Please wait a minute...
Journal of Integrative Agriculture  2025, Vol. 24 Issue (10): 3953-3965    DOI: 10.1016/j.jia.2025.02.039
Plant Protection Advanced Online Publication | Current Issue | Archive | Adv Search |
CRISPR/xCas9-mediated corazonin knockout reveals the effectiveness of xCas9 editing and the crucial role of corazonin in insect cuticle development

Qiang Yan1*, Guosheng Liu1*, Yingying He2, 3*, Shuang Hou1, Kangli Hao2, 3, Jiale Xing2, 3, Tingting Zhang2, Shutang Zhou1#

1 State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Life Sciences, Henan University, Kaifeng 475004, China

2 Research Institute of Applied Biology, Shanxi University, Taiyuan 030006, China

3 School of Life Sciences, Shanxi University, Taiyuan 030006, China

 Highlights 
xCas9 shows effective gene-editing capabilities at target sites with a non-canonical AG PAM.
xCas9 can cleave target sites with canonical NGG PAMs, but with lower activity than SpCas9.
Corazonin-/- mutants display defective phenotypes in body color, cuticle development and adaptation to low-temperature stress.
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

基于CRISPR/Cas9的基因编辑技术极大地推动了生命科学领域的研究,并展现出广泛的实际应用潜力。然而,Cas9系统往往受到靶位点附近间隔序列邻近基序(PAM需求的限制xCas9是从化脓性链球菌Cas9SpCas9)衍生的一种变体,已知其可以识别更广泛的PAM范围。然而,目前xCas9在非模式昆虫中的应用研究仍较为匮乏。本研究以具有全球性危害的飞蝗Locusta migratoria为研究对象,选择黑化诱导神经肽(corazoninCrz)为靶标,探索了xCas9在不同PAM靶位点基因编辑活性。结果表明,尽管xCas9在经典NGG PAM靶位点的活性低于SpCas9,但其能够效切割SpCas9无法编辑的AG PAM靶位点。应用xCas9成功构建了Crz-/-蝗虫品系。Crz-/-品系表现出白化体色PaleVermilionCinnabarWhite β-carotene-binding protein体色相关基因的表达显著下调。此外,Crz-/-突变体的几丁质合成酶1(Chitin synthase 1表达量显著降低,表皮中几丁质含量明显减少,且角质层更为紧密和坚硬。更进一步地,Crz-/-突变体在低温胁迫下表现出适应能力下降,包括生命周期延长、体重降低以及体型变小。这些研究结果表明,xCas9够有效实现昆虫基因组编辑且Crz在昆虫体色、表皮发育及适应低温胁迫中发挥关键作用。本研究拓展了xCas9在非模式昆虫中的应用,并为深入理解昆虫表皮发育及环境适应的调控机制提供了新见解。



Abstract  

CRISPR/Cas9-based gene editing research has advanced greatly and shows broad potential for practical application in life sciences, but the Cas9 system is often constrained by the requirement of a protospacer adjacent motif (PAM) at the target site.  While xCas9, a variant derived from Streptococcus pyogenes Cas9 (SpCas9), can recognize a broader range of PAMs, its application in non-model insects is lacking.  In this study, we explored xCas9 activity in gene editing by selecting corazonin (Crz) and the target sites with various PAMs in Locusta migratoria, a destructive insect pest worldwide.  We found that xCas9 could cleave the target site with AG PAM while SpCas9 could not, although xCas9 appeared to have lower activity than SpCas9 at the canonical NGG PAMs.  The heritable homozygous Crz–/– locust strain was generated by the application of xCas9.  The Crz–/– strain showed an albino body color, with significantly downregulated expression of several body color-related genes including Pale, Vermilion, Cinnabar, White and β-carotene-binding protein.  In addition, Crz–/– mutants exhibited significantly reduced expression of Chitin synthase 1, along with a markedly lower chitin content as well as compact and rigid cuticles.  Furthermore, Crz–/– mutants displayed impaired performance under low-temperature stress, including prolonged lifespan, reduced body weight and smaller body size.  Our results suggest that xCas9 is effective for insect genome editing, and Crz plays essential roles in insect body color, cuticle development and adaptation to low-temperature stress.  The findings of this study extend the application of xCas9 in non-model insects and provide new insights into our understanding of the regulation of insect cuticle development and environmental adaptation.

Keywords:  CRISPR/Cas9       xCas9       corazonin       migratory locust       cuticle       environmental adaptation  
Received: 10 October 2024   Online: 20 February 2025   Accepted: 20 December 2024
Fund: This work was supported by the Key Research and Development Project of Henan Province, China (221111112200), the National Natural Science Foundation of China (32070502 and 32072419), the Fundamental Research Program of Shanxi Province, China (202303021224005), and the Natural Science Foundation of Henan Province, China (232300420185).

About author:  #Correspondence Shutang Zhou, Mobile: +86-13837179891, E-mail: szhou@henu.edu.cn * These authors contributed equally to this study.

Cite this article: 

Qiang Yan, Guosheng Liu, Yingying He, Shuang Hou, Kangli Hao, Jiale Xing, Tingting Zhang, Shutang Zhou. 2025. CRISPR/xCas9-mediated corazonin knockout reveals the effectiveness of xCas9 editing and the crucial role of corazonin in insect cuticle development. Journal of Integrative Agriculture, 24(10): 3953-3965.

Andreatta G, Broyart C, Borghgraef C, Vadiwala K, Kozin V, Polo A, Bileck A, Beets I, Schoofs L, Gerner C, Raible F. 2020. Corazonin signaling integrates energy homeostasis and lunar phase to regulate aspects of growth and sexual maturation in PlatynereisProceedings of the National Academy of Sciences of the United States of America117, 1097–1106.

Boerjan B, Verleyen P, Huybrechts J, Schoofs L, De Loof A. 2010. In search for a common denominator for the diverse functions of arthropod corazonin: A role in the physiology of stress? General and Comparative Endocrinology166, 222–233.

Brinkman E K, Chen T, Amendola M, van Steensel B. 2014. Easy quantitative assessment of genome editing by sequence trace decomposition. Nucleic Acids Research42, e168.

Bustin S A, Benes V, Garson J A, Hellemans J, Huggett J, Kubista M, Mueller R, Nolan T, Pfaffl M W, Shipley G L, Vandesompele J, Wittwer C T. 2009. The MIQE guidelines: Minimum information for publication of quantitative real-time PCR experiments. Clinical Chemistry55, 611–622.

Cao S, Sun D, Liu Y, Yang Q, Wang G. 2023. Mutagenesis of odorant coreceptor Orco reveals the distinct role of olfaction between sexes in Spodoptera frugiperdaJournal of Integrative Agriculture22, 2162–2172.

Canny M D, Moatti N, Wan L C K, Fradet-Turcotte A, Krasner D, Mateos-Gomez P A, Zimmermann M, Orthwein A, Juang Y C, Zhang W, Noordermeer S M, Seclen E, Wilson M D, Vorobyov A, Munro M, Ernst A, Ng T F, Cho T, Cannon P M, Sidhu S S, et al. 2018. Inhibition of 53BP1 favors homology-dependent DNA repair and increases CRISPR-Cas9 genome-editing efficiency. Nature Biotechnology36, 95–102.

Chang H, Cassau S, Krieger J, Guo X, Knaden M, Kang L, Hansson B S. 2023. A chemical defense deters cannibalism in migratory locusts. Science380, 537–543.

Chen D, Tang J X, Li B, Hou L, Wang X, Kang L. 2018. CRISPR/Cas9-mediated genome editing induces exon skipping by complete or stochastic altering splicing in the migratory locust. BMC Biotechnology18, 60.

Doudna J A, Charpentier E. 2014. Genome editing. The new frontier of genome engineering with CRISPR-Cas9. Science346, 1258096.

Foquet B, Song H. 2021. The role of the neuropeptide [His7]-corazonin on phase-related characteristics in the Central American locust. Journal of Insect Physiology131, 104244.

Futahashi R, Osanai-Futahashi M. 2021. Pigments in insects. In: Hashimoto H, Goda M, Futahashi R, Kelsh R, Akiyama T, eds., PigmentsPigment Cells and Pigment Patterns. Springer, Singapore. pp. 3–43.

Geurts M H, de Poel E, Amatngalim G D, Oka R, Meijers F M, Kruisselbrink E, van Mourik P, Berkers G, de Winter-de Groot K M, Michel S, Muilwijk D, Aalbers B L, Mullenders J, Boj S F, Suen S W F, Brunsveld J E, Janssens H M, Mall M A, Graeber S Y, van Boxtel R, et al. 2020. CRISPR-based adenine editors correct nonsense mutations in a cystic fibrosis organoid biobank. Cell Stem Cell26, 503–510.

Gospocic J, Shields E J, Glastad K M, Lin Y, Penick C A, Yan H, Mikheyev A S, Linksvayer T A, Garcia B A, Berger S L, Liebig J, Reinberg D, Bonasio R. 2017. The neuropeptide corazonin controls social behavior and caste identity in ants. Cell170, 748–759.

Guo X, Yu Q, Chen D, Wei J, Yang P, Yu J, Wang X, Kang L. 2020. 4-Vinylanisole is an aggregation pheromone in locusts. Nature584, 584–588.

Heu C C, McCullough F M, Luan J, Rasgon J L. 2020. CRISPR-Cas9-Based genome editing in the silverleaf whitefly (Bemisia tabaci). The CRISPR Journal3, 89–96.

Hou L, Guo S, Wang Y, Nie X, Yang P, Ding D, Li B, Kang L, Wang X. 2021. Neuropeptide ACP facilitates lipid oxidation and utilization during long-term flight in locusts. eLife10, e65279.

Hou L, Jiang F, Yang P, Wang X, Kang L. 2015. Molecular characterization and expression profiles of neuropeptide precursors in the migratory locust. Insect Biochemistry and Molecular Biology63, 63–71.

Hu J H, Miller S M, Geurts M H, Tang W, Chen L, Sun N, Zeina C M, Gao X, Rees H A, Lin Z, Liu D R. 2018. Evolved Cas9 variants with broad PAM compatibility and high DNA specificity. Nature556, 57–63.

Hua K, Tao X, Han P, Wang R, Zhu J K. 2019. Genome engineering in rice using Cas9 variants that recognize NG PAM sequences. Molecular Plant12, 1003–1014.

Imura E, Shimada-Niwa Y, Nishimura T, Huckesfeld S, Schlegel P, Ohhara Y, Kondo S, Tanimoto H, Cardona A, Pankratz M J, Niwa R. 2020. The Corazonin-PTTH neuronal axis controls systemic body growth by regulating basal ecdysteroid biosynthesis in Drosophila melanogasterCurrent Biology30, 2156–2165.

Jiang X, Dimitriou E, Grabe V, Sun R, Chang H, Zhang Y, Gershenzon J, Rybak J, Hansson B S, Sachse S. 2024. Ring-shaped odor coding in the antennal lobe of migratory locusts. Cell187, 3973–3991.

Kapan N, Lushchak O V, Luo J, Nassel D R. 2012. Identified peptidergic neurons in the Drosophila brain regulate insulin-producing cells, stress responses and metabolism by coexpressed short neuropeptide F and corazonin. Cellular and Molecular Life Sciences69, 4051–4066.

Kim Y J, Spalovska-Valachova I, Cho K H, Zitnanova I, Park Y, Adams M E, Zitnan D. 2004. Corazonin receptor signaling in ecdysis initiation. Proceedings of the National Academy of Sciences of the United States of America101, 6704–6709.

Kistler K E, Vosshall L B, Matthews B J. 2015. Genome engineering with CRISPR-Cas9 in the mosquito Aedes aegyptiCell Reports11, 51–60.

Kubrak O I, Lushchak O V, Zandawala M, Nassel D R. 2016. Systemic corazonin signalling modulates stress responses and metabolism in DrosophilaOpen Biology6, 160152.

Li X, Fan D, Zhang W, Liu G, Zhang L, Zhao L, Fang X, Chen L, Dong Y, Chen Y, Ding Y, Zhao R, Feng M, Zhu Y, Feng Y, Jiang X, Zhu D, Xiang H, Feng X, Li S, et al. 2015. Outbred genome sequencing and CRISPR/Cas9 gene editing in butterflies. Nature Communications6, 8212.

Li Y, Zhang J, Chen D, Yang P, Jiang F, Wang X, Kang L. 2016. CRISPR/Cas9 in locusts: Successful establishment of an olfactory deficiency line by targeting the mutagenesis of an odorant receptor co-receptor (Orco). Insect Biochemistry and Molecular Biology79, 27–35.

Liu K, Petree C, Requena T, Varshney P, Varshney G K. 2019. Expanding the CRISPR toolbox in zebrafish for studying development and disease. Expanding the CRISPR Toolbox in Zebrafish for Studying Development and Disease7, 13.

Liu X, Li G, Zhou X, Qiao Y, Wang R, Tang S, Liu J, Wang L, Huang X. 2019. Improving editing efficiency for the sequences with NGH PAM using xCas9-Derived base editors. Molecular Therapy (Nucleic Acids), 17, 626–635.

Lu Y, Tian Y, Shen R, Yao Q, Wang M, Chen M, Dong J, Zhang T, Li F, Lei M, Zhu J K. 2020. Targeted, efficient sequence insertion and replacement in rice. Nature Biotechnology38, 1402–1407.

Lü J, Chen J, Hu Y, Chen L, Li S, Zhang Y, Zhang W. 2024. CRISPR/Cas9-mediated NlInR2 mutants: Analyses of residual mRNA and truncated proteins. Journal of Integrative Agriculture23, 2006–2017.

Ma Z, Guo W, Guo X, Wang X, Kang L. 2011. Modulation of behavioral phase changes of the migratory locust by the catecholamine metabolic pathway. Proceedings of the National Academy of Sciences of the United States of America108, 3882–3887.

Mabashi-Asazuma H, Kuo C W, Khoo K H, Jarvis D L. 2015. Modifying an insect cell N-Glycan processing pathway using CRISPR-Cas technology. ACS Chemical Biology10, 2199–2208.

McClure K D, Heberlein U. 2013. A small group of neurosecretory cells expressing the transcriptional regulator apontic and the neuropeptide corazonin mediate ethanol sedation in DrosophilaJournal of Neuroscience33, 4044–4054.

Ni X Y, Zhou Z D, Huang J, Qiao X. 2020. Targeted gene disruption by CRISPR/xCas9 system in Drosophila melanogasterArchives of Insect Biochemistry and Physiology104, e21662.

Ouyang C, Ye F, Wu Q, Wang S, Crickmore N, Zhou X, Guo Z, Zhang Y. 2023. CRISPR/Cas9-based functional characterization of PxABCB1 reveals its roles in the resistance of Plutella xylostella (L.) to Cry1Ac, abamectin and emamectin benzoate. Journal of Integrative Agriculture22, 3090–3102.

Pan Y, Fang G, Wang Z, Cao Y, Liu Y, Li G, Liu X, Xiao Q, Zhan S. 2021. Chromosome-level genome reference and genome editing of the tea geometrid. Molecular Ecology Resources21, 2034–2049.

Port F, Strein C, Stricker M, Rauscher B, Heigwer F, Zhou J, Beyersdorffer C, Frei J, Hess A, Kern K, Lange L, Langner N, Malamud R, Pavlovic B, Radecke K, Schmitt L, Voos L, Valentini E, Boutros M. 2020. A large-scale resource for tissue-specific CRISPR mutagenesis in DrosophilaeLife9, e53865.

Ragionieri L, Verdonck R, Verlinden H, Marchal E, Vanden Broeck J, Predel R. 2022. Schistocerca neuropeptides - An update. Journal of Insect Physiology136, 104326.

Ren X, Sun J, Housden B E, Hu Y, Roesel C, Lin S, Liu L P, Yang Z, Mao D, Sun L, Wu Q, Ji J Y, Xi J, Mohr S E, Xu J, Perrimon N, Ni J Q. 2013. Optimized gene editing technology for Drosophila melanogaster using germ line-specific Cas9. Proceedings of the National Academy of Sciences of the United States of America110, 19012–19017.

Sha K, Choi S H, Im J, Lee G G, Loeffler F, Park J H. 2014. Regulation of ethanol-related behavior and ethanol metabolism by the Corazonin neurons and Corazonin receptor in Drosophila melanogasterPLoS ONE9, e87062.

Shi Z, Jiang H, Liu G, Shi S, Zhang X, Chen Y. 2022. Expanding the CRISPR/Cas genome-editing scope in Xenopus tropicalisCell and Bioscience12, 104.

Song J, Li W, Zhao H, Gao L, Fan Y, Zhou S. 2018. The microRNAs let-7 and miR-278 regulate insect metamorphosis and oogenesis by targeting the juvenile hormone early-response gene Krüppel-homolog 1Development145, dev170670.

Sugahara R, Saeki S, Jouraku A, Shiotsuki T, Tanaka S. 2015. Knockdown of the corazonin gene reveals its critical role in the control of gregarious characteristics in the desert locust. Journal of Insect Physiology79, 80–87.

Sugahara R, Tanaka S, Jouraku A, Shiotsuki T. 2016. Functional characterization of the corazonin-encoding gene in phase polyphenism of the migratory locust, Locusta migratoria (Orthoptera: Acrididae). Applied Entomology and Zoology51, 225–232.

Sugahara R, Tanaka S, Jouraku A, Shiotsuki T. 2017. Two types of albino mutants in desert and migratory locusts are caused by gene defects in the same signaling pathway. Gene608, 41–48.

Sugahara R, Tanaka S, Jouraku A, Shiotsuki T. 2018. Identification of a transcription factor that functions downstream of corazonin in the control of desert locust gregarious body coloration. Insect Biochemistry and Molecular Biology97, 10–18.

Sun L, Zhang T, Lan X, Zhang N, Wang R, Ma S, Zhao P, Xia Q. 2024. High-throughput screening of PAM-Flexible Cas9 variants for expanded genome editing in the silkworm (Bombyx mori). Insects15, 241.

Tanaka Y, Hua Y, Roller L, Tanaka S. 2002. Corazonin reduces the spinning rate in the silkworm, Bombyx moriJournal of Insect Physiology48, 707–714.

Tawfik A I, Tanaka S, De Loof A, Schoofs L, Baggerman G, Waelkens E, Derua R, Milner Y, Yerushalmi Y, Pener M P. 1999. Identification of the gregarization-associated dark-pigmentotropin in locusts through an albino mutant. Proceedings of the National Academy of Sciences of the United States of America96, 7083–7087.

Thakkar N, Hejzlarova A, Brabec V, Dolezel D. 2023. Germline editing of Drosophila using CRISPR-Cas9-based cytosine and adenine base editors. The CRISPR Journal6, 557–569.

Tsuchiya R, Kaneshima A, Kobayashi M, Yamazaki M, Takasu Y, Sezutsu H, Tanaka Y, Mizoguchi A, Shiomi K. 2021. Maternal GABAergic and GnRH/corazonin pathway modulates egg diapause phenotype of the silkworm Bombyx moriProceedings of the National Academy of Sciences of the United States of America118, e2020028118.

Veenstra J A. 1989. Isolation and structure of corazonin, a cardioactive peptide from the American cockroach. FEBS Letters250, 231–234.

Xiao A, Cheng Z, Kong L, Zhu Z, Lin S, Gao G, Zhang B. 2014. CasOT: A genome-wide Cas9/gRNA off-target searching tool. Bioinformatics30, 1180–1182.

Yan Q, He Y, Yue Y, Jie L, Wen T, Zhao Y, Zhang M, Zhang T. 2022. Construction of homozygous mutants of migratory locust using CRISPR/Cas9 technology. Journal of Visualized Experiments181, e63629.

Yang H, Ren S, Yu S, Pan H, Li T, Ge S, Zhang J, Xia N. 2020. Methods favoring homology-directed repair choice in response to CRISPR/Cas9 induced-double strand breaks. International Journal of Molecular Sciences21, 6461.

Yang M, Wang Y, Liu Q, Liu Z, Jiang F, Wang H, Guo X, Zhang J, Kang L. 2019. A beta-carotene-binding protein carrying a red pigment regulates body-color transition between green and black in locusts. eLife8, e41362.

Zandawala M, Nguyen T, Balanya Segura M, Johard H A D, Amcoff M, Wegener C, Paluzzi J P, Nassel D R. 2021. A neuroendocrine pathway modulating osmotic stress in DrosophilaPLoS Genetics17, e1009425.

Zer-Krispil S, Zak H, Shao L, Ben-Shaanan S, Tordjman L, Bentzur A, Shmueli A, Shohat-Ophir G. 2018. Ejaculation induced by the activation of Crz neurons is rewarding to Drosophila males. Current Biology28, 1445–1452.

Zhang S, Li J, Zhang D, Zhang Z, Meng S, Li Z, Liu X. 2023. miR-252 targeting temperature receptor CcTRPM to mediate the transition from summer-form to winter-form of Cacopsylla chinensiseLife12, RP88744.

Zhang T, Wen T, Yue Y, Yan Q, Du E, Fan S, Roth S, Li S, Zhang J, Zhang X, Zhang M. 2021. Egg tanning improves the efficiency of CRISPR/Cas9-mediated mutant locust production by enhancing defense ability after microinjection. Journal of Integrative Agriculture20, 2716–2726.

[1] Shanyu Li, Guifang Lin, Haoqi Wen, Haiyan Lu, Anyuan Yin, Chanqin Zheng, Feifei Li, Qingxuan Qiao, Lu Jiao, Ling Lin, Yi Yan, Xiujuan Xiang, Huang Liao, Huiting Feng, Yussuf Mohamed Salum, Minsheng You, Wei Chen, Weiyi He. Knock-in of exogenous sequences based on CRISPR/Cas9 targeting autosomal genes and sex chromosomes in the diamondback moth, Plutella xylostella[J]. >Journal of Integrative Agriculture, 2024, 23(9): 3089-3103.
[2] Jun Lü, Jingxiang Chen, Yutao Hu , Lin Chen, Shihui Li, Yibing Zhang, Wenqing Zhang.

CRISPR/Cas9-mediated NlInR2 mutants: Analyses of residual mRNA and truncated proteins [J]. >Journal of Integrative Agriculture, 2024, 23(6): 2006-2017.

[3] Jiali Ying, Yan Wang, Liang Xu, Tiaojiao Qin, Kai Xia, Peng Zhang, Yinbo Ma, Keyun Zhang, Lun Wang, Junhui Dong, Lianxue Fan, Yuelin Zhu, Liwang Liu.

Establishing VIGS and CRISPR/Cas9 techniques to verify RsPDS function in radish [J]. >Journal of Integrative Agriculture, 2024, 23(5): 1557-1567.

[4] Wei Huang, Ruyu Jiao, Hongtao Cheng, Shengli Cai, Jia Liu, Qiong Hu, Lili Liu, Bao Li, Tonghua Wang, Mei Li, Dawei Zhang, Mingli Yan.

Targeted mutations of BnPAP2 lead to a yellow seed coat in Brassica napus L. [J]. >Journal of Integrative Agriculture, 2024, 23(2): 724-730.

[5] Yang Yang, Hongfei Li, Changhao Liang, Donghai He, Hang Zhao, Hongbo Jiang, Jinjun Wang. Neuropeptide signaling systems are involved in regulating thermal tolerance in the oriental fruit fly[J]. >Journal of Integrative Agriculture, 2024, 23(12): 4147-4160.
[6] CAO Song, SUN Dong-dong, LIU Yang, YANG Qing, WANG Gui-rong.

Mutagenesis of odorant coreceptor Orco reveals the distinct role of olfaction between sexes in Spodoptera frugiperda [J]. >Journal of Integrative Agriculture, 2023, 22(7): 2162-2172.

[7] OUYANG Chun-zheng, YE Fan, WU Qing-jun, WANG Shao-li, Neil CRICKMORE, ZHOU Xu-guo, GUO Zhao-jiang, ZHANG You-jun. CRISPR/Cas9-based functional characterization of PxABCB1 reveals its roles in the resistance of Plutella xylostella (L.) to Cry1Ac, abamectin and emamectin benzoate[J]. >Journal of Integrative Agriculture, 2023, 22(10): 3090-3102.
[8] JIANG Mao-cheng, HU Zi-xuan, WANG Ke-xin, YANG Tian-yu, LIN Miao, ZHAN Kang, ZHAO Guo-qi. CRISPR/Cas9-mediated knockout of SLC15A4 gene involved in the immune response in bovine rumen epithelial cells[J]. >Journal of Integrative Agriculture, 2023, 22(10): 3148-3158.
[9] XIANG Guang-ming, ZHANG Xiu-ling, XU Chang-jiang, FAN Zi-yao, XU Kui, WANG Nan, WANG Yue, CHE Jing-jing, XU Song-song, MU Yu-lian, LI Kui, LIU Zhi-guo. The collagen type I alpha 1 chain gene is an alternative safe harbor locus in the porcine genome[J]. >Journal of Integrative Agriculture, 2023, 22(1): 202-213.
[10] JIN Ming-hui, TAO Jia-hui, LI Qi, CHENG Ying, SUN Xiao-xu, WU Kong-ming, XIAO Yu-tao . Genome editing of the SfABCC2 gene confers resistance to Cry1F toxin from Bacillus thuringiensis in Spodoptera frugiperda[J]. >Journal of Integrative Agriculture, 2021, 20(3): 815-820.
[11] ZHANG Ting-ting, WEN Ting-mei, YUE Yang, YAN Qiang, DU Er-xia, FAN San-hong, Siegfried ROTH, LI Sheng, ZHANG Jian-zhen, ZHANG Xue-yao, ZHANG Min. Egg tanning improves the efficiency of CRISPR/Cas9-mediated mutant locust production by enhancing defense ability after microinjection[J]. >Journal of Integrative Agriculture, 2021, 20(10): 2716-2726.
[12] ZHANG Ru, ZHANG Zhong-jie, YU Ye, HUANG Yong-ping, QIAN Ai-rong, TAN An-jiang. Proboscipedia and Sex combs reduced are essential for embryonic labial palpus specification in Bombyx mori[J]. >Journal of Integrative Agriculture, 2020, 19(6): 1482-1491.
[13] DING Yi, ZHOU Shi-wei, DING Qiang, CAI Bei, ZHAO Xiao-e, ZHONG Shu, JIN Miao-han, WANG Xiao-long, MA Bao-hua, CHEN Yu-lin. The CRISPR/Cas9 induces large genomic fragment deletions of MSTN and phenotypic changes in sheep[J]. >Journal of Integrative Agriculture, 2020, 19(4): 1065-1073.
[14] YANG Chang-hong, ZHANG Yang, HUANG Chao-feng. Reduction in cadmium accumulation in japonica rice grains by CRISPR/Cas9-mediated editing of OsNRAMP5[J]. >Journal of Integrative Agriculture, 2019, 18(3): 688-697.
[15] ZHOU Zheng-wei, CAO Guo-hua, LI Zhe, HAN Xue-jie, LI Chen, LU Zhen-yu, ZHAO Yu-hang, LI Xue-ling. Truncated gRNA reduces CRISPR/Cas9-mediated off-target rate for MSTN gene knockout in bovines[J]. >Journal of Integrative Agriculture, 2019, 18(12): 2835-2843.
No Suggested Reading articles found!