Please wait a minute...
Journal of Integrative Agriculture
Advanced Online Publication | Current Issue | Archive | Adv Search
The PuMYB93-PuGSTF12 regulatory module promotes anthocyanin accumulation in ‘Nanhong’ pear fruit

Huili Sun1,2, Xinyue Wang2, Qiuping Ren1, Chunyan Liu2, Xiaoqian Wang2#

1 College of Agriculture and Biology, Liaocheng University, Liaocheng, 252000, China

2 College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China

 Highlights 

● PuMYB93 was identified as a positive regulator of anthocyanin biosynthesis in pear fruit.

● PuMYB93 directly binds to the promoter of the transporter gene PuGSTF12 to activate its expression, promoting anthocyanin transport and accumulation.

● The PuMYB93-PuGSTF12 regulatory module is essential for red coloration in the ‘Nanhong’ pear mutant.

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

果实色泽的形成主要源于花青素的积累。为鉴定与花青素积累相关的候选基因,对南果梨及其红色芽变品种南红梨果皮进行了酚类物质代谢和转录组分析。结果表明,南红梨果皮中的花青素和黄酮醇积累量显著增加。分析发现,南红梨果皮中花青素合成及转运相关基因的表达水平均较高,其中PuGSTF12在两个品种中的差异最为显著。进一步筛选获得了一个新的MYB转录因子PuMYB93,对其沉默后抑制了PuGSTF12的表达及花青素的积累,推测其可能参与花青素的调控过程。在此基础上,通过酵母单杂交、胶迁移阻滞GUS报告基因试验证明了PuMYB93可以结合PuGSTF12的启动子并激活其转录。同时,沉默PuGSTF12抑制了PuMYB93对梨果皮花青素的促进作用,表明PuMYB93位于PuGSTF12上游。以上结果表明,PuMYB93可通过调控花青素转运基因PuGSTF12的表达,进而促进花青素积累,从而揭示了PuMYB93-PuGSTF12模块调控南红梨着色的分子机制。



Abstract  

Anthocyanins are important flavonoid pigments in the coloration of fruits. To identify candidate genes involved in anthocyanin accumulation, metabolic and transcriptome analyses were conducted in ‘Nanguo’ pear and its red sport cultivar Nanhong’ pear. The results showed that ‘Nanhong’ pear had significantly higher anthocyanin and flavonol contents. Additionally, transcriptomic analysis showed that there were significant differences in the expression of genes involved in phenylpropanoid and flavonoid biosynthesis pathways between the two cultivars, with PuGSTF12 being the most upregulated gene in the ‘Nanhong’ cultivar. Further analysis identified a novel MYB transcription factor (PuMYB93), and its silencing repressed PuGSTF12 expression and anthocyanin accumulation, suggesting it plays an essential role in the regulation of anthocyanin biosynthesis. Moreover, yeast one-hybrid analysis, electrophoretic mobility shift assay, and β-glucuronidase assay indicated that PuMYB93 can directly bind to the PuGSTF12 promoter to positively regulate its expression. Additionally, PuGSTF12 silencing suppressed the coloration of PuMYB93-OE peels, suggesting that PuGSTF12 act downstream of PuMYB93. Overall, the findings of this study show that PuMYB93 promotes anthocyanin transport in pears by regulating PuGSTF12 expression to further enhance anthocyanin accumulation. 

Keywords:  anthocyanin       pear       transcriptome analysis       transcription factor       PuMYB93  
Online: 08 December 2025  
Fund: 

The research was supported by the National Natural Science Foundation of China (32372641), the Shandong Provincial Natural Science Foundation (ZR2024QC143) and the Liaoning Provincial Natural Science Foundation (2022-MS-258).

About author:  #Correspondence Xiaoqian Wang, Tel: +86-24-88487219, E-mail: wangxq873@163.com

Cite this article: 

Huili Sun, Xinyue Wang, Qiuping Ren, Chunyan Liu, Xiaoqian Wang. 2025. The PuMYB93-PuGSTF12 regulatory module promotes anthocyanin accumulation in ‘Nanhong’ pear fruit. Journal of Integrative Agriculture, Doi:10.1016/j.jia.2025.12.002

Chen Z, Yu L, Liu W, Zhang J, Wang N, Chen X. 2021. Research progress of fruit color development in apple (Malus domestica Borkh.). Plant Physiology and Biochemistry162, 267-279.

Deng Y X, Lu S F. 2017. Biosynthesis and regulation of phenylpropanoids in plants. Critical Reviews in Plant Sciences, 36257-290.

Feng S, Wang Y, Yang S, Xu Y, Chen X. 2010. Anthocyanin biosynthesis in pears is regulated by a R2R3-MYB transcription factor PyMYB10. Planta232, 245-255.

Feng S Q, Sun S S, Chen X L, Wu S J, Wang D Y, Chen X S. 2015. PyMYB10 and PyMYB10.1 interact with bHLH to enhance anthocyanin accumulation in pears. PLoS ONE10, e0142112.

Fischer T C, Gosch C, PfeiVer J, Halbwirth H, Halle C, Stich K, Forkmann G. 2007. Flavonoid genes of pear (Pyrus communis). Trees21, 521-529.

Francisco R M, Regalado AAgeorges ABurla B J, Bassin B J, Eisenach CZarrouk OVialet SMarlin TChaves M M, Martinoia ENagya R. 2013. ABCC1, an ATP binding cassette protein from grape berry, transports anthocyanidin 3-O-Glucosides. The Plant Cell, 25, 1840–1854.

Gao H N, Jiang H, Cui J Y, You C X, Li Y Y. 2021 The effects of hormones and environmental factors on anthocyanin biosynthesis in apple. Plant Science312, 111024.

Gibbs D J, Voß U, Harding S, Fannon JMoody, AYamada ESwarup KNibau CBassel GChoudhary ALavenus JBradshaw SStekel DBennett MCoates J. 2014. AtMYB93 is a novel negative regulator of lateral root development in Arabidopsis. New Phytologist, 203, 1194-1207.

Gomez C, Terrier NTorregrosa LVialet SLevel AVerries CSouquet J M, Mazauric J P, Klein MCheynier VAgeorges A. 2009. Grapevine MATE-type proteins act as vacuolar H+-dependent acylated anthocyanin transporters. Plant Physiology150, 402–415.

He J, Duan Y, Hua D, Fan G, Wang L, Liu Y, Chen Z, Han L, Qu L, Gong Z. 2012. DEXH box RNA helicase–mediated mitochondrial reactive oxygen species production in Arabidopsis mediates crosstalk between abscisic acid and auxin signaling. The Plant Cell24, 1815-1833.

Jefferson R A, Kavanagh T A, Bevan M W. 1987. GUS fusions: Beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. The Embo Journal6, 3901-3907.

Jiang SChen MHe NChen XWang NSun QZhang TXu HFang HWang YZhang Z Y, Wu S J, Chen X S. 2019. MdGSTF6, activated by MdMYB1, plays an essential role in anthocyanin accumulation in apple. Horticulture Research6, 40.

Legay SGuerriero G, André CGuignard CCocco ECharton SBoutry MRowland OHausman J. 2016. MdMYB93 is a regulator of suberin deposition in russeted apple fruit skins. New Phytologist212, 977-991.

Li P M, Zhang Y Z, Einhorn T C, Cheng L L. 2014. Comparison of phenolic metabolism and primary metabolism between green Anjou’ pear and its bud mutation, red Anjou. Physiologla Plantarum, 150, 339-354.

Li TJiang Z Y, Zhang L C, Tan D M, Wei YYuan HLi T L, Wang A D. 2016. Apple (Malus domestica) MdERF2 negatively affects ethylene biosynthesis during fruit ripening by suppressing MdACS1 transcription. Plant Journal88, 735-748.

Liu T J, Zhang Y Z, Zhang X H, Sun Y Y, Wang H P , Song J P, Li X X. 2019aTranscriptome analyses reveal key genes involved in skin color changes of Xinlimei’ radish taproot. Plant Physiology and Biochemistry139, 528-539.

Liu W, Wei Y, Sha S, Xu Y, Li H, Yuan H, Wang A. 2023. The mechanisms underpinning anthocyanin accumulation in a red-skinned bud sport in pear (Pyrus ussuriensis). Plant Cell Reports42, 1089-1105.

Liu Y F, Qi Y W, Zhang A L, Wu H X, Liu Z D, Ren X L. 2019b. Molecular cloning and functional characterization of AcGST1, an anthocyanin-related glutathione S-transferase gene in kiwifruit (Actinidia chinensis). Plant Molecular Biology, 100, 451-465. 

Luo H F, Dai C, Li Y P, Feng J, Liu Z C, Kang C Y. 2018. Reduced Anthocyanins in Petioles codes for a GST anthocyanin transporter that is essential for the foliage and fruit coloration in strawberry. Journal of Experimental Botany69, 2595-2608.

Ni J B, Premathilake A T, Gao Y H, Yu W J, Tao R Y, Teng Y W, Bai S L. 2021. Ethylene-activated PpERF105 induces the expression of the repressor-type R2R3-MYB gene PpMYB140 to inhibit anthocyanin biosynthesis in red pear fruit. Plant Journal105, 167-181.

Premathilake A T, Ni JBai STao RTeng Y. 2020. R2R3-MYB transcription factor PpMYB17 positively regulates favonoid biosynthesis in pear fruit. Planta252, 59.

Shao D, Li Y, Zhu Q, Zhang X, Liu F, Xue F, Sun J. 2021. GhGSTF12, a glutathione S-transferase gene, is essential for anthocyanin accumulation in cotton (Gossypium hirsutum L.). Plant Science305, 110827.

Sun Y, Li H, Huang J R. 2012 Arabidopsis TT19 functions as a carrier to transport anthocyanin from the cytosol to tonoplasts. Molecular Plant5, 387–400.

Teng S, Keurentjes J, Bentsink L, Koornneef M, Smeekens S. 2005. Sucrose-specific induction of anthocyanin biosynthesis in Arabidopsis requires the MYB75/PAP1 gene. Plant Physiology, 139, 1840-1852.

Wang L, Bolitho K, Grafton K, Kortstee AKarunairetnam SMcGhie T K, Espley RHellens R P, Allan A C. 2010. An R2R3 MYB transcription factor associated with regulation of the anthocyanin biosynthetic pathway in Rosaceae. BMC Plant Biology, 10, 50.

Wang X Q, Cao X Y, Shang Y, Bu H D, Wang T Y, Lyu D G, Du G D. 2020. Preharvest application of prohydrojasmon affects color development, phenolic metabolism, and pigment‐related gene expression in red pear (Pyrus ussuriensis). Journal of the Science of Food and Agriculture100, 4766-4775.

Wang X Q, Li C Y, Liang D, Zou Y J, Li P M, Ma F W. 2015. Phenolic compounds and antioxidant activity in red-fleshed apples. Journal of Functional Foods18, 1086-1094.

Wang X Q, Liu S Q, Sun H L, Liu C Y, Li X Y, Liu YLyu D G, Du G D. 2021. Production of reactive oxygen species by PuRBOHF is critical for stone cell development in pear fruit. Horticulture Research, 8, 249.

Xu W, Dubos C, Lepiniec L. 2015. Transcriptional control of flavonoid biosynthesis by MYB–bHLH–WDR complexes. Trends in Plant Science20, 176-185.

Yang Y N, Zhao GYue W Q, Zhang S L, Gu CWu J. 2013. Molecular cloning and gene expression differences of the anthocyanin biosynthesis-related genes in the red/green skin color mutant of pear (Pyrus communis L.). Tree Genet Genomes, 9, 1351-1360.

Yao G F, Ming M L, Allan A C, Gu CLi L T, Wu XWang R Z, Chang Y Z, Qi K J, Zhang S L, Wu J. 2017. Map-based cloning of the pear gene MYB114 identifies an interaction with other transcription factors to coordinately regulate fruit anthocyanin biosynthesis. Plant Journal92, 437-451.

Young M D, Wakefield M J, Smyth G K, Oshlack A. 2010. Gene ontology analysis for RNA-seq: Accounting for selection bias. Genome Biology, 11, R14.

Zhai RWang Z M, Zhang S W, Meng GSong L Y, Wang Z G, Li P M, Ma F W, Xu L F. 2016. Two MYB transcription factors regulate flavonoid biosynthesis in pear fruit (Pyrus bretschneideri Rehd.). Journal of Experimental Botany, 67, 1275-1284.

Zhang ZTian C P, Zhang YLi C Z Y, Li XYu QWang SWang X Y, Chen X S, Feng S Q. 2020. Transcriptomic and metabolomic analysis provides insights into anthocyanin and procyanidin accumulation in pear. BMC Plant Biology20, 129.

Zhao J, Dixon R A. 2010. The ‘ins’ and ‘outs’ of flavonoid transport. Trends in Plant Science15, 72–80.

Zhao YDong W Q, Zhu Y C, Allan A C, Wang KXu C J. 2020. PpGST1, an anthocyanin-related glutathione S-transferase gene, is essential for fruit coloration in peach. Plant Biotechnology Journal18, 1284-1295.

Zhao Y W, Wang C K., Huang X Y, Hu D G. 2021. Genome-wide analysis of the glutathione S-transferase (GST) genes and functional identification of MdGSTU12 reveals the involvement in the regulation of anthocyanin accumulation in apple. Genes12, 1733.

[1] Chaohui Li, Xiaogang Li, Weibo Sun, Yanan Zhao, Yifan Jia, Chenyang Han, Peijie Gong, Shutian Tao, Yancun Zhao, Fengquan. Identification of Fusarium cugenangense as a causal agent of wilt disease on Pyrus pyrifolia in China[J]. >Journal of Integrative Agriculture, 2026, 25(1): 157-165.
[2] Lulu Wu, Yu Zhang, Mario Prejanò, Tiziana Marino, Nino Russo, Guojie Jin, Yongsheng Tao, Yunkui Li. Matrix effect of hydroxycinnamic acids on chromatic properties and phenolic profile of Cabernet Sauvignon dry red wine[J]. >Journal of Integrative Agriculture, 2026, 25(1): 0-.
[3] Lixia Sheng, Yuqi Zhang, Xiaoke Yang, Yujia Yin, Jianqiang Yu. Functional differences between two homologous MYB transcription factors in regulating fruit color in octoploid strawberry (Fragaria×ananassa)[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3484-3493.
[4] Siya Li, Lu Cao, Ziwen Zhou, Yaohua Cheng, Xianchen Zhang, Yeyun Li. The miR164a targets CsNAC1 to negatively regulate the cold tolerance of tea plants (Camellia sinensis)[J]. >Journal of Integrative Agriculture, 2025, 24(8): 3073-3086.
[5] Ke Fang, Yi Liu, Zhiquan Wang, Xiang Zhang, Xuexiao Zou, Feng Liu, Zhongyi Wang. Genome-wide analysis of the CaYABBY family in pepper and functional identification of CaYABBY5 in the regulation of floral determinacy and fruit morphogenesis[J]. >Journal of Integrative Agriculture, 2025, 24(8): 3024-3039.
[6] Ming Ma, Tingting Hao, Xipeng Ren, Chang Liu, Gela A, Agula Hasi, Gen Che. NAC family gene CmNAC34 positively regulates fruit ripening through interaction with CmNAC-NOR in Cucumis melo[J]. >Journal of Integrative Agriculture, 2025, 24(7): 2601-2618.
[7] Shuran Li, Chunqing Ou, Fei Wang, Yanjie Zhang, Omayma Ismail, Yasser S. G. Abd Elaziz, Sherif Edris, , He Li, Shuling Jiang. Ppbbx24-del mutant positively regulates light-induced anthocyanin accumulation in the ‘Red Zaosu’ pear (Pyrus pyrifolia White Pear Group)[J]. >Journal of Integrative Agriculture, 2025, 24(7): 2619-2639.
[8] Fangman Li, Junshen Lin, John Kojo Ahiakpa, Wenxian Gai, Jinbao Tao, Pingfei Ge, Xingyu Zhang, Yizhuo Mu, Jie Ye, Yuyang Zhang. ZF protein C2H2-71 regulates the soluble solids content in tomato by inhibiting LIN5[J]. >Journal of Integrative Agriculture, 2025, 24(6): 2190-2202.
[9] Xinyi Mao, Xuan Zhao, Zhi Luo, Ao He, Meng Yang, Mengjun Liu, Jin Zhao, Ping Liu. Transcriptome-based analysis of lignin accumulation in the regulation of fruit stone development and endocarp hardening in Chinese jujube[J]. >Journal of Integrative Agriculture, 2025, 24(6): 2217-2228.
[10] Congrui Sun, Runze Wang, Jiaming Li, Xiaolong Li, Bobo Song, David Edwards, Jun Wu. Pan-transcriptome analysis provides insights into resistance and fruit quality breeding of pear (Pyrus pyrifolia)[J]. >Journal of Integrative Agriculture, 2025, 24(5): 1813-1830.
[11] Kai Wang, Longlong Sun, Mengdan Zhang, Shuting Chen, Guiying Xie, Shiheng An, Wenbo Chen, Xincheng Zhao. dsHaE93 shows a high potential for the pest control of Helicoverpa armigera by inhibiting larval-pupal metamorphosis and development of wing and ovary[J]. >Journal of Integrative Agriculture, 2025, 24(5): 1916-1929.
[12] Shumin Wang, Tao Guo, Shaolin Zhang, Hong Yang, Li Li, Qingchuan Yang, Junping Quan, Ruicai Long. Functional identification of Medicago truncatula MtRAV1 in regulating growth and development[J]. >Journal of Integrative Agriculture, 2025, 24(5): 1944-1957.
[13] Hui Du, Yue Chen, Liangrong Xiong, Juan Liu, Keyan Zhang, Ming Pan, Haifan Wen, Huanle He, Run Cai, Junsong Pan, Gang Wang. FS2 encodes an ARID-HMG transcription factor that regulates fruit spine density in cucumber[J]. >Journal of Integrative Agriculture, 2025, 24(3): 1080-1091.
[14] Hongchen Jia, Youwei Du, Yuanyuan Liu, Shuanghong Wang, Yan Wang, Sadia Noorin, Mark L. Gleason, Rong Zhang, Guangyu Sun. Transcriptional activation of MdDEF30 by MdWRKY75 enhances apple resistance to Cytospora canker [J]. >Journal of Integrative Agriculture, 2025, 24(3): 1108-1125.
[15] Yiying Li, Yuanyuan Hu, Bei Wang, Mengyao Lang, Shutang Zhou, Zhongxia Wu. Transcriptome-based analysis reveals chromatin remodeling in post-adult eclosion reconstruction of the insect fat body[J]. >Journal of Integrative Agriculture, 2025, 24(2): 668-679.
No Suggested Reading articles found!