synthetase genes identified in the Brassica napus L. genome are differentially regulated depending on nitrogen regimes and leaf senescence. Journal of Experimental Botany65, 3927–3947.

Paritosh K, Yadava S K, Singh P, Bhayana L, Mukhopadhyay A, Gupta V, Bisht N C, Zhang J W, Kudrna D A, Copetti D, Wing R A, Reddy Lachagari V B, Pradhan A K, Pental D. 2020. A chromosome-scale assembly of allotetraploid Brassica juncea (AABB) elucidates comparative architecture of the A and B genomes. Plant Biotechnology Journal19, 602–614.

Pathak R R, Ahmad A, Lochab S, Raghuram N. 2008. Molecular physiology of plant nitrogen use efficiency and biotechnological options for its enhancement. Current Science94, 1394–1403.

Piovan A, Filippini R. 2007. Anthocyanins in Catharanthus roseus in vivo and in vitro: A review. Phytochemistry Reviews6, 235–242.

Quan X Y, Qian Q F, Ye Z L, Zeng J B, Han Z G, Zhang G P. 2016. Metabolic analysis of two contrasting wild barley genotypes grown hydroponically reveals adaptive strategies in response to low nitrogen stress. Journal of Plant Physiology206, 59–67.

Romero Navarro J A, Willcox M, Burgueno J, Romay C, Swarts K, Trachsel S, Preciado E, Terron A, Delgado H V, Vidal V, Ortega A, Banda A E, Montiel N O, Ortiz-Monasterio I, Vicente F S, Espinoza A G, Atlin G, Wenzl P, Hearne S, Buckler E S. 2017. A study of allelic diversity underlying flowering-time adaptation in maize landraces. Nature Genetics49, 476–480.

Russell J, Mascher M, Dawson I K, Kyriakidis S, Calixto C, Freund F, Bayer M, Milne I, Marshall-Griffiths T, Heinen S, Hofstad A, Sharma R, Himmelbach A, Knauft M, van Zonneveld M, Brown J W, Schmid K, Kilian B, Muehlbauer G J, Stein N, et al. 2016. Exome sequencing of geographically diverse barley landraces and wild relatives gives insights into environmental adaptation. Nature Genetics48, 1024–1030.

Savolainen O. 2011. The genomic basis of local climatic adaptation. Science334, 49–50.

Shi Y J, Liu D, He Y Q, Tang J, Chen H F, Gong P, Luo J S, Zhang Z H. 2023. CHLORIDE CHANNEL-b mediates vacuolar nitrate efflux to improve low nitrogen adaptation in Arabidopsis. Plant Physiology193, 1987–2002.

Simoes C, Brasil Bizarri C H, da Silva Cordeiro L, Carvalho de Castro T, Machado Coutada L C, Ribeiro da Silva A J, Albarello N, Mansur E. 2009. Anthocyanin production in callus cultures of Cleome rosea: Modulation by culture conditions and characterization of pigments by means of HPLC-DAD/ESIMS. Plant Physiology Biochemistry47, 895–903.

de Summa S, Malerba G, Pinto R, Mori A, Mijatovic V, Tommasi S. 2017. GATK hard filtering: Tunable parameters to improve variant calling for next generation sequencing targeted gene panel data. BMC Bioinformatics18, 119.

Swarbreck S M, Defoin-Platel M, Hindle M, Saqi M, Habash D Z. 2011. New perspectives on glutamine synthetase in grasses. Journal of Experimental Botany62, 1511–1522.

Thomsen H C, Eriksson D, Moller I S, Schjoerring J K. 2014. Cytosolic glutamine synthetase: A target for improvement of crop nitrogen use efficiency? Trends in Plant Science19, 656–663.

Vidal E A, Alvarez J M, Araus V, Riveras E, Brooks M D, Krouk G, Ruffel S, Lejay L, Crawford N M, Coruzzi G M, Gutierrez R A. 2020. Nitrate in 2020: Thirty years from transport to signaling networks. Plant Cell32, 2094–2119.

Wei Y H, Xiong S P, Zhang Z Y, Meng X D, Wang L L, Zhang X J, Yu M Q, Yu H D, Wang X C, Ma X M. 2021. Localization, gene expression, and functions of glutamine synthetase isozymes in wheat grain (Triticum aestivum L.). Frontiers in Plant Science12, 580405.

Xu G H, Fan X R, Miller A J. 2012. Plant nitrogen assimilation and use efficiency. Annual Review of Plant Biology63, 153–182.

Yang J H, Liu D Y, Wang X W, Ji C M, Cheng F, Liu B N, Hu Z Y, Chen S, Pental D, Ju Y H, Yao P, Li X M, Xie K, Zhang J H, Wang J L, Liu F, Ma W W, Shopan J, Zheng H K, Mackenzie S A, et al. 2016. The genome sequence of allopolyploid Brassica juncea and analysis of differential homoeolog gene expression influencing selection. Nature Genetics48, 1225–1232.

Zhang J H, Zhang H T, Li S Y, Li J Y, Yan L, Xia L Q. 2021. Increasing yield potential through manipulating of an ARE1 ortholog related to nitrogen use efficiency in wheat by CRISPR/Cas9. Journal of Integrative Plant Biology63, 1649–1663.

Zhang X B, Ding Y G, Ma Q, Li F J, Tao R R, Li T, Zhu M, Ding J F, Li C Y, Guo W S, Zhu X K. 2023. Comparative transcriptomic and metabolomic analysis revealed molecular mechanism of two wheat near-isogenic lines response to nitrogen application. Plant Physiology Biochemistry195, 47–57.

Zhou L L, Shi M Z, Xie D Y. 2012. Regulation of anthocyanin biosynthesis by nitrogen in TTG1-GL3/TT8-PAP1-programmed red cells of Arabidopsis thalianaPlanta236, 825–837.

Zhu H, Zhang T J, Zheng J, Huang X D, Yu Z C, Peng C L, Chow W S. 2018. Anthocyanins function as a light attenuator to compensate for insufficient photoprotection mediated by nonphotochemical quenching in young leaves of Acmena acuminatissima in winter. Photosynthetica56, 445–454.

[1] Zijuan Ding, Ren Hu, Yuxian Cao, Jintao Li, Dakang Xiao, Jun Hou, Xuexia Wang. Integrated assessment of yield, nitrogen use efficiency and ecosystem economic benefits of use of controlled-release and common urea in ratoon rice production[J]. >Journal of Integrative Agriculture, 2024, 23(9): 3186-3199.
[2] Myeong-Hyeon Min, Aye Aye Khaing, Sang-Ho Chu, Bhagwat Nawade, Yong-Jin Park. Exploring the genetic basis of pre-harvest sprouting in rice through a genome-wide association study-based haplotype analysis[J]. >Journal of Integrative Agriculture, 2024, 23(8): 2525-2540.
[3] Ningning Yu, Bingshuo Wang, Baizhao Ren, Bin Zhao, Peng Liu, Jiwang Zhang. Water and nitrogen footprint assessment of integrated agronomic practice management in a summer maize cropping system[J]. >Journal of Integrative Agriculture, 2024, 23(10): 3610-3621.
[4] GUO Ya-fei, LI Dai-li, QIU Hai-ji, ZHANG Xiao-liang, LIU Lin, ZHAO Jing-jing, JIANG De-yuan. Genome-wide association studies reveal the genetic basis of amino acid content variation in tea plants[J]. >Journal of Integrative Agriculture, 2023, 22(11): 3364-3379.
[5] ZHU Kuan-yu, YAN Jia-qian, SHEN Yong, ZHANG Wei-yang, XU Yun-ji, WANG Zhi-qin, YANG Jian-chang. Deciphering the morpho–physiological traits for high yield potential in nitrogen efficient varieties (NEVs): A japonica rice case study[J]. >Journal of Integrative Agriculture, 2022, 21(4): 947-963.
[6] SHI Wen-jun, SHAO Hui, SHA Ye, SHI Rong, SHI Dong-feng, CHEN Ya-chao, BAN Xiang-ben, MI Guo-hua. Grain dehydration rate is related to post-silking thermal time and ear characters in different maize hybrids[J]. >Journal of Integrative Agriculture, 2022, 21(4): 964-976.
[7] TENG Jin-yan, YE Shao-pan, GAO Ning, CHEN Zi-tao, DIAO Shu-qi, LI Xiu-jin, YUAN Xiao-long, ZHANG Hao, LI Jia-qi, ZHANG Xi-quan, ZHANG Zhe. Incorporating genomic annotation into single-step genomic prediction with imputed whole-genome sequence data[J]. >Journal of Integrative Agriculture, 2022, 21(4): 1126-1136.
No Suggested Reading articles found!