Please wait a minute...
Journal of Integrative Agriculture  2021, Vol. 20 Issue (3): 815-820    DOI: 10.1016/S2095-3119(19)62772-3
Section 4: Integrated pest management Advanced Online Publication | Current Issue | Archive | Adv Search |
Genome editing of the SfABCC2 gene confers resistance to Cry1F toxin from Bacillus thuringiensis in Spodoptera frugiperda
JIN Ming-hui1, 2, TAO Jia-hui1, LI Qi1, CHENG Ying1, SUN Xiao-xu2, WU Kong-ming2, XIAO Yu-tao1
1 Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, P.R.China
2 State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, P.R.China
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  ABCC2基因是多种鳞翅目昆虫的Bt受体,有研究表明对Cry1F具有抗性的草地贪夜蛾田间种群与ABCC2突变遗传连锁,为探明SfABCC2突变是否介导Cry1F抗性,我们采用CRISPR/Cas9基因编辑技术对草地贪夜蛾ABCC2基因进行敲除。对筛选得到的纯合敲除品系进行生物测定,结果显示Cry1F毒素对敲除品系的LC50为39.2 (29.2–54.2) μg cm–2,是野生品系的118倍。本研究通过反向遗传学手段证实SfABCC2是Cry1F受体。



Abstract  
ATP-binding cassette transporter C2 (ABCC2) is known to be a receptor for Bacillus thuringiensis (Bt) toxins in several lepidopteran insects.  Mutations in the ABCC2 gene have been genetically linked to field-evolved resistance to the Cry1F toxin from Bt in Spodoptera frugiperda.  Here we generated a SfABCC2 knockout strain of S. frugiperda using the CRISPR/Cas9 system to provide further functional evidence of the role of this gene in susceptibility and resistance to Cry1F.  Results from bioassays showed that the SfABCC2 knockout S. frugiperda strain displayed 118-fold resistance to Cry1F compared with the parental DH19 strain, but no resistance to Vip3A toxin from Bt.  These results provide the first reverse genetic evidence for SfABCC2 as a functional receptor for Cry1F.
Keywords:  Spodoptera frugiperda        ABCC2        CRISPR/Cas9        Bt receptor        Cry1F  
Received: 26 June 2019   Accepted:
Fund: This study was financially supported by the Key Project for Breeding Genetic Modified Organisms of China (2016ZX08012004003).
Corresponding Authors:  Correspondence XIAO Yu-tao, E-mail: xiaoyutao@caas.cn    
About author:  JIN Ming-hui, E-mail: jinminghui722@163.com;

Cite this article: 

JIN Ming-hui, TAO Jia-hui, LI Qi, CHENG Ying, SUN Xiao-xu, WU Kong-ming, XIAO Yu-tao . 2021. Genome editing of the SfABCC2 gene confers resistance to Cry1F toxin from Bacillus thuringiensis in Spodoptera frugiperda. Journal of Integrative Agriculture, 20(3): 815-820.

Adang M J, Crickmore N, Jurat-Fuentes J L. 2014. Diversity of Bacillus thuringiensis crystal toxins and mechanism of action. Advances in Insect Physiology, 47, 39–87.
Atsumi S, Miyamoto K, Yamamoto K, Narukawa J, Kawai S, Sezutsu H, Kobayashi I, Uchino K, Tamura T, Mita K, Kadono-Okuda K, Wada S, Kanda K, Goldsmith M R, Noda H. 2012. Single amino acid mutation in an ATP-binding cassette transporter gene causes resistance to Bt toxin Cry1Ab in the silkworm, Bombyx mori. Proceedings of the National Academy of Sciences of the United States of America, 109, E1591–E1598.
Banerjee R, Hasler J, Meagher R, Nagoshi R, Hietala L, Huang F, Narva K, Jurat-Fuentes J L. 2017. Mechanism and DNA-based detection of field-evolved resistance to transgenic Bt corn in fall armyworm (Spodoptera frugiperda). Scientific Reports, 7, s41598.
Baxter S W, Badenes-Perez F R, Morrison A, Vogel H, Crickmore N, Kain W, Wang P, Heckel D G, Jiggins C D. 2011. Parallel evolution of Bacillus thuringiensis toxin resistance in Lepidoptera. Genetics, 189, 675–679.
De Bortoli C P, Jurat-Fuentes J L. 2019. Mechanisms of resistance to commercially relevant entomopathogenic bacteria. Current Opinion in Insect Science, 33, 56–62.
Conti E, Izaurralde E. 2005. Nonsense-mediated mRNA decay: Molecular insights and mechanistic variations across species. Current Opinion in Cell Biology, 17, 316–325.
FAO (Food and Agriculture Organization). 2019. Map of areas affected by fall armyworm in Africa and Asia. [2019-01-15]. http://www.fao.org/emergencies/resources/maps/detail/en/c/902959/
Gahan L J, Pauchet Y, Vogel H, Heckel D G. 2010. An ABC transporter mutation is correlated with insect resistance to Bacillus thuringiensis Cry1Ac toxin. PLoS Genetics, 6, e1001248.
Goergen G, Kumar P L, Sankung S B, Togola A, Tamo M. 2016. First report of outbreaks of the fall armyworm Spodoptera frugiperda (J E Smith) (Lepidoptera, Noctuidae), a new alien invasive pest in West and Central Africa. PLoS ONE, 11, 0165632.
Gouin A, Bretaudeau A, Nam K, Gimenez S, Aury J M, Duvic B, Hilliou F, Durand N, Montagne N, Darboux I, Kuwar S, Chertemps T, Siaussat D, Bretschneider A, Moné Y, Ahn S J, Hänniger S, Grenet A G, Neunemann D, Maumus F, et?al. 2017. Two genomes of highly polyphagous lepidopteran pests (Spodoptera frugiperda, Noctuidae) with different host-plant ranges. Scientific Reports, 7, 11816.
Huang Y P, Chen Y Z, Zeng B S, Wang Y J, James A A, Gurr G M, Yang G, Lin X J, Huang Y P, You M S. 2016. CRISPR/Cas9 mediated knockout of the abdominal - A homeotic gene in the global pest, diamondback moth (Plutella xylostella). Insect Biochemistry and Molecular Biology, 75, 98–106.
Jiang K, Hou X Y, Tan T T, Cao Z L, Mei S Q, Yan B, Chang J, Han L, Zhao D, Cai J. 2018. Scavenger receptor-C acts as a receptor for Bacillus thuringiensis vegetative insecticidal protein Vip3Aa and mediates the internalization of Vip3Aa via endocytosis. PLoS Pathogens, 14, e1007347.
Jin M H, Xiao Y T, Cheng Y, Hu J, Xue C B, Wu K M. 2018. Chromosomal deletions mediated by CRISPR/Cas9 in Helicoverpa armigera. Insect Science, 26, 1029–1036.
Li G P, Ji T J, Sun X X, Jiang Y Y, Wu K M, Feng H Q. 2019. Susceptibility evaluation of invaded Spodoptera frugiperda population in Yunnan Province to five Bt toxins. Plant Protection, 45, 15–20. (in Chinese)
Li Y, Zhang J, Chen D F, Yang P C, Jiang F, Wang X H, Kang L. 2016. CRISPR/Cas9 in locusts: Successful establishment of an olfactory deficiency line by targeting the mutagenesis of an odorant receptor co-receptor (Orco). Insect Biochemistry and Molecular Biology, 79, 27–35.
Nagoshi R N, Fleischer S, Meagher R L, Hay-Roe M, Khan A, Murua M G, Silvie P, Vergara C, Westbrook J. 2017a. Fall armyworm migration across the lesser antilles and the potential for genetic exchanges between North and South American populations. PLoS ONE, 12, e0171743.
Nagoshi R N, Koffi D, Agboka K, Tounou K A, Banerjee R, Jurat-Fuentes J L, Meagher R L. 2017b. Comparative molecular analyses of invasive fall armyworm in Togo reveal strong similarities to populations from the eastern United States and the Greater Antilles. PLoS ONE, 12, e0181982.
Park Y, Gonzalez-Martinez R M, Navarro-Cerrillo G, Chakroun M, Kim Y, Ziarsolo P, Blanca J, Canizares J, Ferre J, Herrero S. 2014. ABCC transporters mediate insect resistance to multiple Bt toxins revealed by bulk segregant analysis. BMC Biology, 12, 46.
Sharanabasappa K S, Asokan C M, Swamy R, Maruthi M S, Pavithra H B, Hegde, K, Navi S, Prabhu S T, Goergen G. 2018. Fist report of the fall armyworm, Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae), an alien invasive pest on maize in India. Pest Management in Horticultural Ecosystems, 24, 23–29.
Siebert M W, Babock J M, Nolting S, Santos A C, Adamczyk J J, Neese P A, King J E, Jenkins J N, McCarty J, Lorenz G M, Fromme D D, Lassiter R B. 2008. Efficacy of Cry1F insecticidal protein in maize and cotton for control of fall armyworm (Lepidoptera: Noctuidae). Florida Entomologist, 91, 555–565.
Storer N P, Babcock J M, Schlenz M, Meade T, Thompson G D, Bing J W, Huckaba R M. 2010. Discovery and characterization of field resistance to Bt maize: Spodoptera frugiperda (Lepidoptera: Noctuidae) in Puerto Rico. Journal of Economic Entomology, 103, 1031–1038.
Sun X X, Hu C X, Jia H R, Wu Q L, Shen X J, Zhao S Y, Jiang Y Y, Wu K M. 2021. Case study on the first immigration of fall armyworm, Spodoptera frugiperda invading into China. Journal of Integrative Agriculture, 20, 664–672.
Vachon V, Laprade R, Schwartz J L. 2012. Current models of the mode of action of Bacillus thuringiensis insecticidal crystal proteins: A critical review. Journal of Invertebrate Pathology, 111, 1–12.
Wang J, Wang H, Liu S, Liu L, Tay W T, Walsh T K, Yang Y, Wu Y D. 2017. CRISPR/Cas9 mediated genome editing of Helicoverpa armigera with mutations of an ABC transporter gene HaABCA2 confers resistance to Bacillus thuringiensis Cry2A toxins. Insect Biochemistry and Molecular Biology, 87, 147–153.
Wang J, Zhang H, Wang H D, Zhao S, Zuo Y, Yang Y H, Wu Y D. 2016. Functional validation of cadherin as a receptor of Bt toxin Cry1Ac in Helicoverpa armigera utilizing the CRISPR/Cas9 system. Insect Biochemistry and Molecular Biology, 76, 11–17.
Weischenfeldt J, Lykke-Andersen J, Porse B. 2005. Messenger RNA surveillance: Neutralizing natural nonsense. Current Biology, 15, R559–R562.
Wu K, Shirk P D, Taylor C E, Furlong R B, Shrik B D, Pinheiro D H, Siegfried B D. 2018. CRISPR/Cas9 mediated knockout of the abdominal-A homeotic gene in fall armyworm moth (Spodoptera frugiperda). PLoS ONE, 13, e0208647.
Xiao Y T, Dai Q, Hu R Q, Sabino P, Yang Y B, Liang G M, Mario S, Alejandra B, Liu K Y, Wu K M. 2017. A single point mutation resulting in cadherin mislocalization underpins resistance against Bacillus thuringiensis toxin in cotton bollworm. The Journal of Biological Chemistry, 292, 2933–2943.
Xiao Y T, Zhang T, Liu C X, Heckel D G, Li X C, Tabashnik B E, Wu K M. 2014. Mis-splicing of the ABCC2 gene linked with Bt toxin resistance in Helicoverpa armigera. Scientific Reports, 4, 6184.
Xie S, Shen B, Zhang C, Huang X, Zhang Y. 2014. sgRNAcas9: A software package for designing CRISPR sgRNA and evaluating potential off-target cleavage sites. PLoS ONE, 9, e100448.
Zhu G H, Xu J, Cu Z, Dong X T, Ye Z F, Niu D J, Huang Y P, Dong S L. 2016. Functional characterization of SlitPBP3 in Spodoptera litura by CRISPR/Cas9 mediated genome editing. Insect Biochemistry and Molecular Biology, 75, 1–9.
Zuo Y Y, Huang J L, Wang J, Feng Y, Han T T, Wu Y D, Yang Y H. 2017. Knockout of a P-glycoprotein gene increases susceptibility to abamectin and emamectin benzoate in Spodoptera exigua. Insect Molecular Biology, 27, 36–45.
[1] LÜ Chun-yang, GE Shi-shuai, HE Wei, ZHANG Hao-wen, YANG Xian-ming, CHU Bo, WU Kong-ming. Accurate recognition of the reproductive development status and prediction of oviposition fecundity in Spodoptera frugiperda (Lepidoptera: Noctuidae) based on computer vision[J]. >Journal of Integrative Agriculture, 2023, 22(7): 2173-2187.
[2] SHU Ben-shui, YU Hai-kuo, DAI Jing-hua, XIE Zi-ge, QIAN Wan-qiang, LIN Jin-tian. Stability evaluation of reference genes for real-time quantitative PCR normalization in Spodoptera frugiperda (Lepidoptera: Noctuidae)[J]. >Journal of Integrative Agriculture, 2021, 20(9): 2471-2482.
[3] ZHOU Yan, WU Qiu-lin, ZHANG Hao-wen, WU Kong-ming. Spread of invasive migratory pest Spodoptera frugiperda and management practices throughout China[J]. >Journal of Integrative Agriculture, 2021, 20(3): 637-645.
[4] Jing WAN, HUANG Cong, LI Chang-you, ZHOU Hong-xu, REN Yong-lin, LI Zai-yuan, XING Long-sheng, ZHANG Bin, QIAO Xi, LIU Bo, LIU Cong-hui, XI Yu, LIU Wan-xue, WANG Wen-kai, QIAN Wan-qiang, Simon MCKIRDY, WAN Fang-hao . Biology, invasion and management of the agricultural invader: Fall armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae)[J]. >Journal of Integrative Agriculture, 2021, 20(3): 646-663.
[5] ZHOU Xian-yong, WU Qiu-lin, JIA Hui-ru, WU Kong-ming. Searchlight trapping reveals seasonal cross-ocean migration of fall armyworm over the South China Sea[J]. >Journal of Integrative Agriculture, 2021, 20(3): 673-684.
[6] JIA Hui-ru, GUO Jiang-long, WU Qiu-lin, HU Chao-xing, LI Xiao-kang, ZHOU Xian-yong, WU Kong-ming . Migration of invasive Spodoptera frugiperda (Lepidoptera: Noctuidae) across the Bohai Sea in northern China[J]. >Journal of Integrative Agriculture, 2021, 20(3): 685-693.
[7] WU Qiu-lin, SHEN Xiu-jing, HE Li-mei, JIANG Yu-ying, LIU Jie, HU Gao, WU Kong-ming. Windborne migration routes of newly-emerged fall armyworm from Qinling Mountains–Huaihe River region, China[J]. >Journal of Integrative Agriculture, 2021, 20(3): 694-706.
[8] WU Li-hong, ZHOU Cao, LONG Gui-yun, YANG Xi-bin, WEI Zhi-yan, LIAO Ying-jiang, YANG Hong, HU Chao-xing . Fitness of fall armyworm, Spodoptera frugiperda to three solanaceous vegetables[J]. >Journal of Integrative Agriculture, 2021, 20(3): 755-763.
[9] ZHANG Dan-dan, ZHAO Sheng-yuan, WU Qiu-lin, LI Yu-yan, WU Kong-ming. Cold hardiness of the invasive fall armyworm, Spodoptera frugiperda in China[J]. >Journal of Integrative Agriculture, 2021, 20(3): 764-771.
[10] ZHANG Dan-dan, XIAO Yu-tao, XU Peng-jun, YANG Xian-ming, WU Qiu-lin, WU Kong-ming. Insecticide resistance monitoring for the invasive populations of fall armyworm, Spodoptera frugiperda in China[J]. >Journal of Integrative Agriculture, 2021, 20(3): 783-791.
[11] LIU Ying-jie, ZHANG Dan-dan, YANG Li-yu, DONG Yong-hao, LIANG Ge-mei, Philip DONKERSLEY, REN Guang-wei, XU Peng-jun, WU Kong-ming . Analysis of phototactic responses in Spodoptera frugiperda using Helicoverpa armigera as control[J]. >Journal of Integrative Agriculture, 2021, 20(3): 821-828.
[12] LI Hui, JIANG Shan-shan, ZHANG Hao-wen, GENG Ting, Kris A. G. WYCKHUYS, WU Kong-ming . Two-way predation between immature stages of the hoverfly Eupeodes corollae and the invasive fall armyworm (Spodoptera frugiperda J. E. Smith)[J]. >Journal of Integrative Agriculture, 2021, 20(3): 829-839.
[13] CHEN Zu-wen, YANG Yan-chao, ZHANG Jian-feng, JIN Ming-hui, XIAO Yu-tao, XIA Zhi-chao, LIU Yuan-yuan, YU Sai-zhen, YANG Yong-bo, WANG Yuan, LI Yi, LIU Kai-yu. Susceptibility and tissue specificity of Spodoptera frugiperda to Junonia coenia densovirus[J]. >Journal of Integrative Agriculture, 2021, 20(3): 840-849.
[14] SUN Xiao-xu, HU Chao-xing, JIA Hui-ru, WU Qiu-lin, SHEN Xiu-jing, ZHAO Sheng-yuan, JIANG Yu-ying, WU Kong-ming. Case study on the first immigration of fall armyworm, Spodoptera frugiperda invading into China[J]. >Journal of Integrative Agriculture, 2021, 20(3): 664-672.
[15] ZHANG Ting-ting, WEN Ting-mei, YUE Yang, YAN Qiang, DU Er-xia, FAN San-hong, Siegfried ROTH, LI Sheng, ZHANG Jian-zhen, ZHANG Xue-yao, ZHANG Min. Egg tanning improves the efficiency of CRISPR/Cas9-mediated mutant locust production by enhancing defense ability after microinjection[J]. >Journal of Integrative Agriculture, 2021, 20(10): 2716-2726.
No Suggested Reading articles found!